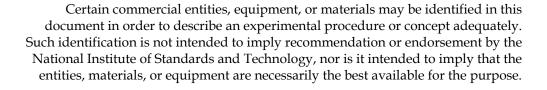
NIST Special Publication 1128

Summary of Workshop for Urban and Wildland-Urban Interface (WUI) Fires: A Workshop to Explore Future Japan/USA Research Collaborations

Samuel L. Manzello Sayaka Suzuki Keisuke Himoto

NIST Special Publication 1128

Summary of Workshop for Urban and Wildland-Urban Interface (WUI) Fires: A Workshop to Explore Future Japan/USA Research Collaborations


Samuel L. Manzello Sayaka Suzuki Fire Research Division Engineering Laboratory

> Keisuke Himoto Kyoto University

> > August 2011

U.S. Department of Commerce *Rebecca M. Blank, Acting Secretary*

National Institute of Standards and Technology Special Publication 1128 Natl. Inst. Stand. Technol. Spec. Publ. 1128, 107 pages (August 2011) CODEN: NSPUE2

Table of Contents

1. Introduction	1
1.1 Objective of This Workshop	1
1.2 Program of Workshop	2
2. Discussions	4
2.1 Inputs Related to the Future Workshop	4
2.2 Summary	5
3. Acknowledgements	6
Appendix1 Workshop Attendee List	7
Appendix2 Presentations	9

1. Introduction

1. 1 Objective of this Workshop

An international workshop was held within the Fire Research Division at NIST's Engineering Laboratory on June 27th, 2011. The workshop was entitled "Urban and Wildland-Urban Interface (WUI) Fires: A Workshop to Explore Future Japan/USA Research Collaborations." The workshop was organized by Dr. Samuel L. Manzello (NIST/USA) and Dr. Keisuke Himoto (Kyoto University/Japan).

WUI fires have caused significant destruction in the USA. In 2003, WUI fires in the vicinity of San Diego, California (USA) displaced nearly 100,000 people and destroyed over 3000 homes, leading to over \$2B in insured losses. Most recently, WUI fires that occurred in Southern California in 2007 and 2008 displaced tens of thousands of people and destroyed several thousand structures. Because of the current historic role in wildland fire fighting (not WUI fires), little effort has been spent on improving understanding of WUI fire behavior. There is a lack of quantitative information on the processes of structure ignition in WUI fires. Post-fire damage studies suggest that firebrands are a major cause of structural ignition in WUI fires.

Japan has been plagued by large urban fires for many years. Japan is a country subjected to many earthquakes due to its geographical location. After these earthquakes occur, many fires are produced. Exterior claddings and ceramic roofing tiles are displaced as a result of the earthquakes exposing bare wood members that are easily ignited due to external heating. As in WUI fires, firebrands are produced as structures burn and with the presence of high winds these firebrands are dispersed throughout the atmosphere and produce spot fires which result in severe urban fires. Exposure to wind-blown fire plumes downwind of the burning area also presents difficulty in firefighting and evacuation operations. Mitigation of urban fire spread is also of special importance to Japan from a historical perspective. Kyoto is one of the few remaining cities in Japan with traditional wooden structures that are vulnerable to ignition and preservation of such structures is of great importance from a cultural heritage point of view. As part of this workshop, presentations were delivered from leading researchers in Japan and the USA in the areas of urban and WUI fire spread.

The goal of this workshop was to open a dialogue for new research collaborations between both countries in an effort to develop scientifically based building codes/standards that will be of use to both countries to reduce the devastation caused by urban and WUI fire spread.

1.2 Program of Workshop

8:55 am - 9:05 am

Dr. William Grosshandler (Deputy Director of Engineering Laboratory, NIST)

Welcome To NIST

9:05 am - 9:15 am

Dr. Samuel L. Manzello (NIST)

Workshop Objectives

Japanese Perspective (Dr. K. Himoto, Kyoto University, Moderator)

9:15 am - 9:35 am

Dr. Masahiko Shinohara (National Research Institute of Fire and Disaster)

Formation of Fire Whirls Downwind of Fires

9:35 am - 9:55 am

Professor Takeyoshi Tanaka (Kyoto University)

Fires in March 11 Tsunami Earthquakes

9:55 am - 10:15 am

Professor Ai Sekizawa (Tokyo University of Science)

Effectiveness and its Limit of Fire-fighting Force in Controlling Post-Earthquake Fires

BREAK

10:30 am - 10:50 am

Dr. Keisuke Himoto (Kyoto University)

Physics-based Modeling of Post-earthquake Fire Spread

10:50 am - 11:10 am

Professor Yoshifumi Ohmiya (Tokyo University of Science)

Fire Spread Caused by Flame Ejected from an Opening

11:10 am - 11:30 am

Dr. Tomoaki Nishino (Kobe University)

Evacuation Simulation in the Conflagrations Induced by Kanto Earthquake 1923 and Kyoto Earthquake 20XX

USA Perspective (Dr. Samuel L. Manzello, NIST, Moderator)

1:00 pm - 1:20 pm

Mr. Ethan Foote (Northern California Fire Prevention Officers/CALCHIEFS)

The Wildland-Urban Interface Fire Problem

1:20 pm - 1:40 pm

Mr. Alexander Maranghides (NIST)

The Wildland-Urban Interface: A Coupled Problem

1:40 pm - 2:00 pm

Professor Carlos Fernandez-Pello (University of California-Berkeley)

Ignition of Cellulose Fuel Beds by Hot Metal Particles

BREAK

2:15pm - 2:35 pm

Professor Rachel Davidson (University of Delaware)

An Urban Fire Simulation (UFS) Model

2:35 pm - 2:55 pm

Dr. Samuel L. Manzello (NIST)

Quantifying Structure Vulnerabilities to Ignition from Wind Driven Firebrand Showers

2:55 pm - 3:15 pm

Dr. Sayaka Suzuki (NIST)

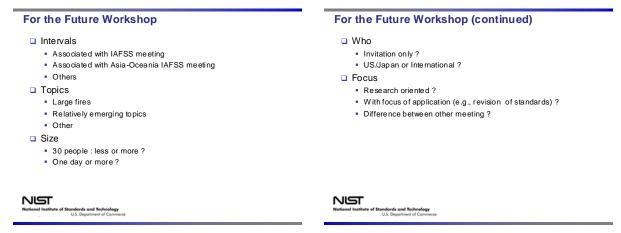
Ignition Regimes Maps for Materials Exposed to Firebrand Showers Using NIST Dragon's LAIR Facility

3:15 pm - 3:35 pm

Professor Albert Simeoni (Worcester Polytechnic Institute)

Wildland Fuel Burning Dynamics

3:45 pm - 4:30 pm


OPEN DISCUSSION (ALL) ON AREAS OF FUTURE COLLABORATION

All presentations are in Appendix 2

2. Discussions

2.1 Inputs related to the Future Workshop

NIST presentation about discussions for Future Workshop is summarized below

Open Discussion on areas of Future Collaboration

- Regarding workshop size (internationally or US/Japan only, the number of people, the number of topics), the following suggestions were obtained:
 - The size of the workshop should be limited to less than 50 participants to afford the opportunity for intimate discussions.
 - The workshop duration should be expanded to two days to allow break-out sessions.
 - US/Japan theme was ideal since both countries are very interested in large outdoor fires; the damage from such fires to infrastructure is of great interest to both countries.
 - o Consider inviting other researchers from countries worried about similar issues.
 - O Suggested by some participants to video/web conference so that more people can attend due to travel restrictions; others felt this was a bad idea and can be remedied by asking one representative to present work from their respective organization.
 - Workshop needs 2 or 3 key speakers and a few topics; variety is needed but too many topics will lose focus.
 - o Further engage representatives from standards and codes organizations, such as International Organization for Standardization (ISO), National Fire Protection Association (NFPA), and International Code Council (ICC).
 - It is necessary to engage the disaster related research community as a whole and include research focused on costs associated with mitigation strategies (economic analyses). Consider support from existing fire research community to host future workshops.

o Workshop should not be every year; perhaps every 2 or 3 years since one year is too short to make a substantial progress on research.

2.2 Summary

An international workshop was held within the Fire Research Division at NIST's Engineering Laboratory on June 27th, 2011. The workshop was entitled "Urban and Wildland-Urban Interface (WUI) Fires: A Workshop to Explore Future Japan/USA Research Collaborations." Thirteen presentations were delivered in the areas of urban fire spread in Japan and WUI fire spread in the USA. Six presentations were delivered from the Japanese perspective; from evacuation/firefighter-response models, to fire whirl research, to post-tsunami fires following historical earthquakes in Japan. Seven presentations were delivered from the USA perspective; from the overall view of WUI fire problem, to detailed ignition studies on fuel beds, to vulnerabilities of structures to firebrand showers. The goal of this workshop was to open a dialogue for new research collaborations between both countries in an effort to develop scientifically based building codes/standards that will be applicable to both countries to reduce the devastation caused by urban and WUI fire spread. The workshop was considered a success and was intended to be a first step in bringing together a diverse group of researchers and code officials. The valuable input received for future efforts will be considered by Drs. Manzello and Himoto when considering the next workshop.

The purpose of this NIST special publication is to document presentations and discussions. Participants from the workshop will prepare papers for publication in a special issue of *Fire Safety Journal*, a leading international archival publication in fire safety science. Dr. Manzello and Dr. Himoto (Kyoto University/Japan) will serve as Co-Guest Editors of the special issue. The publication in a special issue of *Fire Safety Journal* is currently in process.

3. Acknowledgements

The excellent presentations from all the presenters are really appreciated. The valuable input of all participants is warmly appreciated. The U.S. Department of Homeland Security Science and Technology Directorate sponsored the production of this material under Interagency Agreement IAA HSHQDZ-10-X-00288 with the National Institute of Standards and Technology (NIST).

