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Model for drag forces in the crevice of piston gauges
in the viscous-flow and molecular-flow regimes

J. W. Schmidt, S. A. Tison and C. D. Ehrlich

Abstract. A model for drag forces in the crevice of pneumatic piston gauges is presented. The model uses an
interpolation function for momentum transfer between the piston and the cylinder mediated by the gas flowing
in the crevice. The interpolation function bridges the gap between the molecular-flow and viscous-flow regimes,
and is then used to develop an expression for the effective area of a piston gauge. The deviations of the effective
area of this model from the viscous-flow results are derived for both floating-piston and floating-cylinder designs.
Model results are compared with published measurements of the effective area of several piston gauges in which
relative changes as large as 30 10–6 (30 ppm) were observed when different pressurizing gases were used.

1. Introduction

Piston gauge pressure generators have become one of
the most reliable pressure standards in the world today
in the range 20 kPa to 500 MPa. The Pressure and
Vacuum Group at the National Institute of Standards
and Technology (NIST) uses piston gauges as transfer
standards to compare pressures from different primary
standards and to distribute the pressure scale to other
laboratories in the United States and throughout the
world. One such transfer gauge, known within the
NIST as PG-28 (a gas-operated/lubricated gauge), has
served as the linchpin to anchor pressure calibrations
at the NIST in the pressure range one atmosphere
and above. Gauge PG-28 is most often used in
gauge mode to transfer calibrations to other secondary
gauges at the NIST and to the standards of other
laboratories. However, its calibration has been based
on an absolute-mode calibration against a mercury
manometer primary standard [1]. To cover the jump
to gauge-mode operation an additional 6 10–6 (1 σ)
relative uncertainty was included because of possible
effects from unknown drag forces in the crevice [2].
The present model is an attempt to quantify the possible
differences in effective area from a geometrical effective
area and any differences when changing the operation
from absolute to gauge mode.

In this model we extend a derivation developed
previously [3] for azimuthal drag forces applied to
spin-decay rate measurement to include vertical drag
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forces in the annular region (Section 2). The derivation
has been used to interpret previous measurements of
effective area using other gauges for two gases, helium
and nitrogen [4]. The extended derivation of the drag
force in the vertical direction begins with the viscous
(or Poiseuille-flow) regime followed by the molecular-
flow regime. The two results are then combined using
an interpolating function to describe the drag forces in
both regimes. The interpolating function for the drag
force in the annular region is followed by an application
of this result to an expression for the effective area of a
piston gauge (Section 3). In Section 4 we compare the
model with data obtained by Welch et al. [1] in gauge
and absolute modes. They measured relative changes in
the effective areas of several piston gauges and found
changes as high as 30 10–6 (30 parts per million, or
30 ppm). The present model orders the changes in a
predictable way based on the molecular weight and
viscosity of the pressurizing gas.

2. Derivation of the drag force

2.1 Poiseuille-flow regime

The drag force in the Poiseuille-flow regime (i.e. the
crevice width is much larger than the molecular mean
free path) is given by

(1)

where is the piston-cylinder overlap area 2π , is
the dynamic viscosity, and are the radial and axial
coordinates, respectively, and is the velocity
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profile of the gas within the annular region [5],

(2)

Here, is the pressure gradient. The piston and
cylinder radii are and , respectively, and is the
length of the overlap area between piston and cylinder.
The derivative of the velocity profile with respect to is

(3)

If we define the annular width ,
then for small , but not so small as to be in the
molecular-flow regime,

(4a)

(4b)

Equation (4b) was obtained by observing that the
average flow velocity at the axial coordinate

, is the integral of (2) over the annular area:

(5)

The molecular flow through the annulus is

π (6)

Here, is the molecular number density. After
substituting (4b) into (1) and eliminating
with (6) we obtain

(7)

We finally note that in (7) is approximately
independent of pressure for the pressures near one
atmosphere, while the analogous momentum transfer
term to be developed in Section 2.2 for the molecular-
flow regime is proportional to and hence to the
pressure.

