Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Visualizing Phase Transformations and Light-Matter Interactions with Nanometer-Scale Resolution

Visualizing Phase Transformations and Light-Matter Interactions with Nanometer-Scale Resolution

In Pixar's Inside Out, Joy proclaims, "Do you ever look at someone and wonder what's going on inside?" My group asks the same question about nanomaterials whose function plays a critical role in energy, biology, and information-relevant processes. In this presentation, I will describe new techniques that enable visualization of nanoparticle phase transitions and light-matter interactions with nanometer-scale resolution. First, we explore nanomaterial phase transitions induced by solute intercalation, to understand and improve materials for energy storage applications. As a model system, we investigate hydrogen absorption and desorption in individual palladium nanocrystals. Our approach is based on in-situ electron energy-loss spectroscopy in an environmental transmission electron microscope. By probing hydrogen-induced shifts of the palladium plasmon resonance, we find that loading pressures are strongly size-dependent and that sub-30nm single-crystals do not exhibit phase coexistence. Then, we introduce a novel tomographic technique, cathodoluminescence spectroscopic tomography, to probe optical properties in three dimensions with nanometer-scale spatial and spectral resolution. Particular attention is given to reconstructing a 3D metamaterial resonator supporting broadband electric and magnetic resonances at optical frequencies. Our tomograms allow us to locate regions of efficient cathodoluminescence across visible and near-infrared wavelengths, with contributions from material luminescence and radiative decay of electromagnetic eigenmodes. This tomographic technique could be used to precisely locate radiative recombination centers in light-emitting diodes, to probe the nanoscale distribution of defect states in organic photovoltaics, and potentially to provide new label-free avenues for biological imaging. Taken together, our results provide a general framework for high-resolution visualization of chemical reactions and light-matter interactions, well below the diffraction limit and in three-dimensions.

Jennifer Dionne

Materials Science and Engineering / Stanford University, California

Created March 31, 2016, Updated September 15, 2016