Appendix 1

Attendance List

Name	Organization	
Dan Bailey	International Code Council	USA
Nelson Bryner	NIST	USA
Steve Cauffman	NIST	USA
Bert Coursey	Department of Homeland Security (DHS)	USA
Rachel Davidson	University of Delaware	USA
David D. Evans	Cabezon Group, Inc.	USA
A. Carlos Fernandez-Pello	University of California at Berkeley	USA
Ethan Foote	Northern California Fire Prevention Officers/California Fire Chiefs Association	USA
Daisuke Goto	Tokyo University of Science (TUS)	Japan
Ichiro Hagiwara	Building Research Institute	Japan
Anthony Hamins	NIST	USA
Keisuke Himoto	Kyoto University	Japan
Junya Iwasaki	Hokkaido University	Japan
Rik Johnsson	NIST	USA
Takashi Kashiwagi	NIST (Retired)	USA
Eric Letvin	NIST	USA
Sizheng Li	University of Delaware	USA
Samuel L. Manzello	NIST	USA
Alex Maranghides	NIST	USA
Ken Matsuyama	TUS	Japan
Steve McCabe	NIST	USA
Masayuki Mizuno	TUS	Japan
Yuji Nakamura	Hokkaido University	Japan
Tomoaki Nishino	Kobe University	Japan
Yoshifumi Omiya	TUS	Japan
William Pitts	NIST	USA
Stephen Quarles	Institute for Business and Home Safety	USA
James G. Quintiere	University of Maryland	USA
Ron Rehm	NIST (Retired)	USA
L. Ray Scott	Home Safety Foundation	USA
Ai Sekizawa	TUS	Japan
Masahiko Shinohara	National Research Institute of Fire and Disaster	Japan
Albert Simeoni	Worcester Polytechnic Institute	USA

Paul Stregevsky	DHS	USA
Kuma Sumathipala	American Wood Council	USA
Sayaka Suzuki	NIST	USA
Takeyoshi Tanaka	Kyoto University	Japan
Jiann Yang	NIST	USA

Appendix 2

Presentations delivered in this workshop

Urban and Wildland-Urban Interface Fires: A Workshop to Explore Future Japan/USA **Research Collaborations**

Dr. Samuel L. Manzello

Engineering Laboratory (EL) National Institute of Standards and Technology (NIST) Gaithersburg, MD 20899-8662 USA

Dr. Keisuke Himoto

Kyoto University Kyoto, JAPAN

Japan/USA Workshop June 27th, 2011

f Standards and Technology

U.S. Department of Commerce

Wildland-Urban Interface (WUI) Fires

WUI – structures and wildland vegetation coexist

Of the 10 largest fire loss incidents (> \$1B) in U.S. history, 5 were WUI fires - all within the last 17 years

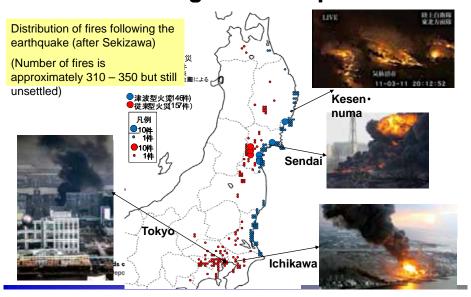
ational Institute of Standards and Technology U.S. Department of Commerce

Wildland-Urban Interface (WUI) Fires

2003 **Southern California Fire**

2007 Southern California Fire

1995 Kobe Earthquake


January 17, 1995

U.S. Department of Commerce

al Institute of Standards and Technology U.S. Department of Commerce

Various Types of Fires Occurred Following the Earthquake

USA Perspective

- The Wildland-Urban Interface (WUI) Fire Problem
 - Mr. Ethan Foote (Northern California Fire Prevention Officers/CALCHIEFS)
- The Wildland-Urban Interface: A Coupled Problem
 - Mr. Alexander Maranghides, NIST
- Ignition of Cellulose Fuel beds by Hot Metal Particles
 - Professor A. Carlos Fernandez-Pello, University of California
- An Urban Fire Simulation (UFS) Model
 - Professor Rachel Davidson, University of Delaware
- Quantify Structure Vulnerabilities to Ignition from Wind Driven Firebrand Showers
 - Dr. Samuel L. Manzello, NIST
- Ignition Regime Maps for Materials Exposed to Firebrand Showers Using NIST Dragon's LAIR Facility
 - Dr. Sayaka Suzuki, NIST
- Wildland fuel burning dynamics
- Professor Albert Simeoni, Worcester Polytechnic Institute

National Institute of Standards and Technology
U.S. Department of Commerce

Japanese Perspective

- Formation of Fire Whirls Downwind of Fires
 - Dr. Masahiko Shinohara (National Research Institute of Fire and Disaster)
- Fires in March 11 Tsunami Earthquake
 - · Professor Takeyoshi Tanaka, Kyoto University
- Effectiveness and its Limit of Fire-fighting Force in Controlling Post-Earthquake Fires
 - Professor Ai Sekizawa, Tokyo University of Science
- Physics-Based Modeling of Post-Earthquake Fire Spread
 - Dr. Keisuke Himoto, Kyoto University
- Fire Spread Caused by Flame Ejected from An Opening
 - · Professor Yoshifumi Ohmiya, Tokyo University of Science
- Evacuation Simulation in the Conflagrations Induced by Kanto Earthquake 1923 and Kyoto Earthquake 20XX
 - Dr. Tomoaki Niishino, Kobe University

National Institute of Standards and Technology
U.S. Department of Commerce

Objective:

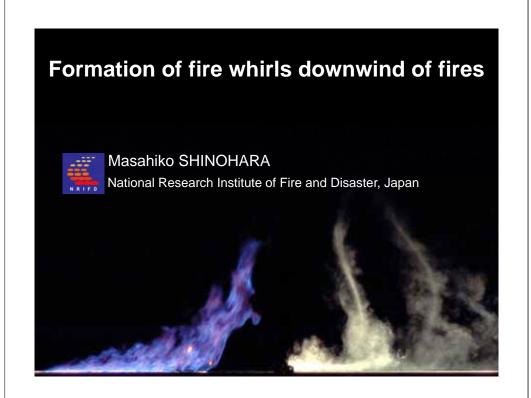
Fire Spread in urban and WUI fires of great interest to Japan and USA

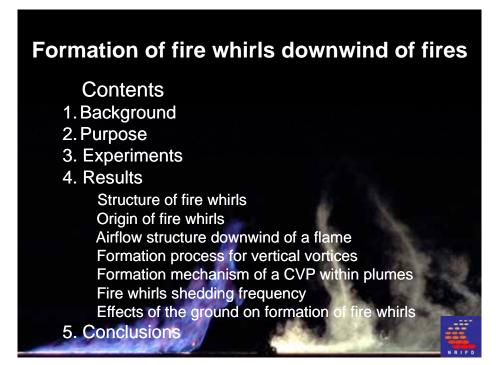
Explore areas of mutual collaborative interest on these topics

Can common areas be found to provide scientific basis for building codes/standards in both countries?

Other ideas welcome

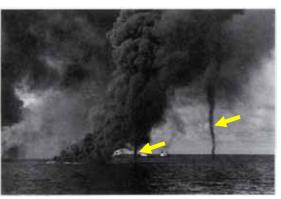
Provide input on future workshop ideas at end of the day


National Institute of Standards and Technology
U.S. Department of Commerce


Workshop Documentation

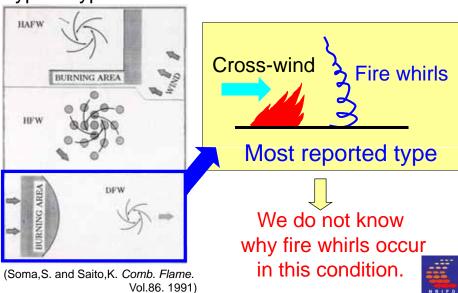
NIST will issue a Special Publication All presentations will be included

Manuscripts will be published in a special issue of
Fire Safety Journal
Guest Editors:
Drs. Manzello and Himoto

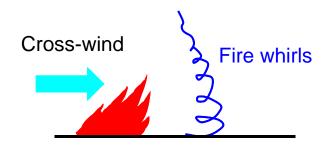


Background

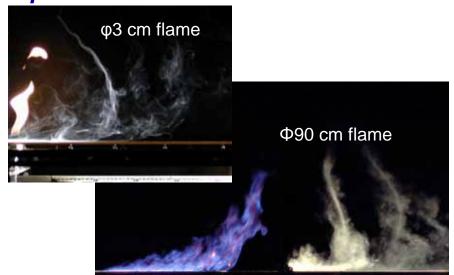
(Yomiuri shinbun October .27 2003) (AP)



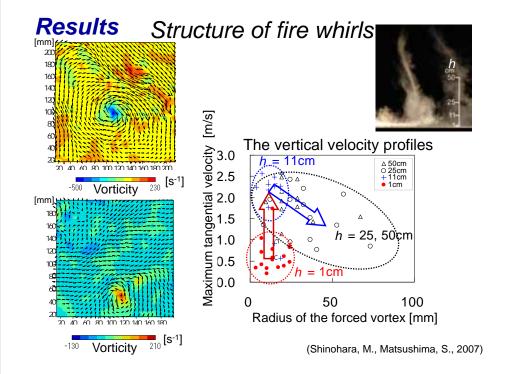
(Wood, V. T., Monthly Weather Review, Vol.120, 1992. Photo by Steve Campbell, 1990)

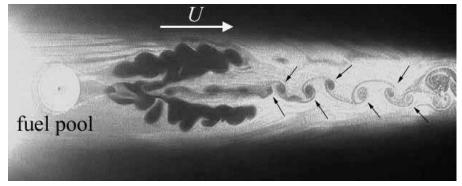

Background

Typical types of fire whirls in fire incidents


Purpose

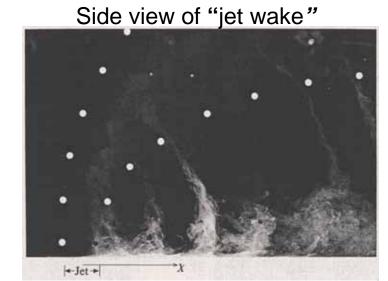
To understand formation mechanisms of fire whirs downwind of fire areas




