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Semiclassical Boltzmann transport theory for graphene multilayers
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We calculate the conductivity of arbitrarily stacked multilayer graphene sheets within a relax-
ation time approximation, considering both short-range and long-range impurities. We theoretically
investigate the feasibility of identifying the stacking order of these multilayers using transport mea-
surements. For relatively clean samples, the conductivities of the various stacking configurations
depend on the carrier density as a power-law for over two decades. This dependence arises from a
low density decomposition of the multilayer band structure into a sum of chiral Hamiltonians. For
dirty samples, the simple power-law relationship no longer holds. Nonetheless, identification of the
number of layers and stacking sequence is still possible by careful comparison of experimental data
to the results presented here.
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I. INTRODUCTION

Enormous progress has been made in the five years
since the first experiments demonstrated that charge car-
riers in single graphene sheets behave like massless Dirac
fermions. Making and studying such single-atom thick
carbon sheets is now routinely done using a wide variety
of techniques. (For reviews, see Refs. 1,2).

While the allure of manipulating single monoatomic
sheets has understandably attracted most of the atten-
tion in this field, from a technological, or for that mat-
ter, fundamental point of view, the properties of few-
layer-graphene sheets are equally attractive. Many of
the methods used to make monolayer graphene, such as
mechanical exfoliation of graphite, epitaxial growth from
silicon carbide and chemical vapor deposition on metals,
can be suitably adapted to make graphene stacks, with
a controllable number of atomic layers. Many of the un-
usual properties of the Dirac Hamiltonian that are used
to describe monolayer graphene, such as having chiral
and ambipolar carriers, survive in these multilayers, so
one might expect that these sheets would have high mo-
bility and favorable carrier transport properties. As a
result, multilayer graphene may play an important role
in future electronic devices where its additional “layer”
degree of freedom could be manipulated3 to achieve de-
sirable properties, such as the demonstrated gate-tunable
band-gap in graphene bilayers.4

There has been experimental and theoretical work on
the optical properties of graphene multilayers, as well as
some very recent theoretical predictions on the phonon-
scattering in these multilayers.5 However, there has not
been a systematic study of the low temperature transport
properties of graphene multilayers. In anticipation of
forthcoming experiments on these systems, we use both
analytical and numerical methods to understand carrier
transport in graphene multilayers.

The complication in studying multilayers is the cou-

pling between the layers. The carrier transport in a
single graphene sheet can be readily understood using
the Dirac Hamiltonian, which is the low energy effec-
tive theory for π-orbitals located on the vertices of a car-
bon honeycomb lattice. For multilayers, the additional
coupling between orbitals on neighboring layers depends
sensitively on many factors such as the distance between
the layers and their relative orientation. For example,
graphene bilayers with a twist angle between their re-
spective primitive cells are predicted to largely act as
decoupled sheets.6,7 For Bernal stacking (also called A-B
stacking), on the other hand, half the carbon atoms in
each hexagon of the top layer lie exactly over the center
of a hexagon of the layer below it. The resulting strong
coupling between the two layers gives a low energy effec-
tive theory with a zero-gap hyperbolic dispersion.

While height fluctuations (or equivalently, having spa-
tial fluctuations in the interlayer coupling strength), or
allowing for arbitrary rotations and slips between the
layers are important for some systems (such as epitax-
ial graphene), their effects are beyond the scope of the
present work.8,9 Here we consider multilayers that come
in families where the orientation of the upper layers is
determined by symmetry considerations from the orien-
tation of the bottom layer. This would be the case, for
example, if the multilayer inherits its structure from a
parent structure, as is the case in the mechanical exfoli-
ation technique.

We further restrict our multilayer analysis to the lower
energy stacking sequences in which neighboring layers
share only one sublattice. For example, we consider bi-
layer graphene that is A-B stacked, where the two lay-
ers share one sublattice, but not A-A stacked, where
each carbon atom of the top layer lies exactly on top
of a carbon atom of the bottom layer (sharing both sub-
lattices). The consecutive A-A stacking is energetically
unfavorable,10 so we do not consider this stacking and its
generalization in multilayer stacks. For trilayer graphene,



2

FIG. 1: (Color online) (a) Schematic illustration of (a) three
types of stacking arrangements, labeled by A, B and C. The
honeycomb lattice of a single sheet has two triangular sublat-
tices, labeled by α and β. (b) Each added layer cycles around
this stacking triangle in either the right-handed or the left-
handed sense. Reversals of the sense of this rotation tend to
increase the number of low-energy pseudospin doublets.

we consider two possibilities: A-B-A stacking (also called
Bernal-like) is a Bernal bilayer, with the third layer hav-
ing carbon atoms located directly above the bottom layer;
and A-B-C stacking.
Figure 1 illustrates the different stacking sequences

graphically. Since the honeycomb lattice of a single
graphene sheet comprises two interpenetrating triangu-
lar sublattices, we label the sublattices of each layer α
and β. When a subsequent graphene layer is placed on
top of the stack, we consider the stacking orders where
either the atoms of the α or the β sublattices are dis-
placed along the edges of the honeycomb of this top
sheet. This gives a stacking rule that implies three dis-
tinct but equivalent projections (labeled A, B, and C) of
the three-dimensional structure’s honeycomb-lattice lay-
ers onto the x̂-ŷ plane and consequently 2N−2 distinct
stacking sequences for an N -layer stack.
The electronic properties of multilayer graphene

strongly depend on the stacking sequence. Periodically
stacked multilayer graphene11,12 and arbitrarily stacked
multilayer graphene13 have been studied theoretically,
demonstrating that the low-energy band structure of a
graphene multilayer consists of a set of independent pseu-
dospin doublets. It was shown that an energy gap can
be induced by a perpendicular external electric field in
ABC-stacked multilayer graphene.14,15 Furthermore, in
ABC stacking, electron-electron interactions play a more
important role than other stacking sequences due to the
appearance of relatively flat bands near the Fermi level.15

