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Bilayer graphene contains additional layer-symmetry related states compared to 

single layer graphene, which can lead to an opening of a band gap highly desirable for 

device applications.  The gap can be either tunable through an external electric field or 

spontaneously formed through an interaction-induced symmetry breaking.  Our scanning 

tunneling measurements reveal the microscopic nature of the bilayer gap to be very 

different from what is observed in previous macroscopic measurements or expected from 

current theoretical models.  The potential difference between the layers, which is 

proportional to charge imbalance and determines the gap value, shows strong dependence 

on the disorder potential, varying spatially in both magnitude and sign on a microscopic 

level.  Additional interaction-induced effects are observed in a magnetic field with the 

opening of a subgap when the zero orbital Landau level is placed at the Fermi energy.    

 Bilayer graphene consists of two graphene sheets overlaid in the Bernal stacking 

orientation where A2 atoms of the top layer lie on top of the B1 atoms of the bottom layer (see 

Fig. 1a), connected by the interlayer coupling 1γ , thus breaking the A/B sublattice symmetry in 
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the individual graphene layers.  This results in massive chiral fermions where the electronic 

energy dispersion is hyperbolic in momentum, in contrast to the linear dispersion that leads to 

massless carriers in single layer graphene1,2.  In bilayer graphene the energy bands still meet at 

the charge neutrality point (ED) in the absence of an electric field between the layers (neglecting 

interaction effects) (Fig. 1b).  In an applied electric field a potential asymmetry is developed 

between the layers, resulting in the opening of an energy band gap between the low lying bands 

making bilayer graphene of intense interest in electronic applications (Fig. 1b)2-10.  Bilayer 

graphene also differs from single layer graphene in its magnetic quantization in the quantum Hall 

regime.  At ED, the four-fold degenerate Landau level (LL) in single layer graphene becomes 

eight-fold degenerate in the bilayer due to the additional layer degeneracy3,11,12.  When the gap is 

opened this manifold splits into two four-fold degenerate quartets polarized on each layer at low 

energies.  Lifting of these degeneracies has been observed in recent measurements13-16.  

Theoretical studies17,18 suggest the existence of interaction-driven band gaps, which are even 

possible in zero applied field with corresponding quantum Hall ferromagnetic states18,19.   

The energy band gap in bilayer graphene has been observed by optical measurements 

such as angle resolved photoemission spectroscopy20 and infrared spectroscopy4-6,21, which 

demonstrate that the gap is externally tunable and can reach values up to ≈ 250 meV.  However, 

band gaps determined from conventional electronic transport measurements vary greatly and can 

be much smaller than theoretically expected or extracted from the optical measurements 7,8,13,22-

25.  Recently, it has been suggested that disorder-induced localized states inside devices or along 

the edges can introduce additional conducting channels inside the gap, consequently reducing the 

effective gap seen in transport measurements23-25.  Additionally, many-body interactions in 

bilayer graphene are expected to open a gap even in zero applied field11,18.  Accordingly, the 
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interplay between the interactions, external and disorder-induced local electric fields, and 

localized states in the gap is becoming the central issue in the physics of the bilayer graphene 

system.     

In this article, we present STM/STS measurements of a gated bilayer graphene device in 

magnetic fields ranging from zero to the quantum Hall regime.  We investigate the local density 

of states and the formation of an energy band gap affected by disorder while tuning the total 

charge density, as the Fermi energy (EF) is varied with an electrostatic back gate with respect to 

ED.  Quite surprisingly, the determined local potential difference between the layers, which 

defines the gap, does not follow the previously reported electrostatic models2,7 which predict that 

an external electric field is the main parameter in controlling the bilayer potential asymmetries.  

We observe the spatial variation of the potential difference to be highly correlated with the 

disorder potential.      

The experimental setup is shown schematically in Fig. 1c.   The topographic height 

fluctuations on the bilayer (Fig. 2b) are dominated by the underlying SiO2 surface roughness, as 

they are in the single layer26-28.  We have obtained the spatial profile of the bilayer disorder 

potential (Fig. 2c), over the 100 nm × 100 nm topographic region in Fig. 2b.  The red and blue 

colored areas are the regions of low and high disorder potential that correspond to electron and 

hole puddles at near-zero carrier density, respectively.  For brevity, we will refer to the disorder 

extrema as electron and hole puddles at arbitrary carrier densities for the rest of this manuscript.  