Experiments

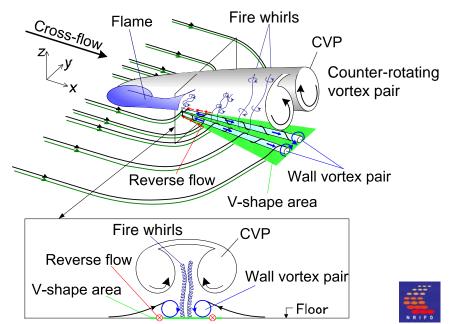
Results Structure of fire whirls

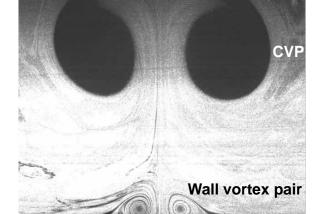



Cross-sectional view U = 0.49 m/s $h_{\text{sw}} = 40 \text{ mm}$ D = 80 mm Fuel: Methanol (Shinohara, M. and Kudo, K., 2004)

STRUCTURE: Pairs of alternating counter-rotating periodical vortices

≒ Kármán vortex, jet wake

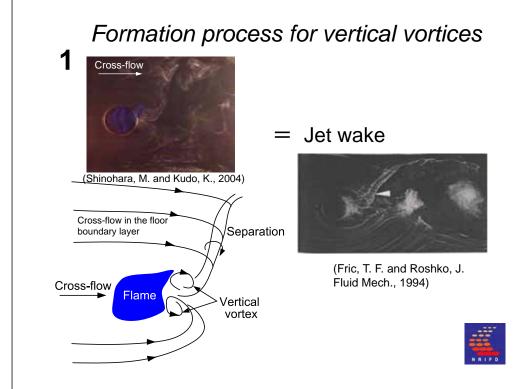


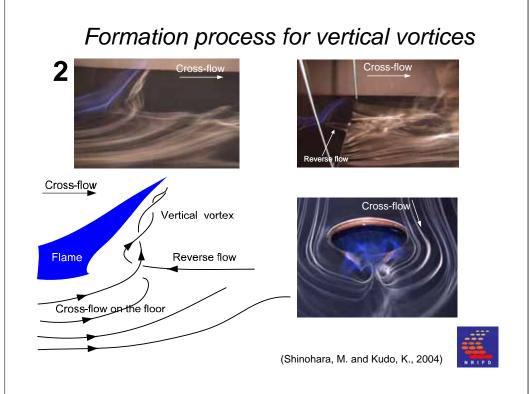


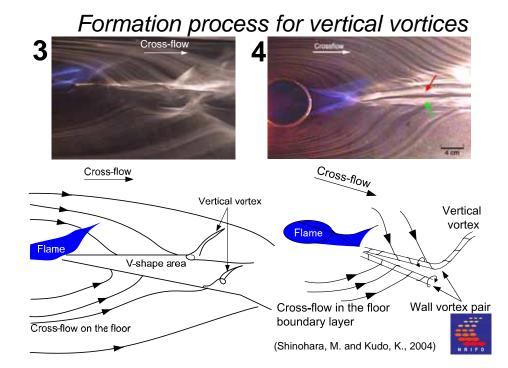
(Fric, T. F. and Roshko, J. Fluid Mech. 279, 1994)

View from the end of the flow

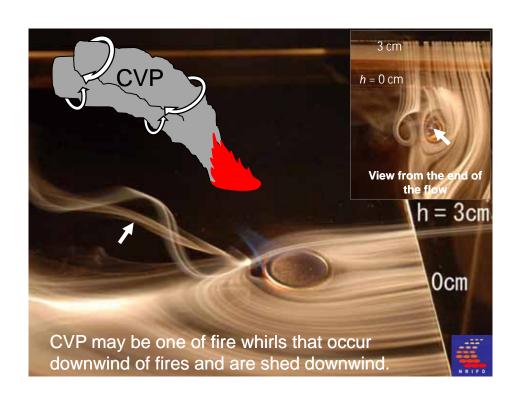
Airflow structure downwind of a flame





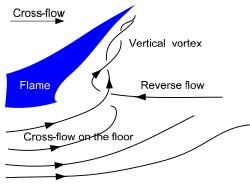

Fuel pool :D=3cm, x=18cm ,U=0.55m/s (Shinohara, M. and Kudo, K., 2004)

2.5 - 0.08 m/s 2.0 - 1.5 - 1.0 - 0.5 0 0.5 1.0 1.5 z/d (Shinohara, M. and Kudo, K., 2004)

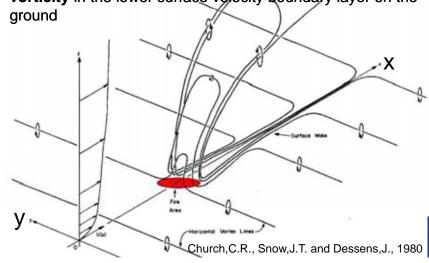


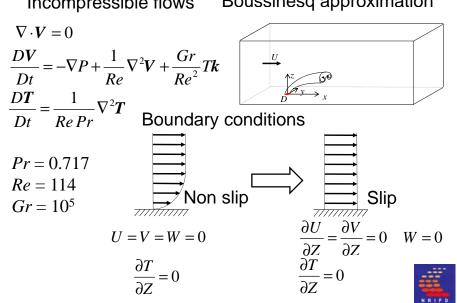
Formation process for vertical vortices

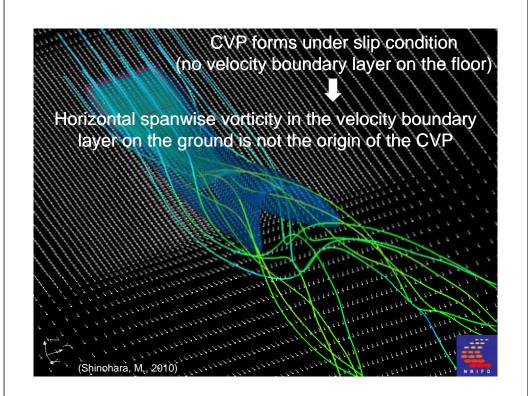
5

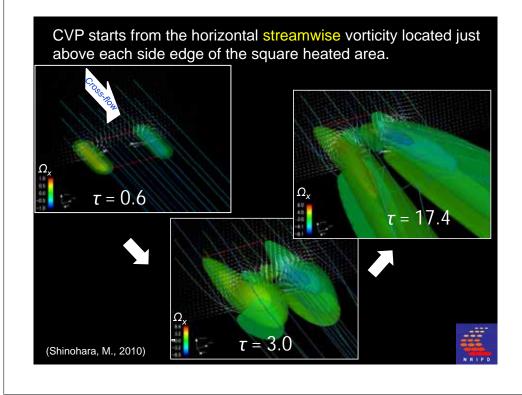


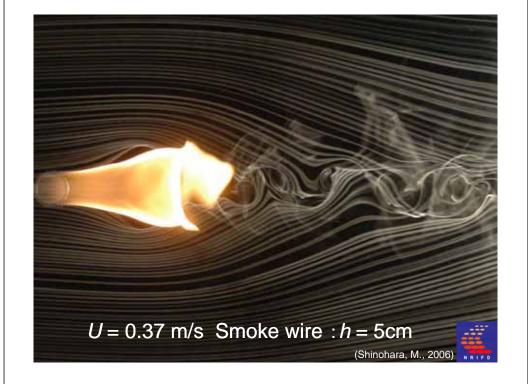
Formation process for vertical vortices



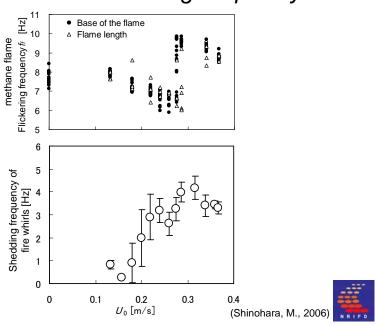

Formation mechanism of a CVP within plumes Church's hypothesis:

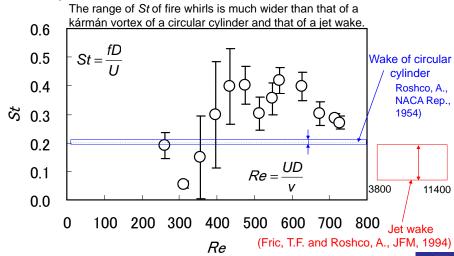

Tilting and subsequent stretching of the horizontal spanwise vorticity in the lower surface velocity boundary layer on the ground



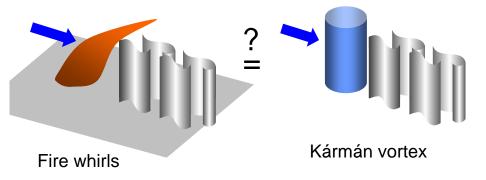

Numerical simulations

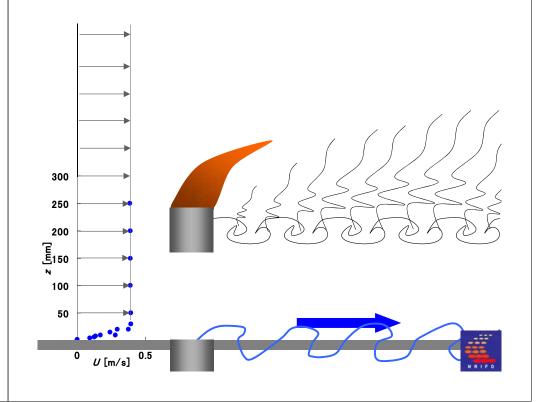
Boussinesq approximation Incompressible flows

