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ABSTRACT

Coordinate measuring systems (CMSs) determine dimensional (length-based) characteristics of
mechanical parts by analyzing 3-dimensional point data acquired on part surfaces. Data analysis
software can contribute significantly to the total measurement error of a CMS. Factors affecting
software performance include the choice of analysis method, the quality of software implementa-
tion, and characteristics of the specific measurement task. However, there are no standard
mechanisms to evaluate the effects of these factors on the quality of the measurement results.

NIST is developing a Special Test service to evaluate the performance of Gaussian curve- and
surface-fitting algorithms that are at the core of most CMS software. This service is being
defined in coordination with an ASME standards committee developing a new national standard,
Performance Evaluation of Coordinate Measuring System Software. The NIST service will be
based on this emerging standard, an Algorithm Testing System currently being developed at
NIST, and test procedures specific to coordinate measurement tasks. This paper discusses the
background, design philosophy, and status of the new service.

INTRODUCTION

Data analysis software has become increasingly important in modern dimensional measurement
systems. This is particularly true of coordinate measurement systems (CMSs) such as vision
systems, theodolites, photogrammetry, and coordinate measuring machines. Software
computations to convert raw data to reported results can be a major source of error in a
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measurement system. Yet there are no standards or accepted methods for evaluating the effects
of software on the overall uncertainty of measurements. This paper presents current work at
NIST to develop an Algorithm Testing and Evaluation Program (ATEP) for testing such data
analysis software. ATEP will be made available through a NIST Special Test service offered
through the Office of Measurement Services and will be coordinated with emerging U.S. and
international standards for performance of CMS software.

This paper is organized as follows. The next section provides the background and motivation
for this work—what software is being tested and why testing is important. Following that is a
discussion of the design philosophy and theory of software testing on which this work is based.
Next is a description of how the Special Test service—which we have called the NIST Algorithm
Testing and Evaluation Program, or ATEP—will work. The paper concludes with the current
status of ATEP and the related standards work.

BACKGROUND AND MOTIVATION

The data analysis function with which we are

Figure 1 Geometric fitting software
converts coordinate data to geometric
parameters.

concerned is geometric fitting. This function,
illustrated in Figure 1, lies at the core of most
inspection tasks. The role of geometric fitting is to
reduce measured point coordinates to curve and
surface parameters. The resulting curves and surfaces
are called thesubstitute geometryfor the feature. In
further processing, these parameters are compared to
the tolerance limits for the part. Most CMSs are
characterized in terms of how accurately point
measurements can be made. However, it is the
uncertainty of the computed substitute geometry that
determines the quality of a measurement. There are
currently no standards or methods for estimating the uncertainties of computed feature
parameters.

The phrasecomputational metrologyrefers to the study of the effects of data analysis
computations on the performance of measurement systems. Computational metrology involves
the application of core concepts of metrology12 to the computational components of a
measurement system. Not everyone shares the view that computational metrology is a significant
area of study. For instance, an ASME standard on measurement uncertainty1 states:

Computations on raw data are done to produce output (data) in engineering units.
Typical errors in this process stem from curve fits and computational resolution. These
errors are often negligible.

The standard does deal with thepropagationof errors through computations, but the above is the
only mention of computations as asourceof errors. Other practitioners, who accept that software
can be a significant source of error, believe that software is not amenable to characterization in
metrological terms.



During the last few years, much evidence has been discovered that data analysis can be a
significant source of errors in CMSs. Estler5 analyzed a measurement device for inspecting the
casings of the solid rocket boosters for the NASA space shuttle. He reported that the data
analysis software was the single largest source of error in the entire system. In the mid-1980s,
Germany began a program of testing coordinate measuring machine software, with the express
purpose of improving what was perceived as low quality of commercial fitting algorithms.10 And
in 1988, Walker issued an advisory15 in which he reported the results of experiments with
commercial inspection systems:

Certain algorithms . . . are capable of stating that the measurement is worse than the
actual data gathered up to an error of 37% and that the measurement is better than the
actual data gathered up to an error of 50%.

