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ABSTRACT

A fast nonlinear response spectra analysis algorittased on the theory of modal analysis and
superposition is proposed to overcome the drawbadkasing the time-consuming nonlinear
response history analysis in seismic design. Bsrdinear modal analysis has found great
acceptance in performance-based seismic enginedriisghere extended to the nonlinear domain
by using the force analogy method that links thebgl responses with local inelasticity of the
structure. Geometric nonlinearity is incorporateto the analysis by modifying the initial
stiffness matrices to consider gravity load effectBy ignoring geometric stiffness update, the
theory of modal analysis and superposition is gasitorporated into the proposed algorithm.
Numerical simulation is performed to demonstrat docuracy of the algorithm in capturing both
the maximum global and local responses.

Keywords. Nonlinear modal analysis, force analogy methodtestspace method, geometric
nonlinearity, response spectra analysis.

1. INTRODUCTION

Simple analysis tools are often used in structakedign to calculate the demands, and linear
response spectra analysis (LRSA) based on squar@fthe-sum-of-the-squares (SRSS) is one of
the simple tools for estimating the seismic demamddesigning structures constructed in
seismically active regions. Chopra (2007) has dwnted the history and evolution of LRSA
over the past decades. However, when subjectadntajor earthquake, structures often respond
in the nonlinear domain because the seismic demalhdexceed its corresponding capacity by
design. In this case, LRSA, as the named suggetdeds the limitation of being unable to
capture the nonlinear behavior, making the analygthod impractical.

To overcome the limitation of LRSA in predictingmimear response, the use of nonlinear response
spectra analysis (NRSA) has been proposed in thewath two schools of thoughts. One is the

substitute-structure method (Shibata and Sozen)19ifere the response spectra remain linear but
the period and damping of the structure are adjusieachieve the targeted nonlinear responses.
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Because there is no closed-form relationship betweseudo-acceleration and displacement in a
nonlinear system, different adjustment factors nhestused in this method to achieve different
response quantities. On the other hand, NewmadkHail (1982) proposed nonlinear response
spectra, where linear spectra shapes are adjustedléct the nonlinear behavior of the structure.
The adjustment factors are developed based onidyatihich is an unknown quantity without first
conducting any calculation to determine the seisteimand. Therefore, NRSA have never been
fully developed, and seismic design today is Kiifjely based on linear elastic procedures.

In this paper, a simple NRSA tool based on adjgstime response spectra by adopting yield
displacement as the nonlinear parameter is proposidmerical simulation is performed to
demonstrate the accuracy and efficiency of this$ toa@apturing both maximum global and local
responses in comparison to those obtained usingxtieasive nonlinear response history analysis.

2. FORCE ANALOGY METHOD

The detailed derivation of the force analogy methad been presented in Wong and Yang (1999)
and it is briefly summarized here. Let the totapthcementx(t) at each degree of freedom
(DOF) be represented as the summation of the elalisiplacementx'(t) and the inelastic
displacementx”(t):

X(t) = X'(t) + x"(t) (1)

Similarly, let the total momentn(t) at the plastic hinge locations (PHLs) of a momesisting
frame be separated into elastic momenft) and inelastic momenm”(t):

m(t) =m'(t) +m"(t) (2)
The displacements in equation (1) and the momergguation (2) are related by the equations:
m'(t) =K'™xX'(t) m"(t) = —(K"-K'TK K")0"(t) 3

where @'(t) is the plastic rotation at the PHLEK, is the global stiffness matrixK' is the
stiffness matrix relating the plastic rotationsret PHLs and the forces at the DOFs, &Rl is the

stiffness matrix relating the plastic rotationstwihe corresponding moments at the PHLs. The
relationship between plastic rotatio®"(t) and inelastic displacement’(t) is:

X'(t) =K "K'@"(t) (4)

Substituting the two equations in equation (3) goiation (2) and making use of equations (1) and
(4), then rearranging the terms gives the goverauation of the force analogy method:

m(t) +K"@"(t) = K'Tx(t) (5)

3. MODAL ANALYSISWITH GEOMETRIC NONLINEARITY

Two nonlinear effects must be considered in perfiogranalysis with geometric nonlinearity.
First is the reduction in local stiffness of theustural members due to the presence of axial ilmad



the columns (i.e.P-d effect). This can be done by modifying the se8a matrice&, K', and
K" defined in equation (3). However, the axial foirt¢he column members varies in a dynamic
analysis, resulting in time-varying stiffness megs K (t), K'(t), and K"(t). Let Ko, K&,
and K5 represent the global stiffness matrix at time z&rbere only gravity load is applied on
the column members. It follows that

K(t) =Ko +Kg(t) , K'(t) =Ko +Kg() K"(t) =Ko +Kg(t) (6)
where K 4(t), Kjg(t), and Kg(t) are the change in stiffness matrices due to thagd in axial
load on the column members during dynamic loading.