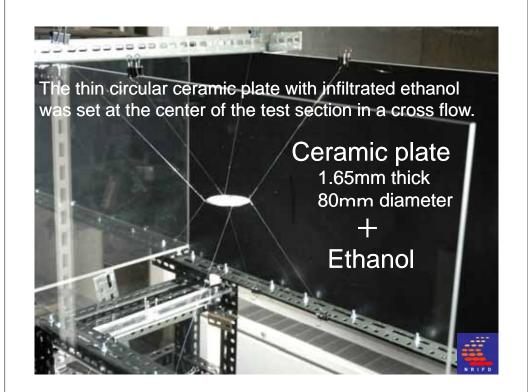


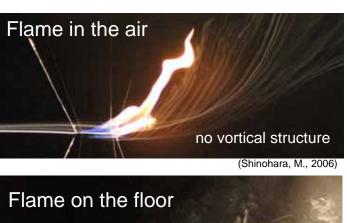


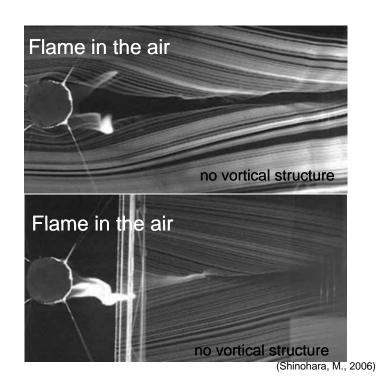
Fire whirls Shedding frequency

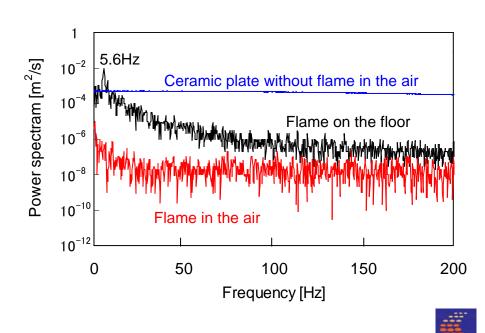

Variation of Strouhal number of fire whirls with Reynolds number

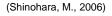

This may be caused by simultaneous occurrence of some formation process. (Shinohara, M., 2006)


Effects of the ground on formation of fire whirls


Formation mechanism







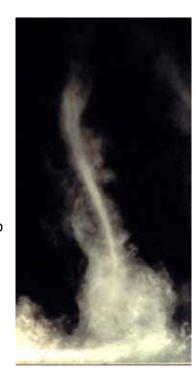
Conclusion

- 1. Fire whirls that occur downwind of a flame in a cross flow start from the velocity boundary layer on the floor.
- 2. 5 types of the beginning of vertical vortex was found:
 - 1) the separation of the flow in the velocity boundary layer on the floor.
 - 2) the combination of the reverse flow and cross-wind
 - 3) starting from the rim of the V-shaped area
 - 4) wall vortex pair
 - 5) CVP of the plume of a flame
- 3. When there was no floor under the flame, there were no vortical structures such as fire whirls downwind of a flame and air under the flame rose downwind of the flame.

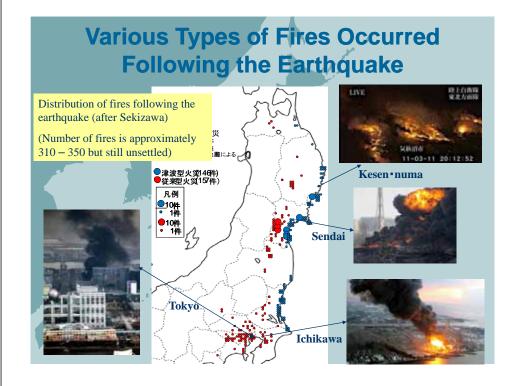
 This result suggests that the complicated flow structure in the velocity boundary layer on the floor have an important role for fire whirls to form.

Conclusion

- 4. The flame flickering frequency in a cross-flow did not coincide with the fire whirl shedding frequency.
- 5. The range of the Strouhal number of fire whirls downwind of a flame is much wider than that of either the Kármán vortex wake in a flow past a circular cylinder or a jet wake. This may be caused by simultaneous occurrence of some formation process.
- CVP originates not from horizontal spanwise vorticity in the velocity boundary layer on the floor around the heated area, but from horizontal streamwise vorticity just above each side of the heated area.


References

- ·Shinohara, M., Proc. of 5th International Symposium on Scale modeling, pp.166-175, 2006.
- ·Shinohara, M., Matsushima, S., Proc. of 2007 ASME IMECE2007-41711, 2007.
- -Shinohara, M., Proc. of the International Heat Transfer Conference, IHTC14-23283, 2010.


Acknowledgement

This research was supported by National Research Institute of Fire and Disaster (NRIFD), the Ministry of Education, Culture, Sports, Science, and Technology of Japan, under Grantin-Aid for Scientific Research No. 16681013 and the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area, and Hokkaido University.

We thank Prof. Kazuhiko Kudo from Hokkaido University and colleagues at NRIFD for their helpful advice and discussions.

Fires in March 11 Tsunami Earthquake 1. Earthquake 1 Date and Time: March 11, 2011 2 Epicenter: Off Sanriku(38. 1° N, 142. 9°E) Depth 24km 4 Magnitude (moment): 9. 0 2. Damages **1)**Human Damage (6/11) **Deaths: 15,405 Missing: 8,095** Casualties: 5,365 **2**Houses and Buildings (6/9) Totally destroyed: 112,528 Severely damaged: 75,463 Partially damaged: 344,551 tp://ahz201103.geogrid.org/viewer/

Fire Occurrence Rate in Inland Area

Majority of building damages was caused by tsunami. The prefectures in the table were relatively unaffected by the tsunami

- •Building damages by shaking were relatively light for the level of seismic intensities
- Fire occurrence rates were small considering the level of seismic intensities
- Fire occurrence rates relative to the numbers of damaged buildings were very high
- •It is necessary to reconsider the estimation method of fire occurrence rate in earthquakes

			, , , , , , , , , , , , , , , , , , ,				
4		Damage of buildings		Number of	Damage buildings/Fires		
1	1	Prefecture	Totally destroyed	Severely damaged	fires	Totally destroyed	Totally destroyed +Severe damage
	Ibaraki	1632	9161	37	44	292	
\ \	Chiba	728	2733	14	52	247	
	Saitama	7	41	13	0.54	3.7	
	Tokyo	9	113	34	0.26	3.6	
7	Kanagawa	0	11	6	0	1.8	
	Kobe	67000		176	380		

Large Scale Fires Following The Tsunami All the large scale conflagrations occurred along the submerged coastal area, which is totaled to be 400 km². Iwate prefecture Noda-mura Taro-cho (Miyako-shi) Yamada-cho Oh*tsuchi-cho Miyagi prefecture Shishi ori area (Kesen numa-shi) Uchinowaki area (Kesen numa-shi) • Oh•ura area (Kesen•numa-shi) • Oh•shima area (Kesen•numa-shi) Kadowaki area (Ishi*no*maki-shi) Fukushima prefecture Nuclear Power Plant Kunohama (Iwaki-shi) (Not yet investigated due to the proximity to Fukushima nuclear power plant)

Cause of Large Conflagration in the Area Attacked by Tsunami

The cause of the large conflagrations is complex, involving many factors such as follows:

- Debris transported and diffused by Tsunami
- Oil spilled from broken oil containers
- Ignition of electric devices soaked with salt water
- Difficulty in fire suppression

Debris Conveyed by Tsunami

- Tsunami leaves various debris, e.g. destroyed houses, cars, household goods.
- The debris cover ground surface indifferent of building sites, streets, open spaces.

Burned debris in Oh•tsuchi-cho

Debris in Kadowaki area (Ishinomaki-sh

Breakage of Oil Containers and Spillage of Oil

Spread of burning oil in Kesen numa bay

- In Kesen numa, 22 oil containers were destroyed by Tsunami and oils were drifted in the bay and submerged areas
- Similar problems
 happened in other
 chies, which caused
 conflagrations in
 some of the cities
- Oil imprints are seen on building walls and debris even where there was no fire

Ignition by Short Circuit Suspected

- Ignitions by short/circuit of electric devices soaked with sea water are suspected
- Houses and cars burning by unknown causes are often seen in drifting debris
- Ignition of ears were witnessed at several steple

Difficulty in Fire Suppression Burned area in Yamada-cho (after Yamada lab., U. of Tokya) Fire Suppression was

- Hindrance of fire fighters' access by debris and water covering streets
- Damage of fire fighting resources, e.g. hydrants, fire engines
- Threat of tsunami

The conflagration in Yamada-cho was only 2 small fires that would have been quickly extinguished if it were normal time, but fire fighting means had been lost despite of plenty of water existed.

Fire Hazard to Tsunami Refuges

- As a tsunami prone area 'each city had designated schools etc. as tsunami refuges for residents
- But the fire hazards had not been considered
- Residents had to abandon
 Fefugees because of fires following the tsunami

Damages to Industries by Fire

- As off-Sanriku ocean is among the world richest fishery water, fishery related industries are the main industry of this region
- Many industry facilities and reinforced buildings that survived tsunami were destroyed by fire
- In Kesen•nums, a number of ships were destroyed by fire caused by oil fire drifting the bay

Are Fires in Tsunami Unusual?

Meiji Sanriku Earthquake Tsunami 1896

• Seismic Intensity: 2~3

Tsunami height: 15~20m (North Sanriku)

• Deaths: 22,000

Burned houses: 216

Are Fires in Tsunami Unusual?

Niigata Earthquak

- he earthqua

Are Fires in Tsunami Unusual?

S-W off Hokkaido Eart

- Deaths: 240

Isn't that we have overlooked the usual nature of tsunami fires?

- sunami in the past demonstrated one aspect of its fire each e last tsunami revealed many aspects of fires all together

On behalf of Japanes all for the sincere extended to

何人も一島嶼(とうしょ)にてはあらず、

其(そ)は本土そのもの;

人は皆、陸(くが)の一塊(ひとくれ)、

本土の一片(ひとひら)

一塊の土を海の洗い去れば、

其は祖国の失せるなり

ジョンダン:「誰がために鐘は鳴る」より

No man is an island

entire of itself:

every man is a piece of the continent,

a part of the main.

If a clod be washed away by the sea,

our country is the less

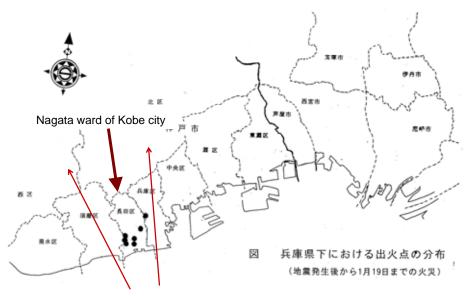
from 'For whom bell toll', John Donne (slightly changed)

Workshop on Wildland and Urban Interface Fire
June 27, 2011 at NIST

Effectiveness and its Limit of Fire-fighting Force in Controlling Post-earthquake Fires

Ai Sekizawa, Dr.Eng.