This enhanced role of electron interactions raises the like-
lihood of strongly-correlated ground-states, a possibil-
ity that we ignore in our semiclassical treatment below.
Optical properties of multilayer graphene using absorp-
tion spectroscopy have been studied experimentally16

and theoretically17,18 showing characteristic peak posi-
tions in optical conductivity depending on the stacking
sequence.
Transport properties of monolayer, bilayer and mul-

tilayer graphene have been studied theoretically19–22

within coherent potential approximations. These ap-
proaches capture the scattering properties of the impu-
rity potential (which is important for strong disorder),
but they are often restricted to small system sizes, and
do not accurately account for the disorder-induced spa-
tial inhomogeneity of the fluctuating local carrier density.
We believe this inhomogeneity dominates the transport
properties of these graphene multilayers (see discussion
in Ref. 2).
Our main finding is that for relatively clean samples,

the carrier density dependence of the multilayer conduc-
tivity follows a power-law dependence for more than two
decades, a direct consequence of the effective low energy
chiral decomposition. For dirty samples, the carrier den-
sity inhomogeneity induced by the disorder washes away
this power-law relationship. However, the various stack-
ing sequences give characteristically different dependence
of the multilayer conductivity on carrier density. By care-
ful comparison with experimental data, our results could
be used to identify both the number of layers and the
stacking sequence of a multilayer graphene sample.
The rest of this manuscript is organized as follows. In

Sec. II, we describe the theoretical model where we solve
for the multilayer graphene band structure using a tight-
binding model that includes both the nearest-neighbor
intralayer hopping and the nearest-neighbor interlayer
hopping, and solving for the conductivity within the
Boltzmann transport formalism. In Sec. III we present
our results for graphene stacks comprising one, two, three
and four layers, treating impurity scattering by both
Coulomb potentials and short-range disorder. In the ap-
pendices we present details of the chiral decomposition
and the transport properties of J-chiral fermions, as well
as analytic results for the electronic transport in bilayer
graphene.

II. THEORETICAL MODEL

A. Tight binding Hamiltonian

The low energy effective Hamiltonian for the π-
orbital continuum model for arbitrarily stacked N -layer
graphene centered at the hexagonal corners of the Bril-
louin zone is given by23,24

H =
∑

p

Ψ†
pH(p)Ψp, (1)

where Ψp = (c1,α,p, c1,β,p, · · · , cN,α,p, cN,β,p) and cl,µ,p is
an electron annihilation operator for layer l = 1, · · · , N ,
sublattice µ = α, β and momentum p measured from K
or K ′ point.
The simplest model for a multilayer graphene system

allows only nearest-neighbor intralayer hopping t and
the nearest-neighbor interlayer hopping t⊥. The in-plane
Fermi velocity for monolayer graphene, v0, is related to

t by ~v0
a =

√
3
2 t, where a = 0.246 nm is the lattice con-

stant of monolayer graphene. This model ignores some
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aspects of the electronic band structure – in principle,
corrections to this model, such as adding next-nearest-
neighbor hopping, can easily be included, although in
practice, it is often numerically quite intensive. We find
that such corrections do not significantly alter any of our
main findings.

B. Boltzmann transport theory

The conductivity is a property of electrons close to
the Fermi energy and is obtained from the Einstein re-
lation, σB = e2D(εF)D where D(εF) is the density of
states at the Fermi energy εF and D is the diffusion con-
stant. In cases in which the Fermi surface has multiple
sheets (lines in the two dimensional cases we consider
here), the conductivity is the sum over such contribu-
tions for each sheet. See Sec. II D for details. For con-
venience, we denote the density of states for each sheet
as D(εF) = gsgvρ(εF) where gs = 2 and gv = 2 are spin
and valley degeneracy factors. For diffusive transport in
two dimensions, D = 1

2v
2
FτF. The Fermi velocity, density

of states and relaxation time can be calculated from the
dispersion relation as

vF =
1

~

dε

dk

∣

∣

∣

∣

ε=εF

, (2a)

ρ(εF) =
kF

2π |dε/dk|ε=εF

=
kF

2π~vF
, (2b)

1

τF
=

2π

~
nimpV

2
impρ(εF), (2c)

where V 2
imp is the squared effective impurity scatter-

ing potential averaged over the angle, and the Fermi
wavevector is related to the carrier density and applied
back gate voltage k2F = 4πn/(gsgv) ∝ VG. When the
Fermi surface has multiple sheets, the left hand side of
this last relation should be summed over k2F for each
sheet. The validity of the Born approximation implicit
in this formulation is discussed in Appendix A, and the
special case of J-chiral fermions is treated in Appendix B.
The scattering matrix element V 2

imp that gives rise to
the transport relaxation time is obtained using the Boltz-
mann transport formalism

V 2
imp =

∫ 2π

0

dφ

2π
|Vimp(φ)|2F (φ)(1 − cosφ), (3)

where Vimp(φ) is the matrix element of the impurity po-
tential at scattering angle φ, and F (φ) is the chirality
factor that arises from the projection of the spinor wave-
functions between the incoming and outgoing states. For
the case of intervalley and interband scattering, the treat-
ment of the chirality factor is more subtle and discussed

in Appendix C. For convenience, we define the dimen-
sionless potential Ṽimp(φ)

Vimp(φ) =
2πe2

ǫkF
Ṽimp(φ) =

2π~vα

kF
Ṽimp(φ), (4)

where ǫ is the dielectric constant and α = e2

ǫ~v0
is the

effective fine structure constant. The conductivity can
then be written as

σB(n) =
e2

h

(

n

nimp

)(

vF
v0

)2
(

1

2πα2Ṽ 2
imp

)

, (5)

where n = gsgvk
2
F/(4π) is the carrier density, and all the

information about the band structure and the nature of
the disorder potential is captured by vF and Ṽ 2

imp. When
several bands cross the Fermi energy, we calculate vF and
Ṽ 2
imp (which yields σi) for each of the i bands and then

calculate the total conductivity as σ =
∑

i σi, where the
applied gate voltage is proportional to n =

∑

i ni, and
ni = gsgvk

2
F,i/(4π) is fixed by keeping εF the same for all

bands.