We note that the spatial size of the puddles in the bilayer is significantly smaller compared to the 

single layer with the same impurity densities28, ≈ 10 nm in the bilayer compared to ≈ 30 nm in 

single layer.     
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We first discuss the measurements of the bilayer gap in zero magnetic field, followed by 

the measurements at high magnetic fields in both electron and hole puddles.  Figure 3a shows a 

sequence of dI/dV spectra at gate voltages ranging from 0 V to 60 V, obtained in the electron 

puddle denoted by P1 in Fig. 2c.  In Fig. 3b, we use color-coded gate maps to plot the STS 

spectra obtained in finer gate potential steps, as previously applied to single layer graphene28.  At 

Vg = 0 V, we observe two main minima in the tunneling spectra (marked with red and orange 

triangles in Fig. 3a), one at EF and one at 80 mV.  The gap at EF is characteristic to tunneling into 

low-dimensional systems29, and we associate the minimum centered at 80 mV with the band gap 

of bilayer graphene.  Because of the multiple peaks seen in the sequence of spectra in Fig. 3a, 

which we relate to scattering resonances in the disorder potential28, the reliable assignment of the 

bilayer band gap is only possible after careful study of the zero field gate map in Fig. 3b and the 

magnetic field dependent measurements, such as the ones displayed in Fig. 3e–g.  The minima 

associated with the bilayer gaps are observed to increase in energy width as a function of 

magnetic field (Fig. 3e–g) with the development of Landau levels, as expected (see discussion 

below).  Once the gap is identified, it can be tracked as a function of gate voltage as shown by 

the orange triangles in Fig. 3a and green circles in Fig. 3b.  Additionally, we determine the edges 

of the gap as the closest peaks on either side of the gap minima (indicated by the red and blue 

dots in Fig. 3b).  The charge neutrality point (green circles in Fig. 3b) can be extracted from the 

center of the gap, which leads to an estimate of the effective mass and the Fermi velocity of 

bilayer graphene (see methods). 

We now discuss the bilayer spectrum in the quantum Hall regime at high magnetic fields. 

In the presence of a perpendicular magnetic field B, the massive chiral fermions in gapless 

bilayer graphene are quantized with energies ( 1),   0,1, 2,N cE N N Nω= ± − =  , where ħ is 
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Planck’s constant, ωc = eB / m* is the cyclotron frequency, and e is the electron charge12,30.  For 

each orbital quantum number, N, the Landau levels (LLN) are four-fold degenerate due to the 

degeneracy of valleys K and K with respective quantum numbers ξ  = +1 and ξ  = -1, and spin 

degeneracy, ,s =↑ ↓ .  In the absence of an applied electric field and interactions, the N = 0 and N 

= 1 LLs are additionally degenerate and an eight-fold degeneracy occurs at EN=0,1 = 0 meV.  With 

an applied electric field this degeneracy is partially lifted and a band gap is opened in the low 

energy bands.  Accordingly, the Landau level energies are modified as3,11,12,  
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with the potential energy difference (or asymmetry) ΔU = U2 - U1, where U2 and U1 are the on-

site energies of the top and bottom graphene layers, respectively (Fig. 1c), and z is a term relating 

to the B2/A1 dimer sites given by z = 2ħωc / γ1 << 1.  For ΔU < γ1, the absolute value of the 

potential energy asymmetry is approximately equal to band gap, gU E∆ ≈ (see Fig. 1b).  As z is 

small for typical magnetic fields (B ≤ 8 T), the N = 0 and N = 1 LLs are nearly degenerate.  We 

label these states as LL(N, ξ = ±) with orbital and valley indices N and ξ = ±, without the spin index 

label.  Landau levels that are degenerate at different orbital indices (N and N’) are separated by a 

semicolon in the notation as LL(N,±);(N’,±). 

Significantly, the spinor states related to the N = 0 and N = 1 states in the K  (ξ = -1) 

valley (LL(0,-);(1,-)) are localized predominantly on the A1 sites of the bottom layer and the N = 0 

and N = 1 states in the K  (ξ = +1) valley (LL(0,+);(1,+))  are located on the B2 sites of the top 

layer11,12.  This layer polarization is of particular importance in the scanning tunneling 

spectroscopy measurements, as tunneling to the top surface layer dominates in dI/dV spectra.  
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Analysis of the state, LL(0,+);(1,+) that resides predominantly in the top layer and belongs either to 

the valence band (ΔU < 0) or to the conduction band (ΔU > 0) (Fig. 1d) enables us to determine 

both the sign and the value of ΔU.  