There is considerable ongoing research on CMS algorithms. (See reference 6 for a survey.)
There is also growing interest by government standards laboratories in testing the performance
of CMS software, particularly in Great Britain2,3 and Germany14. Both countries offer services
to test CMS software by comparing results for test data sets to results obtained from reference
software. In the U.S., the NIST ATEP is intended to provide a similar service4. In the next
section, we present the design philosophy for the ATEP, which differs from other proposed
approaches to software testing.

DESIGN PHILOSOPHY

The end goal of testing is to be able to evaluate how well software will perform in specific
applications, or at least to be assured of a particular level of performance. The ATEP is being
developed with a three-step process for achieving this goal. The first step is to identify the
performance factors—what conditions or influences affect the quantities of interest. The second
step is to hypothesize a performance model that relates the performance factors to levels of
performance. The third step is to develop tests by which the parameters of the model can be
evaluated. The model, when evaluated for a particular software package through testing, can then
be used to estimate measurement uncertainties of computed quantities. We will first discuss the
performance factors and models. We then discuss the design of tests.

Performance Factors and Models

Geometric fitting can be viewed as an optimization problem: find the parameters of substitute
geometry that optimize a particular fitting objective. Under this view, performance factors for
geometric fitting software fall into two broad categories: the choice of fitting objective and the
implementation of that objective in software. We discuss each of these in turn.

Choice of Fitting Objective

The fitting process is illustrated in Figure 2. The choice of fitting objective is an important
determinant of CMS performance. Part tolerances are generally interpreted in terms of extremal
fits. That is, the objective is to find the geometry that fits the extremes of the part: the largest
inscribed, smallest circumscribed, or minimum separation geometry. Also, simulation of



functional gages (sometimes called soft functional

Figure 2 Ideal model of fitting.

gaging) can be interpreted as finding the maximum
clearance (or minimum interference) solid model fit to
the part. Measurement practice, on the other hand, most
commonly involves averaging fits, typically orthogonal
distance regression† but also objectives such as least
median of squares9,11 and other robust techniques for
outlier detection. When the fitting objective is anything
other than the extremal fit of tolerance theory, the
computed fits will be biased. That is, in the limit as the
point density goes to infinity and the measurement error
for each point goes to zero, averaging fits will be
different from extremal fits.‡

The points being analyzed are not free of error; each point has an uncertainty of measurement.
Also, the points are often not very dense on the part, so there can be significant sampling noise.
(That is, the points may not accurately represent the part surface.) Averaging fits appear to be
less sensitive to measurement errors than are extremal fits13.

It is very difficult to develop general guidelines for the best choice of fitting objective for a
practical CMS. There has been considerable debate over the widespread use of orthogonal least-
squares fitting, with many claiming that extremal fitting is better because it “conforms” to
tolerance theory. The truth is that the best choice of fitting objective is that which produces the
smallest combined uncertainty in the result, and the best choice is not at all clear.

We can modify the ideal model of fitting of Figure 2 to include bias and sensitivity effects. The
new model, drawn in Figure 3, shows that the observable values—the data points being fit and
the reported fit—are combinations of inherently unobservable quantities. The observed data
points always include some element of measurement error. The reported fit is a combination of
the “true fit” (the fit to the surface) and two additional errors: the bias introduced by the choice
of fitting objective and the sensitivity of the fit to the measurement error. Bias is the deviation
between the mathematical fitting objective and the requirements of tolerance theory. Sensitivity
is the effects of point measurement errors on the reported fit.

Objective Implementation

The second major category of performance factors deal with implementation. There are four
factors to consider: 1) the optimization method chosen to compute the fit; 2) the computing
environment (word length, rounding method, dynamic range, etc.); 3) handling of extreme cases;
and 4) code correctness.

† Orthogonal distance regression is also called Gaussian fitting and, for lines and planes, total least squares. In the metrology
community, it is often—but inaccurately—called least squares.

‡ Depending on one's viewpoint, bias might be considered to be an error in the model. We reserve the termmodel error,
however, to indicate the error resulting from picking a particular geometric form to fit to the data.