C. Impurity Scattering

Different types of impurity potentials give qualita-
tively different results for the conductivity. This can
be seen in Eq. 5, where the wavevector dependence
of the Fourier transform of the impurity potential
Vimp[q = 2kF sin(φ/2)] changes the scaling of the con-
ductivity σ(n). Studies on monolayer graphene have
explored a wide variety of disorder potentials including
long-range Coulomb (Vimp(q) ∼ q−1), Gaussian-white
noise (Vimp(q) ∼ q0) and Gaussian-correlated disorder
(Vimp(q) ∼ exp[−q2]) as well as resonant scatterers that
cause a maximal phase shift of π/2 between incoming
and outgoing wavefunctions. We refer to Ref. 2 for more
details on the different kinds of disorder in graphene.
For our purposes, we focus on what we believe to be

the most relevant scattering mechanisms, i.e. charged im-
purities (which act as screened long-range Coulomb dis-
order) and short-range defects (approximated as white-
noise disorder). Using the Thomas-Fermi screening the-
ory, one can write expressions for the dimensionless scat-
tering potential Ṽ 2

imp which was defined in Eq. 4. For

screened charged impurities from Vimp(φ) =
2πe2

ǫq e−qdimp

with q = 2kF sin(φ/2) we find

Ṽ 2
imp =

∫ 2π

0

dφ

2π

F (φ)(1 − cosφ)

(2 sin(φ/2) + q̃TF)
2 e

−4kFdimp sin(φ/2),

(6)
where the dimensionless Thomas-Fermi wavevector is
q̃TF = qTF/kF = gsgvα(v0/vF) and dimp is the distance
between the impurities and the graphene sheet. When
several bands cross the Fermi energy, the Thomas-Fermi
screening wavevector determined from the total density
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of states including all the bands. The monolayer Fermi
velocity v0 was defined below Eq. 1.
The short-range disorder potential can be character-

ized by an effective scattering cross-section length dsc
such that Vimp(φ) =

2πe2dsc

ǫ or

Ṽ 2
imp = k2Fd

2
sc

∫ 2π

0

dφ

2π
F (φ)(1 − cosφ). (7)

Taken together with Eq. 5, this completely defines the
electrical conductivity in terms of the multilayer band
structure discussed in Sec. II A.

D. Intervalley and Interband Contributions

At typical carrier densities, the band structure of
monolayer graphene comprises two Dirac cones that are
centered at two inequivalent points (also called valleys)
of the Brillouin zone boundary labeled asK and K ′. The
scattering of carriers between the valleys requires a mo-
mentum transfer of Q = 4π/(3a) ≈ 17 nm−1, and is
strongly suppressed for Coulomb impurities. For short-
range scattering, the treatment depends on how one mod-
els the intervalley scattering matrix element, but in most
cases it is sufficient to consider a single valley with a
suitably defined impurity concentration nimp (see e.g.
Ref. 25). For concreteness, we assume that for short-
range impurities, the intervalley and intravalley scatter-
ing matrix elements are equal, that nimp is the aver-
age impurity concentration in a single valley (and is the
same for both valleys). The conductivity using these
definitions is smaller by a factor of 2 from the case of
nimp = ntot = nA+nB, where nA and nB are concentra-
tion of impurities or defects on the A and B sublattices,
respectively.
As discussed in Appendix B, within a single valley, all

finite stackings that are a subsequence of periodic ABC
stacking; i.e. A, AB, ABC, ABCA, etc.; have only a sin-
gle band at low energies, and the chirality increases as
the number of layers increases. However, for other stack-
ings, the band structure features multiple chiral bands
with different dispersion relations that are centered at the
Dirac point. For Coulomb impurities, the matrix element
in Eq. 6 can be computed for both intraband and inter-
band scattering, and their scattering rates added in ac-
cordance with Matthiessen’s rule. For short-range impu-
rities, the interband scattering is more subtle. A straight-
forward application of Eq. 7 would lead to a strong sup-
pression of all interband scattering because the chirality
factor F (φ) vanishes or is significantly less than one. As
discussed in Appendix C we believe this to be unphysical
because it requires the short-range impurity potential to
be diagonal in the space of all the layer and valley quan-
tum numbers. Most short range scatters we can imagine
would be localized to one layer and a specific sublattice
so the scattering potential would not be diagonal in this
space. The screened Coulomb potential, on the other

hand, varies slowly between the layers and sublattices
and can be much better approximated as diagonal in
that space. In the absence of a microscopic model for
a particular impurity model (e.g. computing the scatter-
ing potential resulting from a single vacancy or from the
binding of a single hydrogen atom to the top layer), we
believe that for short range scatterers, a more realistic
assumption is to set F (φ) = 1. This correctly weights
the relative importance of intraband and interband scat-
tering, and therefore gives the correct qualitative carrier
density dependence of the conductivity.

The role of interband scattering is most striking when
one considers the large density regime where higher en-
ergy bands become accessible. For screened charged im-
purities, the additional density of states in these higher
energy bands enhance the screening of long-range impu-
rities which will sharply increase the conductivity, while
the interband scattering is suppressed by the chirality
factor. On the other hand, for short-range impurities, the
higher energy band becomes an additional source of in-
terband scattering that sharply decreases the conductiv-
ity. At the time of writing, there have been no transport
experiments that could probe these higher energy bands
by inducing sufficiently large carrier densities. However,
if such an experiment is done in the future (perhaps by
finding better electrolytes), then the increase (decrease)
of σ(n) would be indicative of Coulomb (short-range) im-
purities being the dominant source of scattering.

