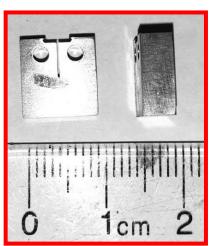
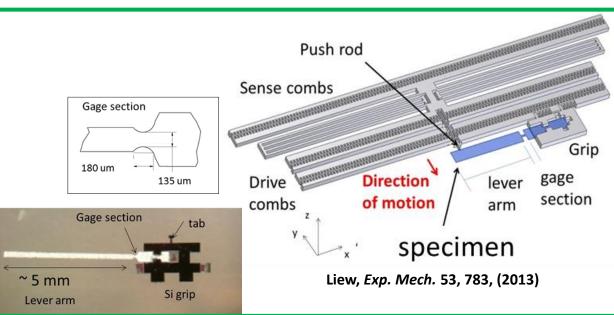
NIST Additive Manufacturing Fatigue and Fracture Project: Facilities and Capabilities

Nik Hrabe, Ward Johnson, Jake Benzing, Nicholas Derimow Newell Moser, Orion Kafka, Alec Saville

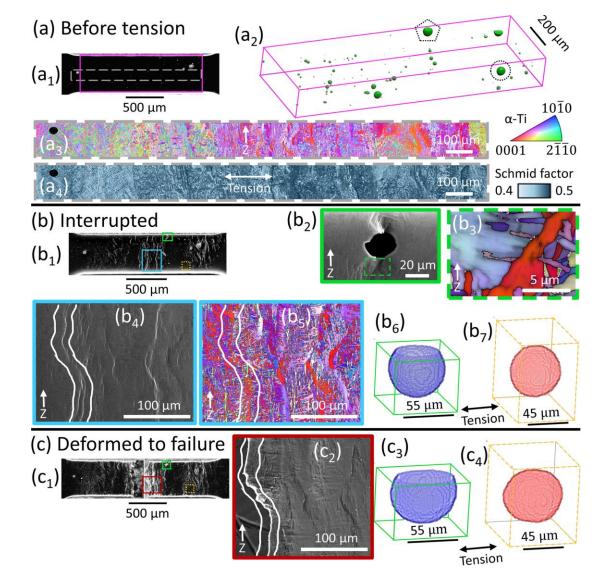
National Institute of Standards and Technology (NIST), Boulder, CO, USA




Mechanical Testing Facilities and Capabilities

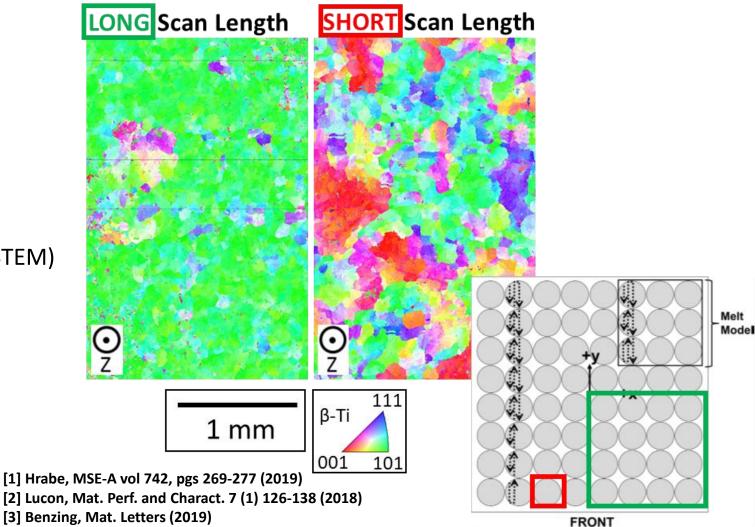
- <u>Standard Size</u> Specimens
 - E.g. quasi-static tension/compression, high-cycle fatigue, lowcycle fatigue, fatigue crack growth rate (FCGR), rotating bending fatigue, instrumented Charpy, fracture toughness, etc
 - Digital Image Correlation (DIC)
 - High temperature, Low temperature (liquid helium 4°K), environmental (including pressurized hydrogen)
 - Microhardness and Nanoindentation with mapping capabilities
- <u>Milli-scale</u> Specimens
 - E.g. Quasi-static tension, small punch, FCGR
- **MESO-scale** specimens using table-top testing instruments
 - gauge section dimensions: hundreds of μm to several mm, and with larger grip sections
 - Tensile tests at strain rates from 0.001/s to 1/s
 - Shear tests at strain rates 0.001/s to 30/s
 - In-situ tensile tests in x-ray computed tomography (XCT) and scanning electron microscope (SEM)
- MICRO-scale specimens using table-top testing instruments
 - gauge section dimensions: tens of μm to 100 $\mu m,$ and with larger grip sections
 - Tensile tests on theta-specimens
- MICRO-scale specimens using MEMS test instruments
 - Bending fatigue tests
 - Potential: high-throughput testing; in-situ environmental testing

Gaither, JMR 26, 2575 (2011).