 A rich set of spectral features is observed in the STS spectra in bilayer graphene in the 

quantum Hall regime.  Figure 3c shows the gate map at the location of the P1 electron puddle 

(Fig. 2c) at 8 T.  Resonance peaks from impurity scattering become suppressed as graphene 

charged carriers are condensed into LLs.  The bright lines in Fig. 3c represent well-defined LLs, 

observed up to LLN = 6 at both electron and hole doping.  A staircase-like pattern is observed in 

the LL transitions as a function of gate voltage, which results from the LLs pinning at EF 
28, and 

is characteristic of a 2DEG in high magnetic fields31.  A large gap in the dI/dV spectrum is 

observed in the gate map (Fig. 3c) as a function of gate voltage with two prominent LLs on 

either side of the gap.  For comparison, the band gap edges observed at zero magnetic field are 

overlaid on the map (red and blue dots) in Fig. 3c.  To identify the orbital index N of each LL, 

we examine the magnetic field dependence of the dI/dV spectra and LL peak positions as shown 

in Fig. 3e.  In the electron puddles, a prominent LL is observed to grow out of the lower energy 

side of the gap with minimal dispersion in magnetic field.  This LL belongs to the valence band, 

and we identify this level as LL(0,+);(1,+) which resides in the top graphene layer at high magnetic 

field.  The corresponding level LL(0,-);(1,-) residing on the bottom layer, is not observed as the 

tunneling probability from the probe tip to this layer is exponentially decreased.  The same level 

assignment is valid for the whole gate voltage range.  With the LL(0,+);(1,+) quartet assigned, the 

other LLs at higher orbital indices can be indexed accordingly as marked in Fig. 3e. 

The bilayer band gap varies dramatically on a microscopic level.  Figure 3d shows the 

spectral gate map measured at the position of a hole puddle (‘P4’ in Fig. 2c), which can be 
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contrasted with the measurements in an electron puddle (‘P1’ in Fig. 3c).  The spectra in the 

electron and hole puddles are reproducibly distinct, as can be seen from the comparison of 

another two electron and hole puddles in Fig. 4b,c.  Similar to single layer graphene28, the gate 

maps in the hole puddles (Fig. 3d and 4b) show LL transitions that display convex curvature 

when the LLs are pinned at EF, compared to the concave transitions observed in the electron 

puddles (Fig. 3c and 4c).  In comparing the spectral peaks in the electron vs. hole puddles we 

observe a striking difference in the layer-polarized LLs.  As shown in Fig. 3f, the strong non-

dispersive LL(0,+);(1,+)  grows out of the higher energy side of the bilayer gap at the conduction 

band edge (blue dots in Fig. 3d), as opposed to the LL(0,+);(1,+) growing out of the valence band for 

electron puddles (Fig. 3e).  This indicates a reversal in the sign of the electric field between the 

graphene layers, which results in a sign change of the energy asymmetry, ΔU (see Fig. 1c). 

From the LL spectral peak positions, we can quantitatively determine the values of the 

bilayer energy gap in the different puddles from Eq. 1 using the energy asymmetry ΔU and the 

Fermi-velocity vF as fitting parameters.  The dark-brown tick marks in Fig. 3e (Fig. 3f) indicate 

the fitted LL positions from Eq. 1 using an energy asymmetry ΔU = -34.8 meV (ΔU = 31.9 

meV), and Fermi velocity vF = 1.00 × 106 m s-1 (vF = 1.01 × 106 m s-1) for the electron (hole) 

puddle P1 (P4).  The fan diagram (solid lines in Fig. 3g) generated with the fit parameters for the 

P1 puddle shows how individual LLs are expected to evolve as a function of magnetic field, 

along with experimental LL energies for the field range from 2 T to 8 T and the band gap edges 

determined at 0 T.  Fairly good agreement is observed over the entire field range with the gap 

and velocity fixed to the values obtained by fitting the 8 T spectra.  Better agreement between the 

model and measured LL energies can be obtained by fitting the energy asymmetry and velocity 

for each magnetic field.   
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The extracted ΔU values at 6 T and 8 T as a function of gate voltage are shown in Fig. 4a 

together with ΔU measured in zero field (red squares) for the electron puddle P1 and hole puddle 

P4.  We note that qualitatively ΔU follows the separation between LL(0,+);(1,+) and LL(2,+);(2,-) , 

which can be seen directly in the gate map in Fig. 3c,d  (see also supplemental material).  