E. Effective Medium Theory (EMT)

At low carrier density, the disorder induced fluctua-
tions in the local density become larger than the spa-
tially averaged carrier density. This has been called
the electron-hole puddle regime. We use the effective
medium approach developed in Ref. 26 to obtain the bulk
conductivity σEMT of this inhomogeneous medium. It was
shown in Ref. 27 that by assuming a Gaussian probabil-
ity distribution for the carrier density, σEMT(n) could be
obtained from σB(n) using

∫ ∞

0

dn′ exp

[ −n′2

2n2
rms

]

cosh

[

nn′

n2
rms

]

σB(n
′)− σEMT(n)

σB(n′) + σEMT(n)
= 0,

(8)
where nrms parameterizes the Gaussian distribution, and
σB(n) is obtained numerically from Eq. 5. This in-
tegral equation extrapolates from σEMT(n) ≈ σmin for
|n| . nrms to σEMT(n) ≈ σB(n) for |n| ≫ nrms. The
effect of the puddles, therefore, is to give rise to a min-
imum conductivity plateau where the conductivity re-
mains roughly constant when the average of the carrier
density is smaller than its fluctuations.28
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III. RESULTS AND DISCUSSION

As outlined above, for an arbitrary graphene stack we
first solve Eq. 1 to obtain the band structure. For sim-
plicity, we choose t = 3 eV, t⊥ = 0.3 eV, α = 1 and
nrms = nimp. Neglecting higher order hopping terms
keeps the spectrum rotationally symmetric (reducing the
computational time), while the ratio of nrms/nimp is a
number of order unity that can be calculated within the
low-density chiral decomposition (see Appendix B). We
do not believe that these approximations significantly al-
ter our findings.
Having solved numerically for the wavefunctions, one

can compute vF (Eq. 2a), ρ(ε) (Eq. 2b), as well as the chi-
rality factor F (φ) (see Appendix C). For the short-range
and Coulomb disorder potential we use representative29

parameters: dsc = 0.3 nm and dimp = 1 nm. Equation 8
then gives the predicted carrier density dependence of
the conductivity.
Figure 2 shows the results for short-range scatterers

such as point defects. The left panel (Fig. 2a and Fig. 2b)
assumes a relatively clean sample with nimp = 1010 cm−2.
The solid lines are σEMT calculated from Eq. 8, while
dashed lines show the (approximate) power-law depen-
dence of the conductivity on carrier density. We find
that for most cases the conductivity limited by short-
range scatterers exhibits a unique power-law (for more
than two decades) that depends on the number of lay-
ers and the stacking sequence. For such clean samples,
where the scattering is dominated by short-range disor-
der, with the exception of the similarity between AB bi-
layers and ABA trilayers, the distinct power-law depen-
dence for σ(n) enables easy identification of the sample
from transport measurements.
The right panel (Fig. 2c and Fig. 2d) shows the re-

sults for a dirty sample (nimp = 1012 cm−2). The
solid lines show the EMT result (Eq. 8) and the dashed
lines show the Boltzmann result before the EMT av-
eraging (Eq. 5). We note that the results for mono-
layer and bilayer graphene agree with analytical calcu-
lations discussed in Appendix D. While there is no sim-
ple power-law dependence of the conductivity on carrier
density, the different stacking sequences have very differ-
ent functional forms for σ(n). (For example, the ratio
σ(n = 1013 cm−2)/σ(n = 1011 cm−2) varies by almost
an order of magnitude). It might therefore still be pos-
sible to identify the number of layers and the stacking
sequence from transport.
The results for charged impurities is shown in Fig. 3.

Again the left panel shows a clean sample (nimp =
1010 cm−2). While all the different stacking sequences
have a power-law dependence for σ(n), unfortunately,
with the exception of ABA and ABCB, the rest are
all very close to a linear dependence. It would there-
fore be difficult to distinguish the samples in any trans-
port measurement in the low carrier density regime (i.e.
n < 1012 cm−2). For a dirty sample with a larger range
of carrier density (nimp = 1012 cm−2, n < 1013 cm−2),

we find that the functional forms for σ(n) are sufficiently
different. We emphasize that the figures show the con-
ductivity on a log-log scale. Different slopes correspond
to different scaling exponents γ, where σ(n) ∼ nγ . For
example, as seen in Fig. 3d, while the different stackings
of the tetralayer have similar values for the conductiv-
ity at n = 1013 cm−2, the minimum conductivity for the
ABCB tetralayer is two orders of magnitude larger than
the ABCA stacking.

To further understand these results, we note that the
transport properties of graphene multilayers are deter-
mined by two characteristic densities: the band density
n0 ≡ gsgvk

2
0/(4π) where ~v0k0 = t⊥/2, and the impu-

rity density nimp. By gating graphene, one can change
both the carrier density and the type of carriers, where a
negative back-gate voltage induces holes, and a positive
back-gate induces electrons. With special dielectrics one
can induce carrier densities as large as n ≈ 1014 cm−2

(see Ref. 30), although typically carrier densities do not
exceed n ≈ 5× 1012 cm−2.

For carrier densities much lower than the characteristic
band density n0 ≈ 2×1012 cm−2, one can decompose the
electronic structure of an arbitrary multilayer into par-
allel channels of bands, each with the simple dispersion
relation ǫk ∼ kJ where J is the chirality index. The num-
ber of channels and the chirality index are determined
from the stacking sequence as discussed in Ref. 31. More
details on the wave-functions and transport of J-chiral
fermions can be found in Appendix B.

In the opposite limit of n ≫ n0, the band structure of
N -layer graphene decomposes into that of N decoupled
monolayer graphene sheets, irrespective of the stacking
sequence. Since the transport of monolayer graphene has
been well studied (see Ref. 2), we do not explore this
limit in any detail. Although we note, that even at the
extremely large carrier density n ≈ 1014 cm−2, one is not
yet in the limit of essentially decoupled sheets.

The second important scale is that of disorder. Typ-
ical values of nimp vary from 1010 cm−2 (in suspended
graphene) to 5× 1012 cm−2. Only when the carrier den-
sity is much larger than nimp can one use the usual semi-
classical Boltzmann transport theory. When n . nimp,
the inhomogeneous landscape of electron and hole pud-
dles gives rise to a saturation in the conductivity ap-
proaching a finite σmin at the Dirac point.

One can immediately identify two regimes that are ex-
perimentally relevant. When nimp ≪ n ≪ n0, one can
exploit the chiral decomposition to obtain a power-law
dependence of the conductivity on carrier density. This
is what we called the “clean sample” regime (the left
panels of Fig. 2 and Fig. 3). In Appendix B we derive
the Effective Medium conductivity for arbitrary J-chiral
fermions, and we can use this decomposition to under-
stand our results.