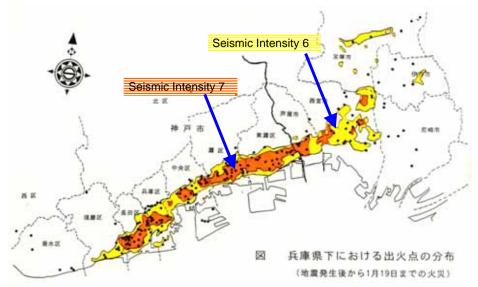
Professor


Graduate School of Global Fire Science and Technology
Tokyo University of Science
E-mail: sekizawa@rs.kagu.tus.ac.jp

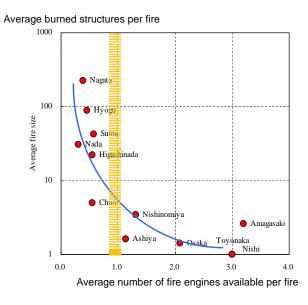
1995 Kobe Earthquake

January 17, 1995

Regional distribution of very large post-earthquake fires that exceeded 10,000 m² in the 1995 Kobe earthquake.



1995 Kobe Earthquake

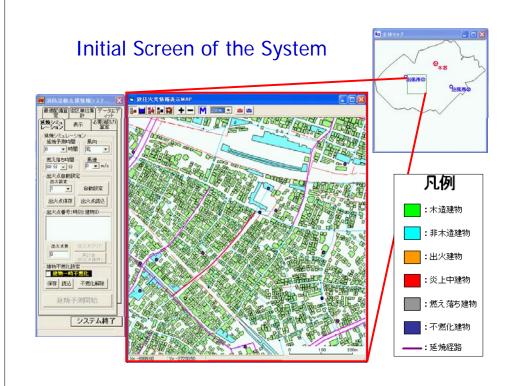

January 17, 1995

Regional distribution of all post-earthquake fires including small fires in the 1995 Kobe earthquake.

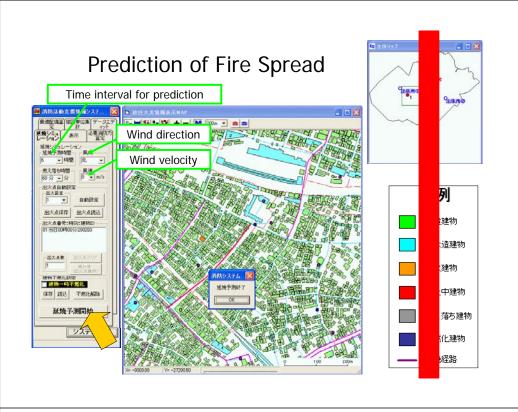
Regional distribution of all post-earthquake fires and the areas by level of seismic intensity in the 1995 Kobe earthquake.

Relation between the average fire size and the number of fire engines dispatched per fire at the Hanshin-Awaji Earthquake by region.

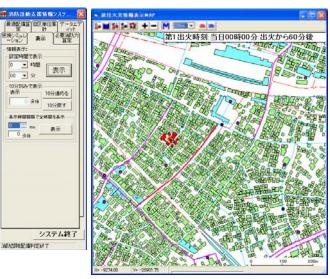
Real-time Simulation System for supporting fire-fighting operation against post-earthquake fires


Two purposes of developing this system for supporting fire-fighting operation

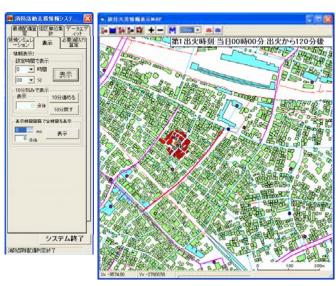
- To maximize the performance of fire brigades' operation for fire-fighting against simultaneous multiple fires with limited existing resources by the quick prediction of fire spread and the optimum deployment of fire engines.
- To demonstrate the certain threshold or the limit of capacity of fire brigades in controlling multiple postearthquake fires even with its optimum operation based on the case studies using this system.

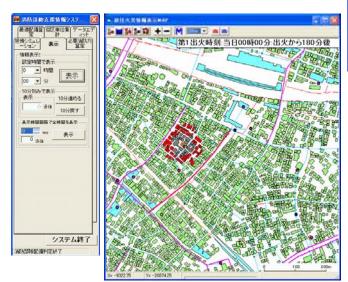

System for supporting fire-fighting operation against post-earthquake fires

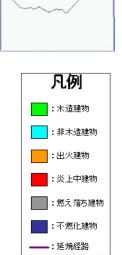
has the following three functions;

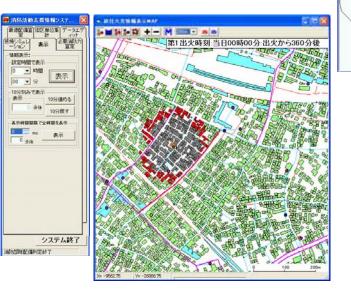

- Real-time simulation system for predicting fire spread.
- Prompt estimate of required resources such as # of fire engines and water supply to control fires.
- Prediction of the optimum deployment of fire engines against simultaneous multiple post-earthquake fires together with the resulting performance of that operation at some certain lapse time.

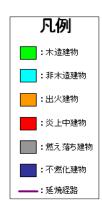


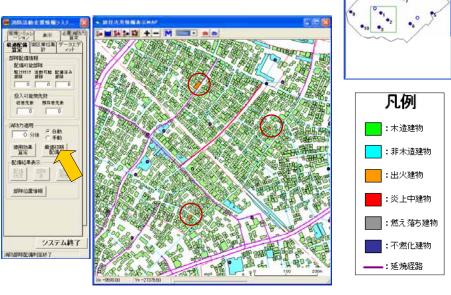

Estimated Fire Spread at 60 min. after Break-out



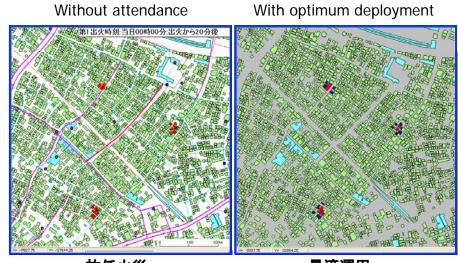



Estimated Fire Spread at 180 min. after Break-out



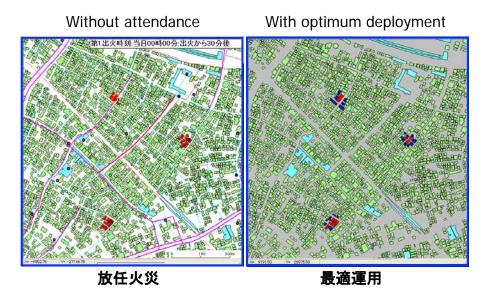

Estimated Fire Spread at 360 min. after Break-out

Simulation of Optimum Deployment of Fire Brigades against Multiple Fires

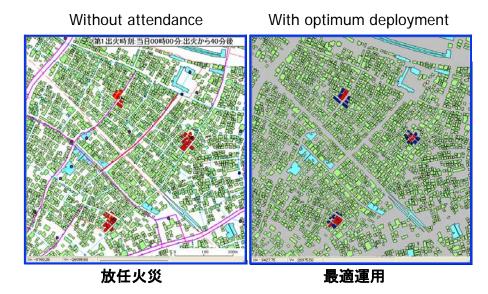

10 min. after Optimum Deployment of Fire Brigades

Without attendance With optimum deployment

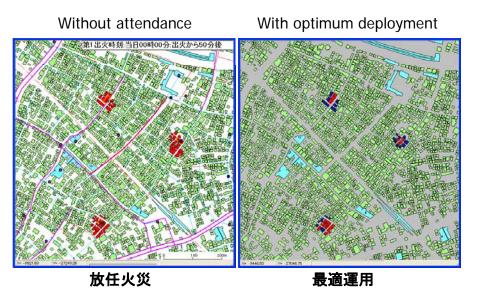
が任火災

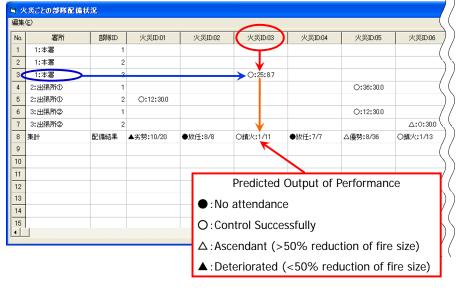

最適運用

20 min. after Optimum Deployment of Fire Brigades

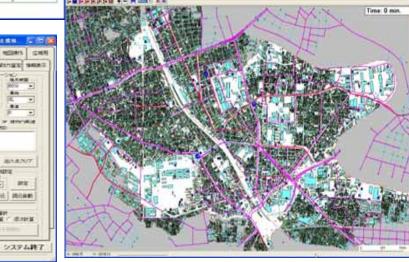


放任火災 最適運用

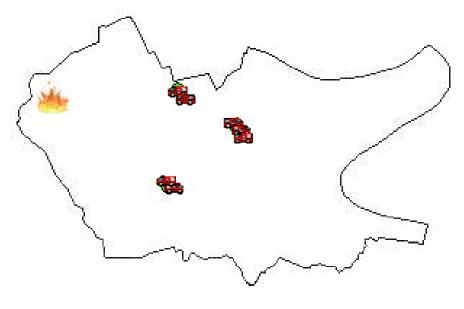

30 min. after Optimum Deployment of Fire Brigades

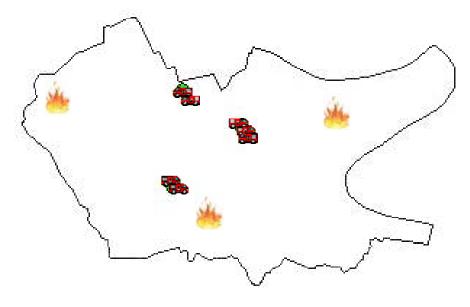

40 min. after Optimum Deployment of Fire Brigades

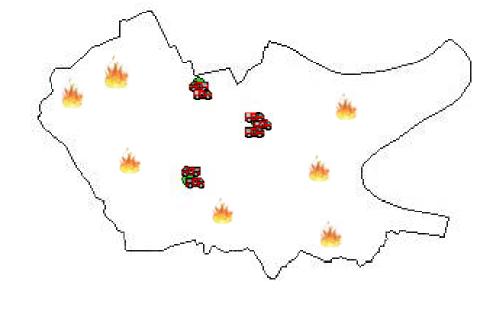
50 min. after Optimum Deployment of Fire Brigades



List of Allocation of Fire Engine Companies for Optimum Deployment




Case Study to demonstrate the limit of capacity of operation by fire brigades in some real jurisdiction of a fire station in Tokyo


Optimum deployment of fire brigades against one fire

Optimum deployment of fire brigades against three fires

Optimum deployment of fire brigades against seven fires

Concluding Remarks

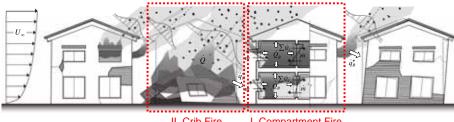
- The effective fire-fighting operation by fire brigades is one of key issues in mitigating fire damage caused by postearthquake fires.
- Therefore, for the purpose of controlling the fire spread after a disastrous earthquake, emergency response for fire-fighting against simultaneous multiple fires by fire brigades should be done effectively with limited existing resources.
- However, there is naturally some certain limit of fire fighting operation against multiple fires even with the optimum deployment of fire engines.