Interestingly, the ΔU dependence on density shows an almost mirror symmetry about zero 

energy for electron (ΔU < 0) and hole (ΔU > 0) puddles.  The magnitude of ΔU is comparable at 

opposite ends of the doping range.  The energy difference measured in the electron puddle at Vg 

= 0 V is ≈ -35 meV.  For the hole puddle, the energy difference is ≈ +35 meV at Vg = 60 V.  

Furthermore, it is interesting to note that the energy difference at low gate voltage (0 V < Vg < 20 

V) follows the energy difference measured in zero magnetic field for the electron puddle.  For 

the hole puddle, however, the energy difference in higher magnetic fields match with those in 

zero field at high gate voltage (40 V < Vg < 60 V).  Additionally, there exist a series of dips 

(peaks) in the electron (hole) energy asymmetries at higher (lower) gate voltage, each 

corresponding to the transitions of the various LLs through EF.  The peak at Vg = 27 V in hole 

puddle data corresponds to the filling of LL(2,+);(2,-).  In comparison, the dip at Vg = 40 V in 

electron puddle corresponds to the filling of LL(2,+);(2,-) and the dip at Vg = 50 V corresponds to 

the filling of LL(3,+);(3,-) at EF.  Coincident with the variation in the gap size is a few-percent 

variation in the value of the Fermi velocity (see supplemental material). 

We compare the observed density dependence of ΔU with the zero-magnetic field 

calculations (blue line in Fig. 4a) using a tight-binding model with a self-consistent Hartree 

approximation2.  The model predicts a vanishing ΔU and sign reversal at ED.  The models11,12 

describing the bilayer band structure in high magnetic field are not self-consistent and implicitly 

assume an energy asymmetry dependence on the gate electric field illustrated by the dashed blue 
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line in Fig. 4a.  Here, the energy gap opens and the layer polarization develops when ED crosses 

EF, while LLs with higher orbital indices, N ≥ 2, are not layer polarized and therefore do not 

contribute to changes in relative charge imbalance or the asymmetry size.  In contrast, our 

observations show strong peaks and dips in the energy difference when higher orbital LLs are 

filled or emptied.  It is clear that the experimental observations presented in this manuscript are 

very different from what either model predicts.  

A gap (or subgap) of another type is seen as a splitting of the LL(0,+);(1,+) when it crosses 

EF.  The splittings have been observed in all of six examined electron puddle locations as marked 

in Fig. 2c.  The splitting of LL(0,+);(1,+) at EF is also seen as resonances that appear as nearly 

vertical lines in the gate maps (see Fig. 4c and Fig. 5a).  The presence of vertical resonances in 

gate maps was discussed in a recent study on single layer graphene28, where we showed that the 

physical phenomena at EF can also contribute to the dI/dV spectra at higher tunneling energies.  

The resonances occur when the split LL(0,+);(1,+) levels are pulled through the Fermi level at high 

tip-sample potentials giving a step increase in tunneling current and a resonance peak in the 

dI/dV measurements32.      

The splitting of LL(0,+);(1,+) at EF is a sign of correlated electron behavior33.  The inset in 

Fig. 5b shows an individual dI/dV spectrum for the electron puddle P2 in the middle of the 

subgap, at Vg = 28.6 V.  The four-fold degeneracy of LL(0,+);(1,+) is partially lifted and it splits into 

two peaks separated by 15.4 meV at 8 T.  The gap is nearly constant and collapses suddenly 

when LL(0,+);(1,+) is moved away from EF.  The peak separation scales linearly with magnetic field, 

with slight variation on different puddles as shown in Fig. 5b.  Fitting the splitting energies to 

Zeeman-like dependence, BE g Bµ= , yields an energy scale for the splitting that is extremely 

large, ≈ 1.97 meV T-1, with effective g ≈ 34 for the puddle P2 and ≈ 1.70 meV T-1 with g ≈ 29 for 
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the puddle P1.  Interestingly, these subgaps are not resolved in the hole puddles (see Fig. 4b), 

implying that the splitting may be much smaller there.   