As an example, consider the clean ABC stacked tri-
layer. As seen in Fig. 2, σ(n) ∼ n2 for short-range
impurities. This dependence follows directly from the
low energy chiral decomposition discussed in Appendix B
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FIG. 2: (Color online) Graphene conductivity assuming short-range scatterers. For clean samples, (nimp . 1010 cm−2), the
conductivity σEMT(n) has about two decades of power-law dependence. (a) The conductivity (solid lines) for monolayer, bilayer
and ABC trilayer graphene each follow different power-laws (dashed lines). (b) The conductivity (solid lines) for the different
stacking sequences for tetralayer graphene also have different power-laws (dashed lines). This indicates that for short-range
impurities, in most cases transport measurements can be used to identify the number of graphene layers. For dirty samples (c)
and (d), where nimp = 1012 cm−2, the density dependence is no longer given by a power-law. Solid lines show the conductivity
after using an effective medium theory to average over the disorder induced carrier density fluctuations. Dashed lines are the
results before such averaging. Although the conductivity does not have power-law dependence on carrier density, the transport
properties still strongly depend on the number of layers and their relative stacking-order. Therefore, transport measurements
could still be used to identify the type of graphene multilayer.

where the ABC trilayer is approximated by a J = 3
chiral system, and σJ ∼ nJ−1 (see Eq. B5). Similarly,
the numerical results for the ABC stacked trilayer with
charged impurities shown in Fig. 3 is quite close to the
expected power-law σ(n) ∼ n. This small difference be-
tween the numerical results and those anticipated from
the chiral decomposition is the result of our using a fi-
nite dimp = 1 nm for the distance of the Coulomb im-
purities from the graphene sheet. The finite dimp softens
the small-distance divergence of the Coulomb potential,
thereby increasing the conductivity and giving a larger
coefficient γ for the (approximate) power-law σ ∼ nγ .

A similar analysis can be done for the ABA stacked
trilayer graphene. At low energies, it is described by

a direct product of J = 1 and J = 2 chiral systems.
At low density, the band structure has two sheets, one
with a linear dispersion like monolayer graphene, and one
with a parabolic dispersion similar to bilayer graphene.
Requiring a constant Fermi energy, one can introduce
a dimensionless parameter x = εF/t⊥. The chiral de-
composition is valid when x ≪ 1. One notes that
x ≈ (v∗/v0)

J(kF/k0)
J where the effective Fermi velocity

v∗ ≈ v0 is shown in Table I. This implies that at low car-
rier density where the chiral decomposition is valid, the
band with the larger chirality also has a larger carrier
density and larger density of states. In the case of ABA
trilayers, this implies that for short-range scatterers, it
behaves exactly like the AB bilayer which is also a J = 2
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FIG. 3: (Color online) Graphene conductivity (solid lines) assuming charged impurity scattering. (a) For clean samples, the
long-range Coulomb scatterers give similar power-law dependence (dashed lines) of the conductivity on carrier density for
monolayer, bilayer and ABC trilayer graphene. (b) The ABCA and ABAB stacking orders of tetralayer graphene give a similar
power-law dependence (dashed lines) to monolayer and bilayer graphene. We conclude that the low density transport properties
for many graphene multilayers look quite similar under long-range scattering, making it difficult to distinguish between them
in a transport measurement. (c) For dirty samples, the transfer curves for monolayer, bilayer and trilayer graphene are each
quite different and can be easily distinguished. (Notice the logarithmic scale on the y-axis). (d) For dirty tetralayer graphene,
the conductivity depends strongly on the stacking sequence, and transport measurements could distinguish between the various
types of stacking.

chiral system and σJ=2 ∼ n (as seen in Fig. 2a). For
charged impurities, the large density of states from the
J = 2 band effectively screens the impurities so that the
J = 1 band behaves like monolayer graphene with short-
range impurities having σ ∼ constant. All the shown
power laws in left panels of Fig. 2 and Fig. 3 can be un-
derstood in this manner using the chiral decomposition.

The second regime relevant to experiments is when
nimp . n0 ≪ max(n). We called this the “dirty sample”
regime, since having a cleaner sample offers no qualitative
difference. The important point is that since n & n0, the
chiral decomposition is not valid, and the band-structure
has no simple analytical form. This regime can be seen
in the right panels of Fig. 2 and Fig. 3. Although no
simple analytical expression or power-law behavior deter-

mines σ(n), the results for the different number of layers,
the different stacking orders and short-range vs. long-
range impurities are all sufficiently different. Therefore,
by comparison of experimental data to the results pre-
sented here, it should be possible to identify not only
the number of layers and stacking sequence, but also the
nature of the dominant source of disorder.

IV. CONCLUSION

We have considered the transport properties of mul-
tilayer graphene stacks. The formalism is quite general
and can be used for N -layers of graphene with arbitrary
stacking between the layers. In the absence of any exper-
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imental data for layers with N > 2, we have considered
the most energetically favorable stacking sequences and
the cases of both short-range and long-range impurities.
For monolayer and bilayer graphene, our results agree
with previously known results (see Appendix D). For
trilayer graphene, we show that ABA and ABC stack-
ing have very different transport properties and can be
distinguished from each other. Similarly, for tetralayer
graphene, ABCA, ABCB and ABAB each is a sepa-
rate electronic material with its own characteristic de-
pendence of conductivity on carrier density. (The ABCB
and ABAC stackings have the same conductivity since
they are related to each other by a symmetry transfor-
mation.)
An important objective of this work is to enable exper-

imentalists working on multilayer graphene to be able
to use transport measurements to identify and charac-
terize their multilayer samples. In addition, one could
use our results to determine the nature of the dominant
impurity potential,32 the effect of changing the dielec-
tric environment29 or identify when other effects (such
as quantum interference33) that we have neglected in our
semi-classical approach become important.
Information from transport measurements could be

used in conjunction with other techniques such as Ra-
man spectroscopy34, optical detection18 and observing
the scattering from phonons at high temperature.5 Our
main finding is that in most cases, the different stacking
sequences have different electronic properties that result
in characteristic dependence of the conductivity on the
applied carrier density.
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Appendix A: Validity of the Born approximation