Concluding Remarks (continued)

- If the number of fires per fire engine exceeds 1.0 for example, the drastic increase of fire damage may occur due to unattended and/or uncontrollable fires by fire brigades.
- In order to maximize the performance of fire brigades for controlling fires, the increase of water cisterns without dependence on fire hydrant is essential as a prerequisite condition. Also, required are the road network available for smooth movement of fire engines along with the system for quicker collection of disaster information.
- Public awareness on the limitations of fire-fighting force and promoting safety urban planning and community-based disaster mitigation should be much more emphasized.

Thank you for your attention

Questions?

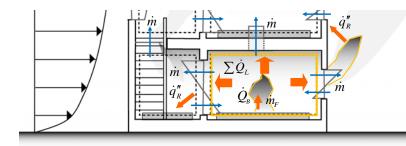

A Post-earthquake Fire Spread Model and its Application to the Fire Safety Evaluation of Architectural Monuments in Kyoto

Keisuke Himoto (Kyoto University)

Post-earthquake Fire Spread Model

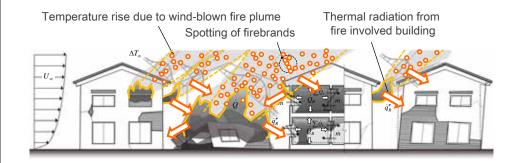
- Urban Fire = Group of Building Fires
 - Fire behavior of individual building:
 - · One-layer zone model for uncollapsed buildings
 - Flame model for collapsed buildings
 - Building-to-building fire spread

Two Modes of Building Fire:

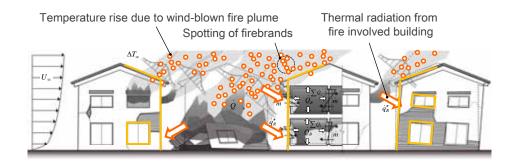


II. Crib Fire (Flame Model) (C

I. Compartment Fire (One-Layer Zone Model)


Fire Behavior of Individual Building (Zone Model)

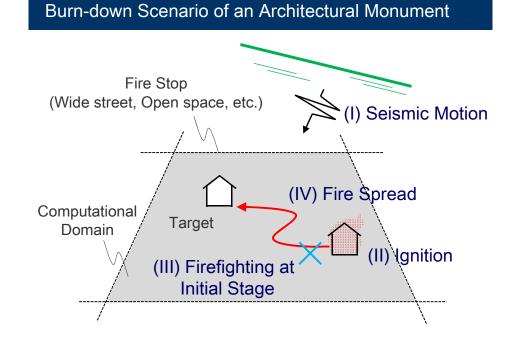
- State $P = \rho_i RT_i$


Building-to-building Fire Spread

- □ Causes of Fire Spread
 - Radiation from Compartment Gas & External Flame
 - Convection from Wind Blown Fire Plume
 - Spotting of Burning Firebrands

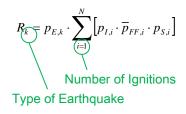
Building-to-building Fire Spread

- Criteria for Ignition
 - Incident Heat Flux through Opening
 - Surface Temperature of Exterior Wooden Wall
 - Spotting of Burning Firebrands



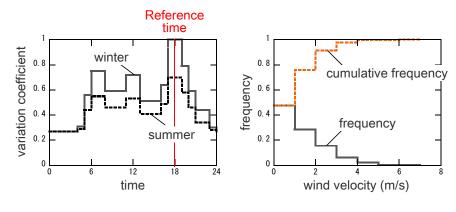
Objective of This Study | Burn-down Risk of Architectural Monuments | Burn-down risk of a specific monument in urban area | Uncertain factors influencing behavior of fire spread

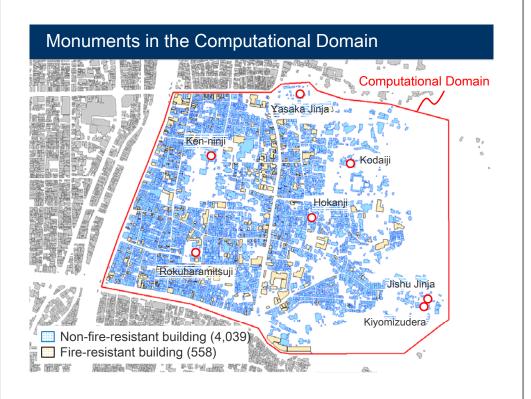
Probability Loss



Burn-down Risk due to Fire Spread

Causes of Damage


Seismic Motion	Ignition	Fire- fighting	Fire spread		2000
$\overline{p}_{\scriptscriptstyle E}$ $p_{\scriptscriptstyle E}$	\overline{p}_{I}			$\overline{p}_{\scriptscriptstyle E}$	0
PE	7	_		$p_{\scriptscriptstyle E}\cdot\overline{p}_{\scriptscriptstyle I}$	0
Γ	$p_{_{I,1}}$	$\overline{p}_{FF,1}$	$\overline{p}_{s,1}$	$p_{\scriptscriptstyle E} \cdot p_{\scriptscriptstyle I,1} \cdot \overline{p}_{\scriptscriptstyle FF,1} \cdot \overline{p}_{\scriptscriptstyle S,1}$	0
>			$p_{s,i}$	$p_{\scriptscriptstyle E}\cdot p_{\scriptscriptstyle I,1}\cdot \overline{p}_{\scriptscriptstyle FF,1}\cdot p_{\scriptscriptstyle S,1}$	$L_{_{1}}$
ons		$p_{{\scriptscriptstyle FF,1}}$	-	$p_{\scriptscriptstyle E} \cdot p_{\scriptscriptstyle I,1} \cdot p_{\scriptscriptstyle FF,1}$	0
gniti	$p_{I,2}$	$\overline{p}_{FF,2}$	$\overline{p}_{S,2}$	$p_{\scriptscriptstyle E}\cdot p_{\scriptscriptstyle I,2}\cdot \overline{p}_{\scriptscriptstyle FF,2}\cdot \overline{p}_{\scriptscriptstyle S,2}$	0
Number of ignitions N			$p_{s,2}$	$p_E \cdot p_{I,2} \cdot \overline{p}_{FF,2} \cdot p_{S,2}$	$L_{\scriptscriptstyle 2}$
mpe		$p_{FF,2}$		$p_E \cdot p_{I,2} \cdot p_{FF,2}$	0
N		=	=		
	$p_{_{I,N}}$	$\overline{p}_{FF,N}$	$\overline{p}_{S,N}$	$p_E \cdot p_{I,N} \cdot \overline{p}_{FF,N} \cdot \overline{p}_{S,N}$	0
→ N	10		$p_{s,N}$	$p_{\scriptscriptstyle E} \cdot p_{\scriptscriptstyle I,N} \cdot \overline{p}_{\scriptscriptstyle FF,N} \cdot p_{\scriptscriptstyle S,N}$	$L_{_{N}}$
YES		$p_{FF,N}$		$p_{\scriptscriptstyle E} \cdot p_{\scriptscriptstyle I,N} \cdot p_{\scriptscriptstyle FF,N}$	0

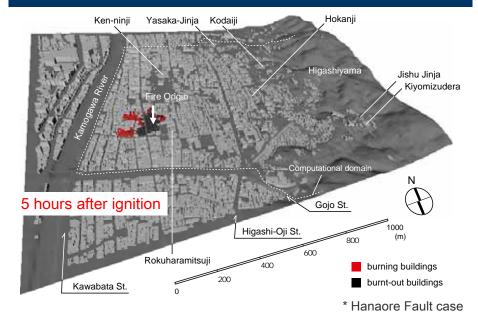

Burn-down Risk:

Monte Carlo Simulation

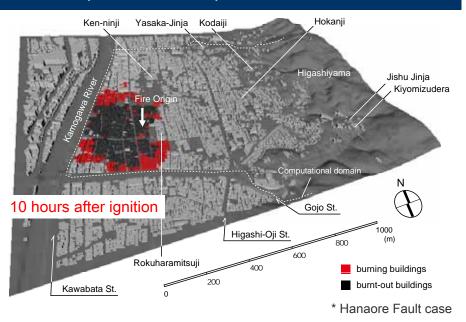
- Uncertain Factors
 - (II) Ignition condition (date and time, number, location)
 - (III) Firefighting condition (extinguishment at initial stage)
 - (IV-a) Damage condition of buildings (5 levels)
 - (IV-b) Weather condition (wind velocity, direction)

Scenario Earthquakes

- a. Hanaore Fault
- b. Momoyama-Shishigatani Fault
- c. Ujigawa Fault
- d. Kashihara-Mizuo Fault
- e. Komyoji-Kanegahara Fault
- f. Arima-Takatsuki Fault
- g. Biwako-Seigan Fault
- h. Nankai-Tohnankai Earthquake
- * Local government of Kyoto (2003)