2.2 Molecular-flow regime

In the molecular-flow regime the velocity profile is
taken to be constant for a given . The drag force on
the piston in this regime (i.e. the crevice width is much
smaller than the molecular mean free path) is equal to

the average momentum transfer per molecular collision
event multiplied by the number of events per second [6]:

(8a)

Here, is the molecular mass, is the
number of molecule/wall collision events per second,

is the overlap area, is the number density
of the molecules, π is the mean
molecular speed, is Boltzmann’s constant, and
is the temperature in kelvins. By combining (6) and
(8a) we obtain

(8b)

(8c)

Equation (8c) was obtained by factoring out the same
coefficients as appear before in (7). The remaining
quantities in parentheses act as a momentum transfer
term analogous to viscosity in (7).

2.3 Interpolating function between regimes

The two limiting cases given by (7) and (8c) in the two
regimes described above are rewritten below:

viscous flow λ

molecular flow λ

(9a)

(9b)

where λ is the mean free path.
Next, we define an interpolating or momentum

transfer function to replace the separate quantities
within the braces in (9a) and (9b) with a single
function in exact parallel with similar momentum
transfer functions and of [3]:

(10)

where has been defined so that
matches smoothly with (9b).

With this definition for the interpolating function
between the limiting behaviours given by (9a) and (9b),
we can rewrite (9) as an integral over the elemental
contributions :

(11)

and

(12)

We change variables from to and assume the
simplest case, that of an ideal gas .
Since the present model pressure profile is the same
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as that of [3] we use without derivation those results:
, where π ,

π , and

(13)

With these substitutions (12) becomes

(14)

which is easily integrated to give

(15)

Thus we have the force d in terms of two
pressures, and (the absolute pressures at the
entrance and exit of the annular region), and the two
molecular properties of the pressurizing gas, viscosity
and molecular weight.

3. Effective areas predicted by the model

From the force as described in Section 2 and given
by (15), we can calculate the effective area, eff, as
a function of and the differential pressure .
The effective area predicted by the treatment above
for a conventional floating-piston design (gas flows
upwards) is

π (16a)

π

(16b)

and for a floating-cylinder design (gas flows down-
wards),

π (17a)

π

(17b)

depends on (through and ), and .
These contributions to the effective area are in addition
to any effects due to deformation of the piston or
cylinder. Note that the viscous-flow result normally
used retains only the term (or ) and gives
an effective area that is constant and independent of
both gas species and mode of operation (i.e. independent
of and ):

π (18a)

and

π (18b)

where is the viscous-flow effective area. Equations
(18a) and (18b) refer to the conventional and floating-
cylinder designs, respectively.

The relative differences between (17) and the
baseline viscous-flow model ((18a) for a conventional
floating-piston design) is

(19)

The lower portions of Figures 1 and 2 show
the differences predicted by (19) for six different
pressurizing gases: helium (He), nitrogen (N2), carbon
dioxide (CO2), neon (Ne), argon (Ar) and krypton (Kr).
One can see that in the absolute mode ( ) large
gas-species effects can occur. The lines plotted in the
figures were generated from (19) in which the crevice
width, , was taken to be 3 µm and the piston radius,

, was taken to be 0.005 m. Large shifts in effective
area can also occur between absolute and gauge modes.

Also included in the upper portions of Figures 1
and 2 are predictions for the same gases for a floating-
cylinder design with µm, m crevice
width. Note (i) the sign change because the gas in the
crevice is flowing downwards, and (ii) the scale factor
change ( 10).

4. Comparison of the model with experiment

We have compared the present model with measure-
ments by Welch et al. [1, Table 1] in which they
measured shifts in effective area of two piston gauges
relative to the effective area obtained using helium.
Welch et al. also used the same six gases: He, N2, CO2,
Ne, Ar and Kr, and because they obtained their data
using another piston gauge (PG-28) as a standard, we
modelled both the test gauge and the standard gauge
with (19). Figures 3 and 4 give data they obtained
from one of these gauges (absolute and gauge modes,
respectively). Note the large effect observed – about
30 ppm in the case of CO2 in the absolute mode
relative to helium.