In this work, we use the Born approximation for both
short-range and Coulomb impurities as seen explicitly in
Eq. 7. This approximation is valid if the scattering poten-
tial is weak enough. As the scattering potential becomes
stronger, the scattering approaches the unitary limit, in
which the scattering amplitude becomes independent of
the strength of the potential. In the unitary limit, the
strength of the impurity potential drops out of the ex-
pression for the conductivity, which then depends only
on the impurity concentration35

σ =
4e2

h

k2F
2π2nimp

ln2(kFR). (A1)

where R characterizes the range of the potential.36 In
the opposite limit of weak scatterers, the strength of the

impurity potential determines the conductivity. For con-
sistency with the notation in Ref. 35, we introduce a scat-
tering potential Vimp = V0 in Eq. 2c so that Eq. 5 reads

σ =
gsgv
2

e2

h

1

nimp

(

~vF
V0

)2

. (A2)

In the Born limit, it is the product nimpV
2
0 that deter-

mines the conductivity.
Ultimately, microscopic models of measured defects

will determine whether the scattering is better described
by the unitary limit or the Born limit. In the absence
of such a model, an important issue for our results is
whether the combination of conductivities and carrier
densities we consider require that the scattering poten-
tial be so strong that the Born approximation is no longer
valid. In a recent article, Ferreira et al.

35 test the valid-
ity of the Born approximation by computing the scat-
tering amplitude as a function of the scattering potential
strength for short-range impurity scattering in monolayer
and bilayer graphene. For weak scattering potentials,
the Born approximation results agree with their more
general calculations but for large enough potentials, the
scattering amplitude reaches the unitary limit where the
scattering phase-shift is π/2 irrespective of the strength
of the impurity potential. We use their results to argue
that the conductivities and charge densities we treat are
consistent with the Born approximation being valid.
As discussed by Ferreira et al. the validity of the

Born approximation depends on the quantity A =
(V0/π~vF)kF ln(kFR). If A ≫ 1, we have the unitary
limit, and if A ≪ 1 we are in the Born limit. To check
the self-consistency of the Born approximation limit, we
can re-write this condition as

A2 =

[

V0

π~vF
kF ln(kFR)

]2

≈
[

V0

π~vF
kF

]2

≈ 2
4

π

n

nimp

e2/h

σ
≪ 1, (A3)

where we assume ln(kFR) ≈ 1. A similar expression is
obtained for bilayer graphene with the prefactor 8/π re-
placed by 1/(4π). The Born approximation is valid for a
relatively high density of relatively weak scatterers. Since
σ > 4e2/h (both experimentally, and for the validity of
the diffusive approximation, see Ref. 33), and typical car-
rier densities range from 1010 cm−2 to 5×1012 cm−2, the
Born approximation provides a consistent solution when
there are no fewer than one short-range impurity per
40 nm2 (or more than one defect per 2000 carbon atoms).
These numbers seem quite reasonable, given the prepa-
ration method of these samples. In Ref. 29 the authors
measured σ = 280 e2/h for monolayer graphene, giving
two orders of magnitude wider range of carrier densities
for the validity of the Born approximation for the same
impurity concentration. Similarly, in Fig. 2a although we
take nimp = 1010 cm−2 in order to illustrate the power
law dependence of the conductivity due to the chiral de-
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TABLE I: J-chiral decomposition for monolayer, bilayer, trilayer and tetralayer graphene with different stacking arrangements
(see Ref. 31 for more details).

Number of layers (N) Stacking sequence Chirality (J) Effective velocity v∗/v0
1 A 1 1
2 AB 2 1

3 ABA 1⊕2 1⊕ 2−1/4

3 ABC 3 1

4 ABAB 2⊕2 1/
√

(√
5 + 1

)

/2⊕ 1/
√

(√
5− 1

)

/2

4 ABCA 4 1

4 ABCB 1⊕3 1⊕
√
2/2

4 ABAC 1⊕3 1⊕
√
2/2

composition, the Born approximation is still valid be-
cause we also take σ/(e2/h) to be much larger. While
such arguments do not rule out the possibility that the
scatterers are in the unitary limit, they nonetheless estab-
lish the Born approximation treatment is self-consistent.

Appendix B: Conductivity of J-chiral Fermions

At very low carrier density, an arbitrarily stacked
graphene multilayer can be described as a superposition
of pseudospin doublets. This decomposition holds so long
as ~v0kF ≪ t⊥, where J is the chirality index for the
pseudospin doublet.
The rules for the decomposition are as follows: (mono-

layer graphene) A→ (J = 1); (bilayer graphene) AB→
(J = 2); (trilayer graphene) ABA→ (J = 1) ⊕ (J = 2)
and ABC → (J = 3). This notation indicates, for ex-
ample, that an ABC stacked trilayer is described by a 3-
chiral Hamiltonian, while an ABA stacked trilayer is com-
posed of two bands – one similar to monolayer graphene
and the second similar to bilayer graphene (see Table I
and Refs. 31,37,38 for more details). The J-chiral Hamil-
tonian is defined as

H = t⊥

(

0 (ν†k)
J

(νk)
J 0

)

, (B1)

where νk ≡ ~v∗keiφk/t⊥ and v∗ is the effective in-plane
Fermi velocity (for example, v∗ = v0 for J = 1 monolayer

graphene and J = 2 bilayer graphene, and in general for
periodic ABC stacking).
Throughout the manuscript we have used the following

properties of the energy levels and wavefunctions for the
J-chiral system

εs,k = st⊥

(

~v∗k

t⊥

)J

, (B2)

|s,k〉 =
1√
2

(

s
eiJφk

)

.