The choice of optimization method greatly affects how the computing environment impacts

Figure 3 Operational model of fitting software, showing bias and sensitivity errors.

measurement uncertainty. In particular, the effects of rounding due to machine precision can be
much greater for some optimization methods than for others, even for the same objective
function. Analyses of rounding errors are often done in terms of a quantity called theunit
roundoff error, which we shall denote byu. u is a property of the computing environment; it
is the largest number that, when added to 1 in floating point arithmetic, produces an answer of
1. (Typically u is about 10-7 for single precision and about 10-15 for double precision.) Some
iterative algorithms rely on convergence tests to end. The effects of the convergence tests can
sometimes be modeled as an increase in the value ofu for the computing environment.

The study of how optimization methods and rounding errors interact can draw on an extensive
body of results in linear algebra perturbation theory. Although fitting problems are often non-
linear in nature, most optimization algorithms work by repeatedly solving a linear approximation
to the fitting objective. So the results of linear algebra can potentially be applied to a much
broader class of optimization methods than might be apparent. All results that follow are based
on linear algebra theory found in reference 7.

One example of how the choice of optimization method can dramatically affect the impact of
rounding errors is simple linear regression. Suppose we wish to compute the regression line to
the three points (-100,-100), (0,0), and (100,100). Clearly, the regression line has a slope of 1
and a y-intercept of zero. Denote the regression line byv. Then the fitting objective is to find
the smallest magnitudev that minimizes the sum of squares of residuals. This can be modeled
as solving forv in the matrix equationAv≈y, where

and y=(-100, 0, 100)T. Generally, the computed value ofv (by any method) will be different
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from the exact solutionvLS. The most common solution method is the use of thenormal



equationsfor the model. The normal equations are obtained by multiplying the original matrix
equation on the left byAT and solving forv using the Choleski decomposition ofATA. The result
is v=(ATA)-1ATy. If v is obtained by evaluating the normal equations with roundoff erroru, then
the error of the solution isv-vLS ≈ 6,700u. This is in contrast to a more accurate method,
described next.

The same objective can be evaluated usingsingular value decomposition. Matrix A can be
decomposed into the productUTΣV, whereU andV are orthogonal matrices andΣ is a diagonal
matrix. LetΣ+ be the diagonal matrix obtained fromΣ by setting each element ofΣ+ to zero if
the corresponding element ofΣ is zero, or else to the inverse of the corresponding element ofΣ.
Then v=VΣ+UT is the least-squares solution. Ifv is obtained by evaluating the singular value
decomposition with roundoff erroru, then the error of the solution isv-vLS ≈ 82u. Thus, for
this very simple problem, the effects of rounding can be changed by nearly two orders of
magnitude by the choice of optimization method.

The above is an example offorward error analysis. It says that the computed fit is the exact fit

Figure 4 The forward error analysis model. The other errors include bias and sensitivity.

plus some error. This is illustrated graphically in Figure 4. General results for forward error

analysis can only be obtained for some algorithms. Forward error analysis has the additional
shortcoming that the relative error can usually only be characterized in terms of the same
quantities that are used to compute the fit. Thus, it is very difficult to write software for
estimating the fit uncertainty that will work reliably in the same computing environment that is
being used to calculate the fit.

A different approach, calledinverse error analysis, is to view the computed solution as the exact
solution to a “nearby” problem. Consider again orthogonal distance regression computed by the
singular value decomposition of the data matrixD. The computed fit is the exact fit to some
other data setD+∆. Inverse error analysis is illustrated in Figure 5. The effects of rounding are
modeled as adding additional noise to the databefore the fit is computed. The computation,
however, is then viewed as being done in exact arithmetic. It is often much easier to characterize
the effects of rounding in terms of inverse error analysis. The effects of the inverse error on the
reported fit are determined by the sensitivity of the objective function.



A comprehensive test will check the behavior of the software for extreme cases. These cases fall

Figure 5 The inverse error analysis model.

into three categories: pathologies, degeneracies, and extreme values. Pathologies are data sets
for which no solution is possible. These include data sets with too few points and problems with
unbounded solutions (such as fitting a circle to collinear points). Degeneracies are configurations
that should pose no problem but often do in practice. These include data sets with zero residuals
(perfect geometry), “vertical” slopes, and similar configurations. Extreme values include number
of points (minimum required; maximum for the implementation), distance from the origin, narrow
geometry bounds (small arcs, etc.), and large residuals.