The second nonlinear effect comes in when lateoatef F;(t) is induced due to lateral
displacement of the entire structure (ile-A effect). This effect can be modeled using-a
column in a two-dimensional analysis. The relaglup between this lateral forcg: (t) and the
total displacement of the structupglt) can be written in the form:

Fr (t) = K ex(t) (7)
where K ; is a function of the gravity loads on tReA column and the corresponding story height,

but it is not a function of time.

The equation of motion after considering bBth andP-A effects becomes
MX(t) + Cx(t) + K (t)x'(t) = =M g(t) + Fr (1) (8)

whereM is the nxn mass matrix,C is the nxn damping matrix,x(t) is the nx1 velocity
response at each DOR(t) is the nx1 acceleration response at each DOF, &g is the nx1
ground acceleration vector, where each term relatebe direction of the corresponding DOF.

Replacing the elastic displacememt(t) in equation (8) by the difference between total
displacementx(t) and inelastic displacement’(t) through rearranging the terms in equation (1),
and substituting equation (7) into the resultingaopn, it follows that

MX(t) + Cx(t) + Kox(t) = =M g(t) + K ¢ x(t) = K ¢ (t)x(t) + K (t)x"(t) 9

To simplify equation (9), let

Ke=Ko—-K+ (10)
where K. represents the elastic stiffness of the entingctire that has incorporated the geometric
nonlinear effect due to gravity loads. Pre-muftip) equation (4) by the stiffness matrix (t)
gives K (t)x"(t) =K'(t)@®"(t) , and substituting this result into the last terfrequation (9) gives

MX(t) + Cx(t) + Kex(t) = =M g(t) — K ¢ (1)x(t) + K'(t)@"(t) (12)

To transform the response to the modal coordinatdsch is required in any response spectra
analysis, let the modal displacement) be the r x1 vector and related to(t) by the equation

x(t) = @q(t) (12)



where ® is the nxr modal matrix computed based on elastic stiffn&ss andr is the total
number of modes to be considered in the analy$igw substituting equation (12) into equation
(11) gives

M®@{(t) + Cq(t) + Ke@q(t) = -Mg(t) - K ¢ (t)x(t) + K'()@"(t) (13)
Pre-multiplying equation (13) by®' , it follows that

OTMD((t) +P'CO(t) + P K Dq(t) =—®MG(t) — DK ¢ (t)Xx(t) + PTK'(1)O"(t) (14)
Assuming that the damping matr@ exhibits proportional damping characteristics, thatrix
multiplications on the left side of equation (14&cbme

M aG(t) + Caq(t) +Kaq(t) = —®@"™MG(t) —d"K g (1)X(t) + PTK'(1)O"(t) (15)

where Mg =®"M®, Cq =®'CP, and K¢ =®'K.® are the diagonal modal mass, modal
damping, and modal stiffness matrices, respectiveBguation (15) can be expressed in long form:
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where the subscripts 1,r..correspond to the associated modal parametersnaadal responses.
This givesr coupled modal equations of the form:

ma () + ¢ (t) +kioi () = —TM () - @K g (O)x(t) + ol K'(1)O"(t) i=1...r (17)

4. NONLINEAR RESPONSE SPECTRA ANALYSIS

In equation (17), geometric nonlinearity due tovgsaloads has already been fully incorporated in
the calculationk =¢Kepi, while the term /K 4(t)x(t) addresses the change in geometric
nonlinear effects during dynamic loading. This lnogar term typically has a small effect on the
overall structural response, and therefore an gsomis made to ignore the geometric stiffness
update by settingK ¢(t) =0. With no geometric update being done, it follaesordingly that

Ky@)=K5t)=0 |, K'(t)=Kb | K"(t) =K b (18)

Now consider material nonlinearity in the last tesfrequation (17). Another assumption is made
here to disregard this term by modifying the resggospectra used in determining the maximum
responses. In linear response spectra analysiSALRtwo parameters used in defining the
response spectra shapes are periods and dampiogy raivhen nonlinear effects are considered,
one additional parameter is needed to define thdimear behavior of the system. Here, yield



displacement is chosen as the additional paranteteause it is a structural property and is
independent on the characteristics of earthquaengr motions. The yield displacement of each
mode Dy, where i =1,...,r , can be calculated by making use of equationar{d)(18):

m'(t) = K& x'(t) (19)