Outline of the Scenario Earthquakes

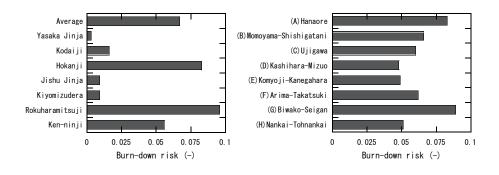

Scenario earthquakes		Uncertain factors								
			(II)	(III)	(IV-a) Damage level of buildings					
ID	Name	М	Reference Ignition Probability $\rho_{ign,0}$ (×10-3)	Probability of extinguishment at initial stage P_{ext}	(0) No damage	(1) Minor	(2) Moderate	(3) Major	(4) Collapse	(IV-b) Weather condition
Α	Hanaore Fault	7.5	0.169		0.348	0.127	0.114	0.292	0.119	
В	Momoyama- Shishigatani Fault	6.6	0.085		0.517	0.093	0.131	0.207	0.051	
С	Ujigawa Fault	6.5	0.042		0.979	0.008	0.004	0.008	0	
D	Kashihara-Mizuo Fault	6.6	0.042		0.996	0.004	0	0	0	*** 5*0
Е	Komyoji- Kanegahara Fault	6.3	0.042	0.2	1	0	0	0	0	AMeDAS Weather Data
F	Arima-Takatsuki Fault	7.2	0.042		0.970	0.021	0.004	0.004	0	
G	Biwako-Seigan Fault	7.7	0.085		0.920	0.064	0.008	0.008	0	
Н	Nankai-Tohnankai Earthquake	8.5	0.042		0.996	0.004	0	0	0	

0.2~ 0.1~0.2 0.05~0.1

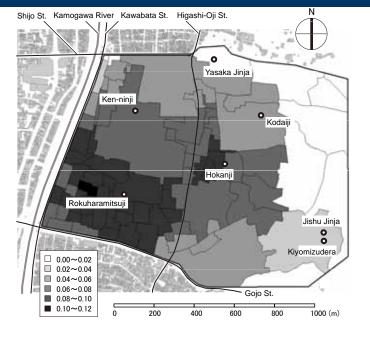
An Example of the Fire Spread Simulation

An Example of the Fire Spread Simulation

Burn-down Risk of Architectural Monuments


Sc	enario earthquakes	Burn-down risk due to post-earthquake fire spread R_{k}							
ID	Name	average	Yasaka Jinja	Kohdaiji	Hokanji	Jishu Jinja	Kiyomiz udera	Rokuhar amitsuji	Ken- ninji
Α	Hanaore Fault	0.067	0.003	0.016	0.083	0.009	0.009	0.096	0.056
В	Momoyama- Shishigatani Fault	0.057	0.005	0.015	0.066	0.007	0.006	0.075	0.055
С	Ujigawa Fault	0.050	0.004	0.012	0.060	0.011	0.011	0.059	0.055
D	Kashihara-Mizuo Fault	0.039	0.006	0.010	0.048	0.007	0.007	0.045	0.041
Е	Komyoji- Kanegahara Fault	0.041	0.002	0.016	0.049	0.009	0.009	0.048	0.043
F	Arima-Takatsuki Fault	0.053	0.006	0.016	0.062	0.008	0.008	0.065	0.054
G	Biwako-Seigan Fault	0.078	0.007	0.024	0.089	0.018	0.018	0.093	0.083
Н	Nankai-Tohnankai Earthquake	0.041	0.004	0.010	0.051	0.009	0.009	0.048	0.045

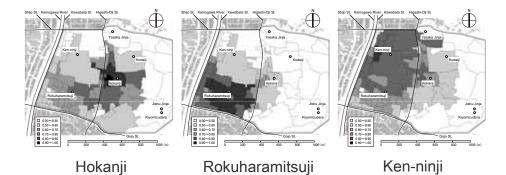
0.05 ~ 0.05 ~ 0.02 0.01 ~ 0.02


Burn-down Risk of Architectural Monuments

■ Results of the Estimation

- Burn-down risk of "Hokanji", "Rokuharamitsuji", and "Ken-ninji" are close to the average of all buildings in their neighborhood.
- Burn-down risk was estimated high if "(II) ignition probability" was "high", and "(IV-a) damage level of buildings" was "low".

Average Burn-down Risk


Integrated Approach Involving Neighborhood

□ Probability of Concurrent Burning (80%) as Reference

■ Hokanji: 7 towns

■ Rokuharamitsuji: 17 towns

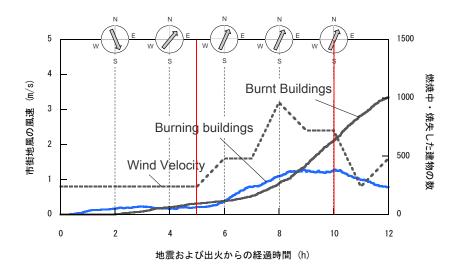
■ Ken-ninji: 2 towns


Conclusions

- Burn-down Risk of Architectural Monuments in Kyoto
 - Scenario-based event-tree analysis using a physics-based urban fire spread model
 - 7 architectural Monuments under 8 scenario earthquakes
- ☐ Fire Safety of Architectural Monuments
 - Fire safety of architectural monuments is not independent from the state of their neighborhood
 - Integrated approach involving neighborhood is required in order to maintain fire safety of architectural monuments

Level of Structural Damage due to Seismic Motion

Level of Structural Damage	Definition
(0) no damage	No apparent damage observed from outdoor Minor damage on roofing tiles Crack on a portion of partition walls or finishing materials
(1) minor	Damage on most of bricks and a portion of roofing tiles Falling of finishing materials Minor crack on some walls and groundwork
(2) moderate	Crack on most of partitioning walls or finishing materials Major damage on roofing tiles Major crack on groundwork
(3) major	Damage on most of exterior and partition walls Extensive falling of exterior and interior finishing materials Failure of braces, columns, and beams Damage on flooring materials
(4) collapse	i. Extensive damage through roof, wall, floor, and frameii. Significant deformation of buildings


"Level of Damage" and "Modes of Building Fire"

Target Architectural Monuments

Name of Site	Name of Structure
Yasaka Jinja	Ishi-Dorii, <mark>Honden</mark> , Massha Ebisusha Shaden, Rohmon
Kodaiji	Kaizando, Kangetsudo, Santei & Shiguretei, Tamaya, Omotemon
Hokanji	Goju-no-toh
Jishu Jinja	Haiden, Honden, Sohmon
Kiyomizudera	Hondo, Niohmon, Umadome, Nishimon, Sanju-notoh, Shoroh, Kyodoh, Tamuradoh, Asakuradoh, Chinjudoh, Honboh Kita Sohmon, Todoroki Mon, Shakadoh, Shakadoh, Amidadoh, Okunoin, Koyasutoh
Rokuharamitsuji	Hondoh
Ken-ninji	Hohjoh, Chokushimon

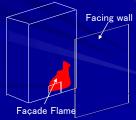
Wind Velocity and Number of Burnt Buildings

Fire Spread Caused by Flame Ejected from an Opening

Effect of a Facing Wall on Façade Flames &

A Model for Compartment Fire Behavior Incorporating Fire Growth and Vitiation

Yoshifumi Ohmiya


Tokyo University of Science

Outline

- 1) Effect of a Facing Wall on Façade Flames
- 2) A Model for Compartment Fire Behavior Incorporating Fire Growth and Vitiation

Effect of a Facing Wall on Façade Flames

INTRODUCTION

DESCRIPTION OF EXPERIMENT

Experimental apparatus Measurements

Experimental procedure

Experimental conditions

EXPERIMENTAL RESULTS

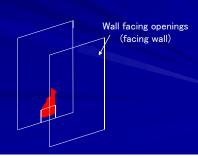
Temperature distribution of ejected flame Flame height

Heat fluxes from the external flames

Introduction

- In Japan, there are many highdensity residential district where pitch between buildings is very narrow.
- When a fire occurs in a building, the fire damage may extend to adjacent buildings by flames ejected from openings of the building because of the proximity of buildings.

Introduction


- The flame ejected from an opening may show different behaviors from one in no adjacent building condition.
- When a comprehensive fire performance design is carried out,
 - it is essential to verify prevention of fire spread to upper floors from the floor of fire origin.

Introduction

- The effect on the ejected flames owing to the presence of a wall facing to the opening (facing wall) was investigated
 - heat fluxes to the façade wall and the facing wall from flames ejected from the opening
 - temperature distribution in ejected flames
 - flame height

Experimental apparatus

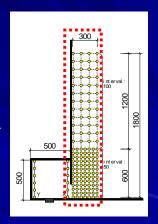
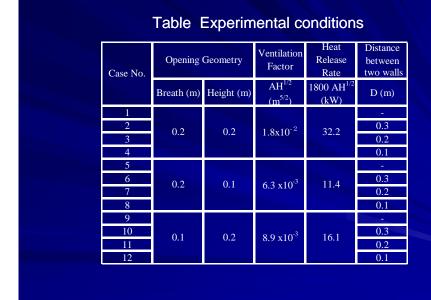
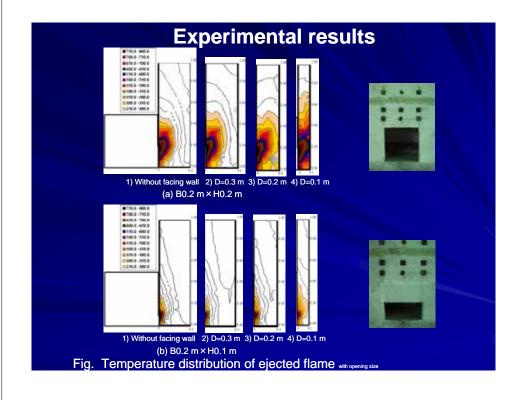
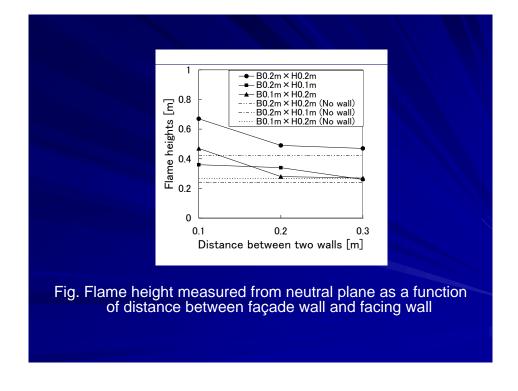
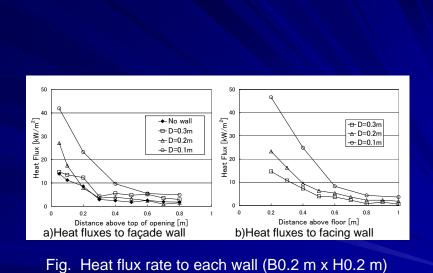