The last implementation factor, code correctness, is difficult to evaluate. Code errors can only
be found if a test case exercises the relevant code. This is done in the ATEP by comparing test
fits to corresponding reference fits. This, in fact, is a primary purpose of computing reference
fits. However, it is essentially impossible to design tests that will find all code errors in a black
box. The best one can do is to generate data that are representative of the intended application.

Test Design

Our test design approach is based on three assumptions. One assumption is that tests should be
designed and interpreted according to a well-defined error model. The models presented above
identify four error sources: bias, sensitivity, rounding error in the fit, and induced error in the
data from rounding. Two other sources of error, handling of extreme cases and code correctness,
will be discussed below. These are the error sources for which the ATEP is being designed. A
second assumption is that test results must be interpreted and reported in terms directly related
to inspection tasks. Part tolerances generally require conformance of the part to tolerance zones.
These zones are volumes or areas for which the part features or substitute geometry elements
must observe certain constraints. This means that test results should quantify the uncertainties
of geometric relationships computed by the software. Thus, representation-specific test results
(e.g., parameter values) should be avoided†. A third assumption is that the software to be tested
is a “black box.” That is, the internal structure of the software—the optimization method, code
structure, computing environment, etc.—is unobservable. Thus, the testing method is limited to

† This is not to say that parametric representations cannot be used in obtaining the test results.



supplying the software with fitting problems and analyzing the fit results. The problem set and
analysis are designed to identify the elements of the error models.

The assumption of black-box testing leads to the now-common architecture of a testing system,

Figure 6 Architecture of the NIST Software Testing System.

shown in Figure 6. The system consists of three components: a data generator, a set of reference

algorithms, and fit analysis. The data generator is driven by a test description—a high-level
specification of the tests to be performed. A test description may define hundreds of data sets;
these would be generated automatically from the description. The data sets are processed by the
software under test to generate test fits. At the same time, the data sets may be processed by
fitting software supplied with the testing system. The data sets, test fits, and reference fits are
used to assess performance measures for the software under test.

A data set is generated from four classes of information: the nominal (ideal) geometry of the
feature, the form error(s) of the feature being simulated; the sampling plan (distribution of points
on the feature) for the data set; and the (random) measurement error distribution for the points.
A test description consists of ranges of instance values for each of these information classes.
This provides the flexibility to study the behavior of the software in a controlled manner. For
instance, a test description that varies the simulated measurement error alone can be used to
assess the sensitivity errors of the software for the particular combination of other factors.
Varying the sampling plan for a fixed simulated form error allows the study of the effects of
sampling noise on the fit result. Similar variation of other factors can be used to study other
aspects of the error model.

As mentioned before, fits are analyzed in terms of geometric differences among fits, not
parameter values. In our system, all fit geometries are trimmed by the projection of the data onto
the fit geometry. Comparison of test fits to reference fits is used to detect code errors and to
identify systematic bias. Bias can arise when an implementation optimizes an approximation to
the stated fitting objective. (Commercial software sometimes uses linear approximations in place
of non-linear objectives to gain a speed advantage.)

The main tool for evaluating software is measures of variation in fit geometry in response to
varying test conditions. These measures are independent of reference fits. A different analysis



is used for each type of geometry. For instance, cylinder fits are analyzed as follows. The axis
of each cylinder is trimmed by the orthogonal projection of its corresponding data set onto the
axis.† The smallest cylinder that encloses the axis segments is then computed. The diameter
of this enclosing cylinder is a measure of dispersion for tolerances such as position, orientation,
and parallelism. Depending on which parameters of the test description are involved, this
dispersion is an estimate of sensitivity, bias, or effects of rounding errors. Similarly, the spread
of radii of the cylinder fits measures dispersion for size. The spread of angles between the axes
is measured as the angle of the narrowest cone that encloses all the direction vectors of the axes.
This measure does not relate directly to common tolerance applications, but can be used for
diagnostic purposes.