In the following discussion, we would like to emphasize that the experimental results 

cannot be explained by models considering a spatially homogeneous layer polarization that goes 

to zero and reverses in sign when EF passes through ED 2,7 (blue line in Fig. 4a).  As discussed 

previously, the measured bilayer band gap remains open with values on the order of 25 meV 

even when ED coincides with EF.  Our measurements demonstrate that both the total charge 

density and the charge imbalance between the layers spatially fluctuate reflecting the disorder 

potential variation.  This is quite surprising, as the density range controlled by the external gate 

(ΔVg = 60 V corresponds to Δn = ± 2.2 × 1012 cm-2)28, is significantly larger than the density 

fluctuations between minima and maxima potential extrema (ΔVo = 5 V corresponds to Δn = 3.6 

× 1011 cm-2 see methods)28.  We suggest that local fields from charged impurities close to the 

interface between the graphene and the insulator can dominate the local charge imbalances. 

We graphically illustrate the charge imbalance and resulting direction of local fields in 

electron and hole puddles in Fig. 4d.  At overall hole doping in the bilayer (leftmost panel), the 

electron puddles have a large energy asymmetry (red arrow) while the asymmetry in the hole 

puddles becomes small (blue arrow).  Here, the sign of the local polarization field coincides with 

the external field in electron puddles and is opposite in the hole puddles.  The opposite trend 

occurs at electron doping in the bilayer consistent with the reversal of the external electric field 

at Vg >> VD (rightmost panel in Fig. 4d).  Importantly, the direction of the local polarization does 

not follow the direction of the external electric field and must be determined by other factors 

such as the local fields from impurities or the gradients of disorder potential that change sign in 

different puddles.  The schematic also offers a possible simple clue.  Over the whole density 



11 

 

range, the amplitude of density fluctuations in the bottom layer is larger than the one in the top 

layer consistent with the screening of the substrate-induced potential disorder.  The resulting 

density schematics shown as the line profiles in Fig. 4d naturally result in the potential 

asymmetries and local fields reversing in sign from electron to hole puddles.   

Even though we observe a non-zero energy gap when ED crosses EF, it is not clear 

whether the observed asymmetries are related to the broken symmetry states predicted in recent 

models11,18,19,34,35, or are the result of the broken symmetry related to the substrate interactions.  

In contrast, the existence of the subgaps in electron puddles when LL(0,+);(1,+) crosses EF is likely 

related to the recent theoretical predictions of spontaneously broken symmetry states  At present, 

we are not able to identify the exact quantum numbers of the split LL(0,+);(1,+) levels.  However, 

recent transport measurements point to a pseudospin polarized ground state13,19,34.  The 

spontaneously broken symmetry states lead to the opening of a gap due to many-body 

interactions in zero electric field13,18,19,34.  In this model, a pseudo-ferromagnetic ground state 

with fully polarized pseudospins is favored at small electric fields, which is followed by 

antiferrromagnetic or ferrimagnetic ordering.  These effects lead to non-monotonic dependence 

of the band gap on applied electric field with magnitudes comparable to those observed in this 

study18.  However, in realistic devices with disorder, the spontaneous polarization must nucleate 

with a sign determined by the disorder potential variation. 

 

Methods 

The experiments were performed with an ultra-high vacuum (UHV) STM facility at NIST in 

magnetic fields from 0 T to 8 T at a temperature of 4.3 K.  The graphene device was fabricated in 

a similar way to that reported in Novoselov et al.36.  Graphene flakes were mechanically 
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exfoliated from natural graphite and transferred on thermally grown 300 nm thick SiO2 on Si.  