Meso-scale Mechanical Testing for AM Metals

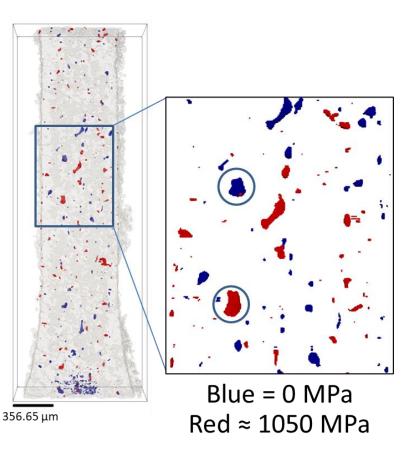
- Small-scale mechanical testing shows great promise in measuring AM microstructural heterogeneities at appropriate length scales
 - And when extracting specimens from AM components with small features
- Important to couple with microstructure characterization (e.g. SEM-EBSD, XCT)
- NIST has expertise in developing these techniques
- MESO-scale specimens using table-top testing instruments
 - gauge section dimensions: hundreds of μm to several mm, and with larger grip sections
 - Tensile tests at strain rates from 0.001/s to 1/s
 - Shear tests at strain rates 0.001/s to 30/s


[1] Benzing, Exp. Mech. (2019)

Microstructure Characterization Facilities and Capabilities

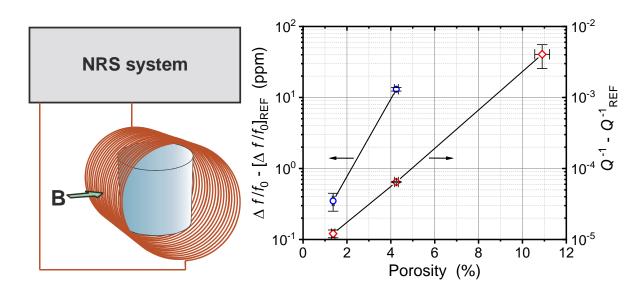
- Optical Microscopy
 - Stereomicroscopy
- Optical Profilometry
 - Scanning white-light interferometry
- Scanning Electron Microscopy (SEM)
 - Focused ion beam (FIB)
 - Electron dispersive spectroscopy (EDS)
 - Large-area electron backscatter diffraction (EBSD)
 - Transmission-SEM (t-SEM)
- Scanning Transmission Electron Microscopy (STEM)
 - Electron energy-loss spectroscopy (EELS)
- Atomic Force Microscopy (AFM)
 - Scanning kelvin probe force microscopy (SKPFM)
- Atom Probe Tomography (APT)
 - Commercial APT
 - Extreme-UV APT

Large-area EBSD of AM titanium showing process-based texture variation



Nondestructive Evaluation Facilities and Capabilities

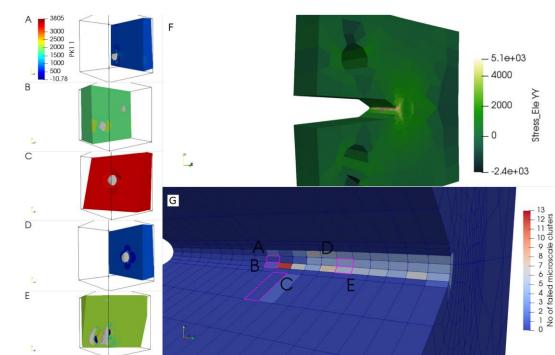
X-ray Computed Tomography (XCT)


- Two commercial XCT systems
- Northstar has higher power to analyze larger specimens but with lower resolution (20µm voxel edge length)
- Zeiss Xradia has lower power that limits specimen size but with better resolution (1µm voxel edge length)
- In-situ tension/compression testing during XCT (loads <500N)

In-situ XCT mechanical testing, showing pores under zero load and 1050 MPa (past yield) in AM IN718 (Kafka, ICAM, 2021)

Acoustics

- Unique Nonlinear Reverberation Spectroscopy (NRS) system that provides ultra-precise noncontacting measurements of acoustic nonlinearity and loss.
- Unique system for noncontacting resonant acoustic measurements of metals from 100 K to 1100 K.
- Resonant Ultrasound Spectroscopy (RUS) for measurement of complete acoustic spectra
- Scanning acoustic microscopy


Resonant acoustic nonlinearity and loss in AM stainless steel. [W. Johnson *et al.*, AIP Conference Proceedings 2102, 020008 (2019)]

Computational Facilities and Capabilities

• Facilities

- High-performance computer clusters for parallel computing, artificial intelligence, and general numerical methods.
- Limited to about 128 processing cores and 2 GB to 4GB of RAM per node
- Capabilities
 - Finite element methods
 - Computational solid mechanics
 - Reduced order modeling
 - Metal plasticity
 - Damage mechanics
 - Contact-impact problems
 - Modal analysis
 - Crystal plasticity
 - Multi-scale modeling
 - Fracture mechanics
 - Fatigue life prediction.

Concurrent multiscale model for fracture initiation with varying microstructures [1]

Simulating fracture in a sheartype sheet metal specimen using a shear-modified GTN model [2]

Kafka et al. (2021). Image-based multiscale modeling with spatially varying microstructures from experiments: Demonstration with additively manufactured metal in fatigue and fracture. *Journal of the Mechanics and Physics of Solids*, 150, 104350.
Moser et al. (2017). Predicting Ductile Fracture in Double-Sided Incremental Forming. *CIRP Annals Conference*

6