If the structure is responding elastically and pune theith mode, the displacement pattern takes
the shape of thigh mode up to yielding when the first plastic hingddrmed. At this time,

X'(t) = X(t) = @iDyi (20)
In addition, m'(t) =m(t) up to yielding. Substituting equation (20) intuation (19) gives
m(t) = (K & ¢i )Dy (21)

The objective is to scan through the moment vahiedl the PHLs to determine whdd,i value

will first cause any moment to reach its correspogdnoment capacity. Once this is done,
following the same procedure for all the other nsodeduces all values of Dyi.  Elastic-plastic

behavior is assumed for the SDOF system for sintyplic In summary, equation (17) becomes

Ma () +06 () +ka (1) =~TMG(t) §=1..1 (22)
In a two-dimensional analysis, equation (22) reduoe
mai (1) + GG (1) + kg () =—mMugx(t) =11 (23)

where Tix is the modal participation factor of tite mode.

5. NUMERICAL SIMULATION

To demonstrate the accuracy of the algorithm, IBhgaake time histories were extracted from the
FEMA P-695 document (2009). Using different yieldplacement levels and an elastic-plastic
model for the stiffness of the system, 3% dampedimear mean response spectra are generated
and shown in Figures 1(a) to 1(c). Here, 3% damsnchosen instead of commonly-used 5%
because hysteretic damping is directly considardzbth material and geometric nonlnearities.

Consider the 16-story moment-resisting frame asvatio Figure 1(d), let the mass be 318.7 Mg on
each of the 15 floors and 239.9 Mg on the roof. avidy loads on th&-A column of 2,989 kN are
applied on each of the 15 floors and 2,242 kN dieg at the roof level. The damping is assumed
to be 3% in all modes. A total of 224 PHLs areniifeed as shown in Figure 1(d), all of which are
assumed to exhibit elastic-plastic behavior withnmat capacitym, equal to the corresponding

member’s plastic moment at yield:
m, =0,Z (24)

where o, =3447 MPa. All beams are subjected to a 14.01 kN/maumifgravity loads, while

interaction between axial force and moment capasitynored in the columns. The force analogy
method is used to relate the local plastic hingpwoases with the global displacement responses.
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Figure 1: 3% damped nonlinear response spectra and two-dimensional structural model.



Nonlinear response history analysis (NRHA) is fashducted. By subjecting the 16-story frame
to each of the 13 earthquake time histories thatewmeviously used to generate the response
spectra in Figure 1 with an amplification factor &6, the mean of NRHA, mean minus one
standard deviationuyto), and mean plus one standard deviatipta of the maximum global
responses are presented in Figure 2 and the maxiloeah beam plastic rotation responses are
presented in Figure 3.

Nonlinear response spectra analysis (NRSA) is fegformed on the frame. Table 1 summarizes
the periods, yield displacements, and modal ppdten factors of the first 9 elastic modes. By

subjecting the frame to the 3% damped nonlineammesponse spectra as shown in Figure 1 with
the same amplification factor of 3.5 on the eartkguground motions, the maximum global and
local beam responses based on NRSA are presenkegures 2 and 3, respectively. In addition,

linear response spectra analysis (LRSA) globallt®swe also plotted in Figure 2 as a comparison.
Results show that NRSA has reasonable accuraagdiging the maximum responses.
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Figure 2: Comparisons of 16-story global responses between NRHA, NRSA, and LRSA.



Table 1: Parametersused in NRSA for the 16-story frame

Model Mode2 Mode3 Moded4 Mode5 Mode6 Mode7 Mode8 Mode 9
Period (s) 2.9598 1.0833 0.6350 0.4468 0.3360 3.261 0.2115 0.1736 0.1470

Fix 0.8037 0.0969 0.0455 0.0144 0.0154 0.0058 0.0069 0028. 0.0031
Dyi 10.6504 0.8808 0.4256 0.1276 0.1476 0.0590 0.0611.0218 0.0235
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Figure 3: Comparison of 16-story plastic hinge responses between NRHA and NRSA.

6. CONCLUSION

A fast nonlinear response spectra analysis algoritiat incorporates both material and geometric
nonlinearities was presented. It was observedahatdditional parameter that considers material
nonlinearity based on yield displacement is needetefining the response spectra. By including
P-d andP-A effects due to gravity loads only in the initigiffeess while updating the geometric

stiffness during dynamic loading is ignored, no iaddal parameter is needed in defining the
response spectra to account for geometric nonligeaf the structure. Numerical simulation

showed that this treatment of geometric and mateoalinearities is accurate when comparing

both global and local NRSA responses based on SK8Sthose obtained using the nonlinear
response history analysis.
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