The highly doped Si substrate was used as a back gate to control the charge density of the 

graphene device.  Multiple steps of gold evaporation (50 nm for single deposition) through a SiN 

stencil mask were implemented to preserve a clean surface of graphene.  Raman spectroscopy 

measurements were performed to determine the single and bilayer graphene regions28.  The 

graphene was located using a 2-dimensional piezoelectric actuator to position the probe tip on 

the graphene device using optical viewing.  An Ir probe tip was prepared by ex-situ 

electrochemical etching, and cleaned and characterized by in-situ field ion microscopy before the 

measurements.  STS measurements were performed using a lock-in detection method with a 

modulation frequency of ≈ 500 Hz and root-mean-square modulation voltages between 1 mV 

and 8 mV depending on the spectral range of interest.  The disorder potential map in Fig. 2c was 

obtained using closed loop dI/dV measurements as described previously26,28.  

dI/dV gate maps were obtained by taking standard open loop dI/dV spectra, then closing 

the STM servo loop and changing the gate voltage, and then repeating the open loop  dI/dV 

measurement.  The effective mass can be determined from the density dependence of the charge 

neutrality point in the gate map at zero magnetic field (Fig. 3b).   The charge neutrality point can 

be extracted from the center of the gap (green circles in Fig. 3b), which varies linearly with 

density as 2 / 2DE n mπ ∗=  (assuming density independent mass), in contrast to the square-root 

dependence in single layer28.  Here, the two-dimensional charge-carrier density n is defined by 

the applied gate potential, n = α (Vg – Vo), where α is determined by the gate capacitance (300 

nm of SiO2) as 7.19 × 1010 cm-2 V-1 and Vo is the shift of ED due to intrinsic doping28,37,38. A 

linear fit (yellow line in Fig. 3b) to ED with density yields an effective mass m* = (0.033 ± 0.002) 

me
39, where me is the mass of electron, in agreement with bilayer graphene properties40.  Using 
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the interlayer coupling constant, 2
1 2 0.377Fm vγ ∗= =  eV 40, we can extract the Fermi velocity as 

vF = (1.010 ± 0.003) × 106 m s-1.  The charge neutrality point is close to EF in this puddle at a 

gate voltage of Vg ≈ 30 V.  Spatially, Vo varies from Vg ≈ 30 V (electron puddles) to Vg ≈ 35 V 

(hole puddles).   
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Figure Captions 
 

Figure 1:  Schematics of the bilayer graphene measurements and energy band 
diagram in the quantum Hall regime. a, Schematic of Bernal-stacked bilayer graphene 
consisting of a top layer (A2/B2) and bottom layer (A1/B1), with atom A2 directly over B1.  b, 
Energy band diagram of bilayer graphene with (solid lines) and without (dashed lines) a band 
gap.  The electronic levels form a Mexican-hat like energy bands with a potential energy 
asymmetry ΔU and a band gap of Eg.  c, Schematic of a gated bilayer graphene device for 
STM/STS measurement with circuitry showing application of gate voltage Vg and sample bias 
Vb.  The bilayer graphene is placed on a 300 nm SiO2 substrate separating from a back gate 
electrode (Si) (see methods).  The disorder potential induced from the substrate is illustrated in 
color overlaid on the SiO2 surface. ΔU equals to the difference between onsite energies for the 
top (2) and the bottom (1) layers.  Magnetic field B is perpendicular to the sample plane.  d, The 
formation of bilayer graphene Landau levels in the quantum Hall regime with and without a band 
gap.  Landau levels are indexed with the orbital and valley index, (N , ξ), and each is two-fold 
degenerate in spin.  The eight-fold degenerate N = 0, 1 levels become layer polarized quartets 
when the graphene layers are subjected to a potential energy asymmetry ΔU.  LL(0,+);(1,+) 
projected on the top layer (ξ = +1) depends on the sign of ΔU.   

 
Figure 2:  STM topography images and disorder potential in bilayer graphene. a, 

STM topographic image, 200 nm × 200 nm, of a region containing the boundary between single 
and bilayer graphene.  Tunneling parameters: sample bias -300 mV, tunneling current 100 pA.  

http://npg.nature.com/reprintsandpermissions�
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Lower right inset: atomic resolution image of the honeycomb lattice structure of single layer 
graphene.  Lower left inset: atomic resolution image of the bilayer showing the three-fold 
symmetry of Bernal-stacked bilayer graphene.  b, STM topographic image, 100 nm × 100 nm, of 
bilayer graphene with peak-to-peak height corrugation of 1 nm.  Tunneling parameters: sample 
bias -200 mV, tunneling current 300 pA.  c, Fixed-bias closed-loop dI/dV map (Vb = -200 mV, Vg 
= 60 V) over the same area as in b revealing the spatial distribution of the disorder potential in 
bilayer graphene.  Different measurement points, six for electron and two for hole puddles are 
indicated. 