Figures 5 and 6 show the deviations of their
data (PG-30) from the present model. We modelled
the standard that they used (PG-28) with the values

µm and m. In absolute mode
the fitting procedure (a Marquardt-Levenburg non-linear
algorithm) resulted in a value µm for
one of the gauges (PG-30) and µm
for the other (PG-31). Although these values appear
to be too large for the gauges Welch et al. studied,
the model at least orders the effective areas in the
proper sequence with regard to the molecular properties
(molecular weight and viscosity). In gauge mode a value
of µm resulted. The fall rates measured
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Figure 1. Differences in the absolute-mode effective area from the viscous-flow limit are displayed for two piston gauges.
The plots below the axis represent a piston gauge with a conventional floating-piston design with µm, � mm.
The plots above the axis represent a floating-cylinder design with µm, � 25 mm. (Note scale change above axis.)

Figure 2. Differences in the gauge-mode effective area from the viscous-flow limit are displayed for two piston gauges.
The plots below the axis represent a piston gauge with a conventional floating-piston design with µm, � mm.
The plots above the axis represent a floating-cylinder design µm, � 25 mm. (Note scale change above axis.)

by Welch et al. can also be used to estimate the crevice
widths of PG-30 and PG-31. When this is done, values
for of 1.9 µm and 2.1 µm result for PG-30 and
PG-31, respectively.

The present model shows promise in that it is able
to obtain a good fit within 3 ppm to data that are
initially divergent up to 30 ppm. Its shortcomings are
that it could not fit the gauge- and absolute-mode data

simultaneously and that it could not fit other data in the
literature [2, 7]. Further research is needed to discover
the source of the disagreement and to improve on the
model.

With regard to the present model, we intend
to extend it to allow for non-ideal crevice shapes,
for example. The present model assumes perfect
cylindricity for both piston and cylinder in addition
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Figure 3. Changes in the absolute-mode effective area of a piston gauge from various gases used as the pressure fluid.
The changes are relative to helium. The squares represent the data (PG-30) of Welch et al. [1], reproduced by permission
of the authors.

Figure 4. Changes in the gauge-mode effective area of a piston gauge from various gases used as the pressure fluid.
The changes are relative to helium. The squares represent the data (PG-30) of Welch et al. [1], reproduced by permission
of the authors.

to perfect alignment. With regard to the measurements,
more high-quality data need to be gathered in other
circumstances. Other gases that might provide useful
information are hydrogen (H2) and sulfur-hexafluoride
(SF6). These two gases have well-separated molecular
weights and the viscosity of H2 is less than half that
of the other six gases used by Welch et al. They were
used successfully in rotational decay rate measurements
by Schmidt et al. [3]. Meyer and Reilly have also
investigated eff in relation to six gases: H2, 3He, 4He,
N2, CO2 and SF6 [7]. We have not fully analysed their
data with the present model.

5. Conclusion

A model for the behaviour of pneumatic piston gauges
has been presented which indicates that the effective
area of piston gauges should vary in a predictable
way with viscosity and the molecular weight of the
pressurizing fluid. This model has been compared
with the measurements of Welch et al. in both the
absolute and gauge modes. The model provides a partial
explanation for the large shifts in effective area observed
by Welch et al. [1] and it explains the order of the shifts
with gas species in both gauge and absolute modes. The
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Figure 5. Residuals of a least-squares fit by the present model to the absolute-mode data of Welch et al. The crevice width,
, was used as the fitting parameter and a value of 3.2 µm resulted.

Figure 6. Residuals of a least-squares fit by the present model to the gauge-mode data of Welch et al. The crevice width,
, was used as the fitting parameter and a value of 1.2 µm resulted.

model is unable to explain the magnitude of the shift
in effective area between gauge and absolute mode.
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