The band-index s = ±1 corresponds to the positive (neg-
ative) energy states of the conduction (valence) band and
εF = εs,k=kF

. The intraband chirality factor is then cal-
culated as

F (φ) = | 〈s, k, φ = 0|s, k, φ〉 |2 =
1

2
[1 + cos(Jφ)] . (B3)

The scaling of the conductivity with carrier density can
be immediately obtained by noticing that vF ∼ kJ−1

F and

ρ(ǫF ) ∼ k2−J
F . This gives

σJ ∼ nJ−1

nimpV 2
imp

, (B4)

which depends on the scattering potential Vimp. Assum-
ing dimp = 0 for simplicity and restoring the dimensions,
we find

σJ (n) =



























e2

h

(

n
nimp

)

[

(

~v∗

t⊥

)2
4πn
gsgv

]J−2
(

~v∗

t⊥dsc

)2
J2

πα2βJ
∝ nJ−1, Short-range disorder,

e2

h

(

n
nimp

)

[

(

~v∗

t⊥

)2
4πn
gsgv

]J−1
2J2

πα2γJ

∝ nJ , Bare Coulomb,

e2

h

(

n
nimp

)

16
πβJ

∝ n, Overscreened Coulomb (α ≫ 1),

(B5)

where βJ = 1/2 for J = 1, βJ = 1 for J > 1 and βJ = 2 for F (φ) = 1, while γJ = 1 for F (φ) in Eq. (B3) and
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γJ = 2 for F (φ) = 1. (Here we are considering a J-
chiral system in Eq. B1 and did not include intervalley
scatterings.) The result for the bare Coulomb potential
was presented in Eq. B5 for a pedagogical reasons, and
F (φ) = 1 case for the bare and screened Coulomb poten-
tials was also considered for completeness. We note that
since

q̃TF ≡ qTF

kF
=

4α

J

(

~v∗kF
t⊥

)1−J

, (B6)

for the low density limit kF → 0, the overscreened
Coulomb potential becomes a good approximation for
charged impurities. In this low density limit, among the
short-range scattering and screened Coulomb scattering,
screened Coulomb scattering dominates over short-range
scattering for J < 2, (with a corresponding σ(n) ∼ n);
while short-range scatterers dominate for J > 2 (and
σ(n) ∼ nJ−1). (Note that because of the Matthiessen’s
rule, a scattering mechanism with smaller conductivity
dominates.) Bilayer graphene at low carrier density (or
J = 2) is unique in that both charged impurities and
short-range disorder give conductivities with the same
carrier density dependence39–41 making them difficult to
distinguish experimentally.32 In the opposite limit of very
high carrier density, the energy band structure of multi-
layer graphene separates into a collection of decoupled
monolayer graphene bands.18 As a result, the conduc-
tivity scales as that of a monolayer at very high carrier
density.

As discussed above, the chiral decomposition works
only at low carrier density where it is known that density
fluctuations dominate the transport properties.26,28,42

One must therefore estimate whether there is a regime of
validity where the carrier density is large enough so that
the puddle physics no longer dominates (i.e. n ≫ nrms),
but small enough that the chiral decomposition is still
valid (i.e. n ≪ n0); here nrms is the root-mean-square
fluctuation in carrier density induced by the disorder po-
tential, while n0 ≈ 2 × 1012 cm−2 is the crossover density
scale. We estimate nrms using the self-consistent approx-
imation of Refs. 28 and 39, where 〈ε2F〉 = nimp〈V 2

D〉, and
VD is the disorder potential of screened charged impu-
rities located at some distance dimp from the graphene
sheet

〈ε2F〉 = nimp

∫

d2q

(2π)2

[

2πe2 exp(−qdimp)

ǫ(q + qTF)

]2

,

= 2πnimpα
2(~v0)

2CTF
0 (2qTFdimp). (B7)

For the relevant limit n ≪ n0, C
TF
0 (x) ≈ x−2 (for details,

see Ref. 28). Although we used a charged impurity model
for the disorder potential, in this limit the impurities
are perfectly screened, and the long-range nature of the
impurity becomes irrelevant (i.e. one gets similar results
starting from a short-range impurity model). Assuming a
Gaussian probability distribution for the carrier density,

we find that for the J-chiral Hamiltonian (with J ≥ 2)

nrms ≈
√

3nimpJ2

32πd2imp

, (B8)

which shows that for any given J , one can determine
the minimum disorder concentration nimp necessary to
ensure that n ≫ nrms. (The factor of 3 inside the square-
root is added to conform to the convention for graphene
monolayers, see Ref. 2.) Note that for J = 1 monolayer
graphene, one has to use the full dielectric function for
the screening.28

From Eqs. 8 and B5 one can easily construct an Ef-
fective Medium Theory for the J-chiral model. The con-
ductivity is obtained by solving the integral equation

∫ ∞

0

dn′ exp

[ −n′2

2n2
rms

]

cosh

[

nn′

n2
rms

]

σJ (n
′)− σEMT(n)

σJ (n′) + σEMT(n)
= 0.

(B9)
To illustrate the differences between different J-chiral

models, in Fig. 4 we show σEMT/min(σEMT) for J = 2, 3
and 4 assuming short-range disorder, where we estimate
nrms from Eq. B8 assuming that dimp = 1 nm and nimp =
1011 cm−2. As seen in the figure, the electron and hole
puddles tends to pin the conductivity value close to its
minimum value, and that the puddle regime increases
with increasing J .

Appendix C: Chirality factor for intervalley and
interband scattering

It is often argued that monolayer graphene has a high
mobility because the chiral nature of carriers prevents
backscattering. In the diffusive regime, the scattering
rate involves an integral of the chirality factor F (φ) over
all angles weighted by the Boltzmann factor 1 − cosφ.
As discussed in Ref. 39, the enhancement due to chiral-
ity is no more than a factor of order unity. Similarly
for graphene multilayers, one can calculate F (φ) numeri-
cally, and illustrative examples are shown in Fig. 5 for the
ABA trilayer and ABCB tetralayer. For intraband scat-
tering and at low density, the chirality factor agrees with
the analytic results in Eq. B3 derived for J-chiral Hamil-
tonians. For the range of carrier densities we consider,
the chirality factor changes the conductivity by a factor
of order unity, just like the case of monolayer graphene.
However, a similar calculation of the interband chirality
factor shows quite different results. Figure 5 shows that
the interband chirality factor is exactly zero for the ABA
trilayer and strongly suppressed for the ABCB tetralayer.
It can be shown that the interband chirality factor