Comparison of fits to a reference is done on a data set-by-data set basis. (That is, a different
reference is used for each data set.) Differences between test fits and the reference for each data
set are computed in a way similar to that described above. Thus, for instance, the maximum
deviation of axis segments from the reference axis measures axis location differences. Difference
measures can be accumulated across data sets to study the sensitivity of the differences to test
parameters. A detailed description of analysis methods used at NIST will be reported elsewhere8.

THE ALGORITHM TESTING AND EVALUATION PROGRAM (ATEP)

This section describes ATEP, the NIST service currently under development to provide tests of
CMS fitting software used in part inspection. The goals of ATEP are: first, to provide a
mechanism for evaluating CMS software; second, to reduce measurement uncertainties associated
with CMS software; and third, to respond to U.S. industry needs for software testing. The
intended customers of ATEP include: vendors of CMSs such as vision systems, coordinate
measuring machines, theodolites, and photogrammetry; CMS users for applications such as
mechanical parts, electronics, geodesy, and anthropometry; and calibration services.

The organization of ATEP is shown in Figure 7. A customer desiring a software test arranges
to receive test data from NIST on a computer disk. The test data may be a standard suite of data
sets or may be a suite designed for a specific application. The customer then returns fit results
to NIST for each data set. (The contents of the data sets and the format of fit results are defined
in documentation accompanying the data.) Following standard test procedures, NIST uses its
own reference algorithms and the testing system described earlier to prepare an evaluation of the
software. The evaluation will report the analysis results in terms of error model parameters. It
will also characterize the ability of the test software to handle extreme cases, and, through
comparison to reference algorithm results, will report on code correctness.

One of the key features of the ATEP is that it is being coordinated with emerging U.S. and
international standards. Within the U.S., relevant standards are being developed by the American
Society of Mechanical Engineers in three areas: tolerancing theory, measurement methods, and
CMS software performance evaluation. The designation of these standards is:

† Fits from more than one data set may be analyzed together.



ASME Committee

Figure 7 Organization of the NIST Algorithm Testing and Evaluation Program (ATEP)

Standard Under Development

Y14.5.1 Mathematical Principles of Dimensions and Tolerances

B89.3.2 Dimensional Measurement Methods

B89.4.10 CMS Software Performance Evaluation

The standard most closely related to the ATEP is ASME B89.4.10. This standard is being
developed in conjunction with NIST work. The ATEP test procedures, by which NIST evaluates
fit results, will be based on this standard.

STATUS

As mentioned earlier, the ATEP is currently under development. Current plans are for it to be
available in 1994. It will be catalogued as a Special Test Service under NIST's Calibration
Program. The testing system used within the ATEP is also currently under development.
Initially, the ATEP will support testing of orthogonal distance regression software for simple
geometries (line, circle, plane, sphere, cylinder, cone, and torus). Future plans will include
support of other fitting objectives, more complex geometries, and higher-level functions (such
as tolerance verification) of inspection systems.

An earlier version of the testing system has been in use for over a year by members of the
standards community and other interested parties. The purpose of distributing an earlier version
of the system was to provide independent evaluation of the reference algorithms embedded in the
system. These algorithms have performed well. They have been used to identify problems in
third-party fitting software and have even been incorporated into commercial products.



The International Organization for Standardization, under its working group ISO/TC 3/WG 10
is also working on a standard for software testing. The ATEP program will support this standard
as it is developed. There is major technical difference between the U.S. and ISO efforts. The
U.S. standard envisions reporting fit results in terms of fit parameters. Under the current ISO
proposal, the fit itself will not be reported, instead the customer will report the residuals
corresponding to the points in the data set. Furthermore, under the ISO proposal fit results will
be compared on the basis of differences between residuals computed by the software under test
and corresponding residuals computed by reference software. It is unclear how differences in
residuals relate to the fit uncertainty concepts that lie at the core of the U.S. approach. NIST and
the U.S. delegation are working with the ISO group to resolve this issue.

The ATEP will be the first calibration service in the U.S. for dimensional metrology software.
NIST has been working with standards groups and other interested parties to develop the
principles and operation of this service. Any suggestions on how ATEP should work or on future
directions are most welcome and should be directed to either of the authors.
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