 
Figure 3:  Magnetic quantization in bilayer graphene as a function of electric and 

magnetic fields. a, dI/dV spectra in zero magnetic field as a function of back gate voltage in 
steps of ΔVg = 5 V in the electron puddle P1.  The curves are offset for clarity.  The red tick mark 
at Vg = 0 V indicates the conductance minimum at EF while the orange tick marks indicate the 
minima of the bilayer band gap as a function of gate voltage.  b, 2-dimensional ‘gate map’ from 
dI/dV spectra with fine gate voltage increments (ΔVg = 0.2 V).  The green circles show the 
position of the charge neutrality point, ED, in the center of the gap and the yellow line is a linear 
fit of ED vs. gate voltage, which yields an effective mass m* = (0.033 ± 0.002) me 

39 (see 
methods).  The red and blue connected dots denote the edges of band gap.  c, dI/dV gate map 
measured at 8 T at the same location as a and b (P1).  The red and blue connected dots are the 
same as in b.  d, dI/dV gate map measured at 8 T at the position of hole puddle P4.  The red and 
blue connected dots denote the gap edges of the hole puddle determined from zero field 
measurements.  e-f, Individual dI/dV spectra for the electron puddle P1 and the hole puddle P4 as 
a function of applied magnetic field from 0 T to 8 T at the fixed gate voltage of Vg = 33 V, 
respectively.  The curves are offset for clarity.  Dark brown tick marks show calculated LLs 
positions for each puddle from Eq. 1 in the main text.  STS parameters (a-f): sample bias -200 
mV, tunneling current 200 pA and root-mean-square modulation voltage 4 mV.  g, Landau level 
peak positions (red squares) as a function of magnetic field for the electron puddle P1 at Vg = 33 
V (error bars less than symbol size).  The experimental points at 0 T and 2 T are extracted from 
the band gap edges.   

 
 
Figure 4:  Bilayer graphene potential energy asymmetries at varying gate voltage in 

electron vs. hole puddles. a, Energy asymmetries determined from fitting the LLs using Eq. 1 as 
a function of gate voltage and magnetic field obtained at the spatial location of the electron 
puddle P1 and hole puddle P4.  Error bars are one standard deviation39.  The solid blue line 
indicates the calculated potential asymmetry using Eq. 5 in reference 9 with Δ0 = -76 meV, vF = 
1.00 × 106 m s-1, and εr = 1.  The dashed blue line is the asymmetry dependence implied in the 
LLs scheme illustrated in Fig. 1d.  b–c, Comparison of dI/dV gate maps at 8 T measured in the 
hole puddle P3 (b) and electron puddle P8 (c).  STS parameters: sample bias -200 mV, tunneling 
current 200 pA and root-mean-square modulation voltage 4 mV.  d, Schematics of the spatial 
inhomogeneity of the layer densities in bilayer graphene at different gate potentials according to 
the observations made in a.  The plots on the bottom illustrate the density variation in both top 
(dashed line) and bottom (solid line) layers along the direction marked by the yellow arrows 
above.  The amplitude of density fluctuations is smaller in the top layer because of the screening 
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from the bottom layer. The direction of electric field between the layers and the sign of energy 
asymmetry remain the same over the whole explored density range.   

 
Figure 5:  Symmetry breaking in the LL(0,+);(1,+) quartet.  a, dI/dV gate map at 8 T in 

electron puddle P2.  LL(0,+);(1,+) is observed to split into two peaks opening a subgap when 
intersecting EF inside the dashed yellow rectangle.  STS parameters: sample bias -200 mV, 
tunneling current 200 pA and root-mean-square modulation voltage 4 mV.  b, The subgap energy 
vs. magnetic field for electron puddles P1 and P2.  A linear fit of the gap vs. magnetic field 
yields the slopes of (1.70 ± 0.21) meV T-1 and (1.97 ± 0.03) meV T-1 for the positions P1 and P2, 
respectively. (Inset) dI/dV spectra in the middle of the subgap of the electron puddle P2 at Vg = 
28.6 V as marked in the gate map a, showing the subgap size of 15.4 meV at 8 T.   
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