in all periodic AB stackings vanishes from the form of
the wavefunctions37, and in all other layer stackings it is
strongly suppressed compared with the intraband chiral
factor. At first glance, this might suggest that interband
scattering is negligible and can be ignored. However, we
point out that being able to decompose the scattering
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FIG. 4: (Color online) Effective medium theory result (solid
lines) for the conductivity assuming short-range disorder as
a function of dimensionless density n/nimp for the J-chiral
Hamiltonian (see Eq. B9) for J = 2, 3 and 4. The results
assume an impurity density of nimp = 1011 cm−2. Note that
σ/σmin is independent of dsc because dsc appears as a multi-
plicative factor in Eq. B5. Dashed lines show minimum con-
ductivity (i.e. σ/σmin = 1), and the Boltzmann conductivity
(Eq. B5) without performing the EMT average. Notice that
the puddle regime (marked with arrows) gets larger with in-
creasing J .

matrix element into a plane-wave-like overlap V 2
imp and a

chirality factor F (φ) as we did in Eq. 3 relies on the impu-
rity potential being diagonal in the 2N × 2N chiral-basis
forN graphene layers with 2 valleys. This might be a rea-
sonable assumption for the potential of remote charged
impurities located at dimp = 1 nm to 2 nm away, but not
for vacancies or adsorbates that would be strongly local-
ized on one of the layers. Without a microscopic theory
that would give the matrix structure of the impurity po-
tential in this chiral basis (and we note that such a theory
would likely be non-universal depending strongly on the
type of defect), it is more reasonable to set F (φ) = 1 for
short-range impurities. For generic short-ranged disor-
der, this would correctly weight the relative importance
of the interband and intraband contributions at the ex-
pense of losing the chirality enhancement factor of order
unity. Since we are interested in quantities such as the
power-law trends for σ(n) (left panels of Fig. 2 and Fig. 3)
or the ratio between σ(n) at high and low carrier density
(right panels of Fig. 2 and Fig. 3), this approximation is
well suited to the scope of this work.

Appendix D: Bilayer graphene: Analytical results

In this section we derive analytic results for the trans-
port properties of bilayer graphene. The bilayer graphene
Hamiltonian is

H =







0 v0π
∗ 0 0

v0π 0 t⊥ 0
0 t⊥ 0 v0π

∗

0 0 v0π 0






, (D1)

where π = ~(kx + iky) and energy eigenvalues and eigen-
vectors (up to normalization) are

ε−h = −εh, ε
−
l = −εl, ε

+
l = +εl, ε

+
h = +εl, (D2)

∣

∣φ−
h

〉

=







v0π
∗

−εh
+εh
−v0π






,
∣

∣φ−
l

〉

=







v0π
∗

−εl
−εl
v0π






, (D3)

∣

∣φ+
l

〉

=







v0π
∗

+εl
−εl
−v0π






,
∣

∣φ+
h

〉

=







v0π
∗

+εh
+εh
v0π






,

where

εl = −t⊥/2 +
√

(t⊥/2)2 + (~v0k)2, (D4)

εh = +t⊥/2 +
√

(t⊥/2)2 + (~v0k)2.

From Eq. 5 taking into account only the low energy
band with the energy ε+l , the Fermi velocity is given by

vF =
1

~

dε

dk

∣

∣

∣

∣

ε=εF

= v0
~v0kF

√

(t⊥/2)2 + (~v0kF)2
, (D5)
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FIG. 5: (Color online) The chirality factor F (φ) = |〈s,k, φ =
0|s,k′, φ〉|2 is determined by the wavefunction overlap be-
tween initial and final states. Top panel shows ABA stacked
trilayer graphene, and bottom panel shows ABCB stacked
tetralayer graphene for EF = 0.1 eV. The bands are labeled
according to the J-chiral decomposition shown in Table I.
For intraband scattering, the chirality factor at small Fermi
energy is given by Eq. B3. However, the interband chirality
factor is identically zero for scattering between the J = 1 and
J = 2 bands of the ABA trilayer and strongly suppressed for
scattering between the J = 1 and J = 3 bands of the ABCB
tetralayer. As discussed in the text, we believe that this sup-
pression is unphysical for generic short-range impurities. The
insets in both panels show the tight-binding band structure
determined numerically by solving Eq. 1 as discussed in the
text and dashed lines indicate the Fermi energy.

and the density of states per spin and valley at the Fermi
energy is

ρ(εF) =
kF

2π~vF
=

√

(t⊥/2)2 + (~v0kF)2

2π(~v0)2
. (D6)

The chirality factor within the same band ε+l is given
by32

F (φ) = |
〈

ε+l , φ = 0|ε+l , φ
〉

|2

=
1

4
[1− η + (1 + η) cosφ]

2
, (D7)

where η = 1/
√

1 + n/n0, n = gsgvk
2
F/(4π), n0 =

gsgvk
2
0/(4π) and ~v0k0 = t⊥/2.

For simplicity, let’s consider the conductivity when the
Fermi energy crosses only the low energy band ε+l . For
short-range disorder, from Eq. 7

Ṽ 2
imp = k2Fd

2
scf(η) (D8)

where f(η) = 1
8 (5η

2 − 2η+1) with the chirality factor of
Eq. D7, while f(η) = 1 for F (φ) = 1. Then, we find

σ =
e2

h

(

n

nimp

)(

~v0
t⊥dsc

)2(
1

πα2

)(

2η2

f(η)

)

. (D9)

Note that if we include the intervalley scattering, the
conductivity becomes smaller by a factor of 2.
Similarly for the bare Coulomb disorder with dimp = 0
we have

σ =
e2

h

(

n2

nimpn0

)(

1

πα2

)(

8η2

3η2 − 2η + 3

)

, (D10)

while for screened Coulomb disorder with dimp = 0 we
find (here α ≫ 1)

σ ≈ e2

h

(

n

nimp

)(

64

π

)(

1

5η2 − 2η + 1

)

. (D11)

These results are consistent with the numerical data
shown in Fig. 2 and Fig. 3 as well as with earlier
results.27,32
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