Fig. Experimental setup

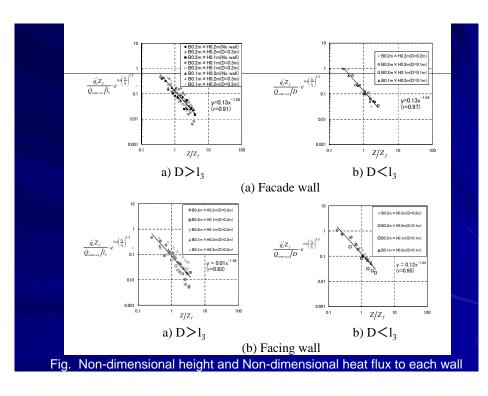

Measurements

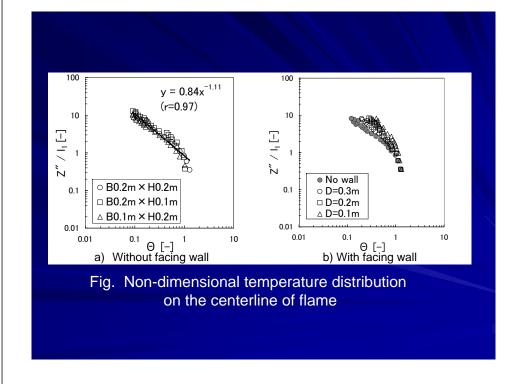

Temperature distribution of flames ejected from the opening


- A measurement net (0.3 m width x 1.8 m height) located in the center of the opening
- The interval distance between the each thermocouple was every 0.05 m up to 0.6 m from the lower edge of opening and every 0.1 m from 0.6 m up to 1.8 m




Incident heat flux Cardon type heat flux gauges (Medtherm LTD.) and steel plate gauges The steel plate gauge with thermocouples spotwelded to the back of the steel plate



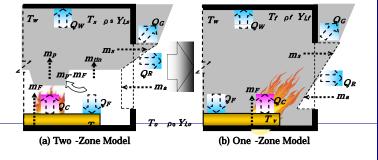


A Model for Compartment Fire Behavior Incorporating Fire Growth and Vitiation

INTRODUCTION

FORMULATION
Integration zone model
Fuel burning behavior

EXPERIMENT FOR VERIFICATION OF MODEL


Introduction

- To predict fire behavior in a building, researchers have actively developed numerical analysis models based on the concept of zone.
- The predictions (smoke yield, maximum temperature in compartment, fire duration etc.) are necessary for the fire safety design of a building.

Introduction

- Two formulations about a predictive model for compartment fire behavior as follows.
 - (i) Fuel burning behavior based on the changes in the concentration of chemical species and the rate of heat transfer
 - (ii) Integration zone model composed of a one-zone model and a two-zone model
- The validity of this model is verified by the experiments performed with a scale model.

Formulation of integration zone model

fuel burning behavior.

Fig. Schematic of integration zone model and balance of physical quantities

Formulation of fuel burning behavior

- i. Mass loss rate of fuel
- ii. Rate of thermal feedback from surroundings
- iii. Rate of heat transfer from flame
- iv. Heat release rate within a compartment
- v. Consumption and production rates of chemical species
- vi. Heat release rate outside a compartment

The six items associated with the fuel burning behavior are formulated for application to a two-zone model and a one-zone model.

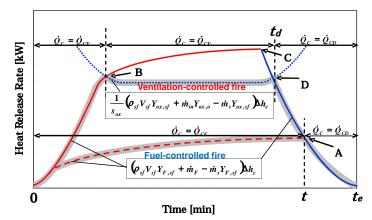


Fig. Transition of heat release rate within a compartment

Experimental apparatus

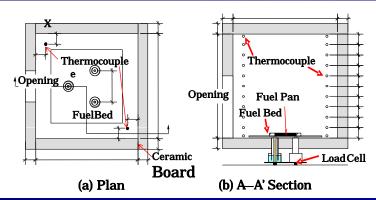
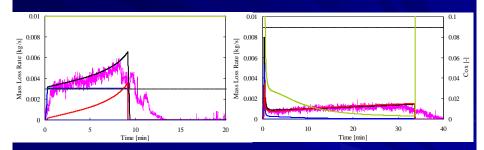
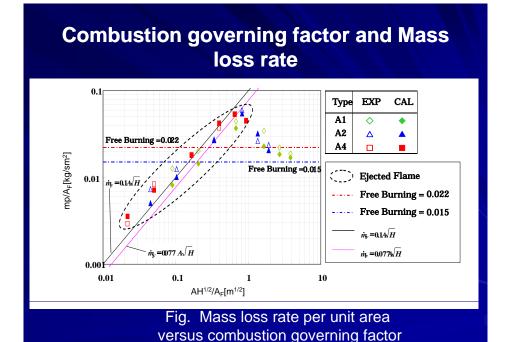



Fig. Schematic of the compartment and measurement layout(mm)

Experimental conditions

< Opening Conditions >	Unit	Values					
Opening area / Floor area	-	1/50	2/50	5/50	10/50	15/50	20/50
Width	m	0.1	0.14	0.225	0.32	0.39	0.45
Height	m	0.2	0.28	0.45	0.64	0.78	0.9
AH ^{1/2}	m ^{5/2}	0.0089	0.0207	0.068	0.1638	0.2686	0.3842
< Fuel Conditions >	Unit		Values				
Туре	-	Al	Al A2 A4				
Size	$m{ imes}m$	0.32×0.32				<0.64	
Surface area	m^2	0.1		0.2		0.41	
Weight	kg	2.38					


Comparison of results of calculations and experiments

(a) fuel-controlled

(b) ventilation-controlled

Fig. Results of burning model concerning mass loss rate

Conclusions

Effect of a Facing Wall on Façade Flames

- The effects of a facing wall on flames ejected from compartment were investigated
 - flame height, inside and outside temperatures and heat fluxes.

A Model for Compartment Fire Behavior Incorporating Fire Growth and Vitiation

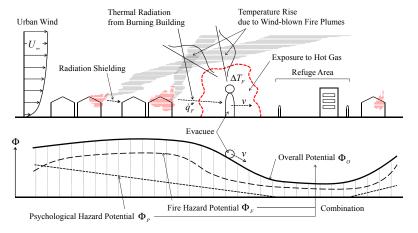
A simplified prediction model for the compartment fire behavior was developed, which introduced the following new concepts: (i) the prediction of the fuel mass loss rate focused on the stoichiometric relation between oxygen and fuel in zone and the thermal feedback from surroundings, (ii) the integration of a two-zone model for a growth stage and a one-zone model for a fully developed stage.

Evacuation Simulation in the Conflagrations Induced by Kanto Earthquake 1923

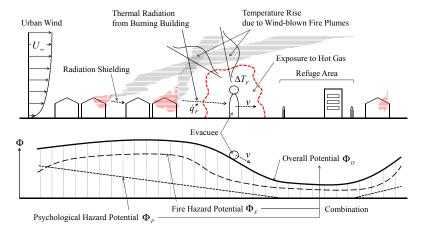
Tomoaki NISHINO

Ph.D., Assistant Professor Kobe University, Japan tomoaki.1098@dolphin.kobe-u.ac.jp

Contents

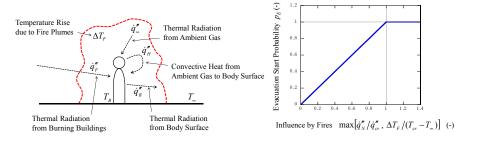

- Modeling of City Evacuation in Conflagration
- Model Validation
 - Kanto Earthquake Conflagration (1923)

Model Concept

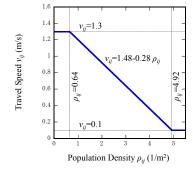

- Potential-based Agent Model
 - An Evacuee Travels from High Hazard level Point to Low Point
 - Hazard Levels are Evaluated by Fire Plumes and Refuge Areas

Model Concept

Overall Potential Φ_O


$$\Phi_{O} = \Phi_{F} + \Phi_{P} = \chi_{F} (\dot{q}'' + h\Delta T) + \chi_{P} \sum_{i \in R} l_{i}$$

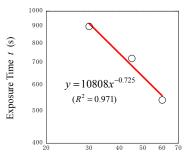
Model Concept


- Start of Evacuation
 - Probabilistic Modeling
 - Evacuation Start Probability is modeled by Influences from Fires

$$p_E = \max\left(\frac{\dot{q}_N''}{\dot{q}_{cr}''}, \frac{\Delta T}{T_{cr} - T_{\infty}}\right)$$

Model Concept

- Travel Speed v
 - Flow of Evacuees at Each Road is Assumed to be Uniform
 - Travel Speed of an Evacuee is Calculated by Density-Speed Equation



$$v_{ij} = \begin{cases} 1.3 & (\rho_{ij} < 0.64) \\ 1.48 - 0.28\rho_{ij} & (0.64 \le \rho_{ij} < 4.92) \\ 0.1 & (4.92 \le \rho_{ij}) \end{cases}$$

Model Concept

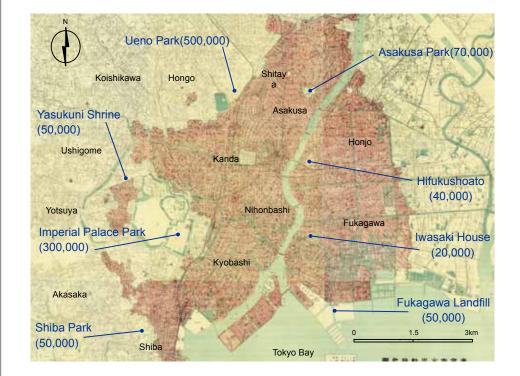
■ Failure of Evacuation

- Cause of Death is Focused on Burn of Respiratory Organs by Inhaling Hot Gas
- Cumulative Exposure Temperature is used for Failure Judgment

$$\int_{t} (T_{\infty} + \Delta T - T_{cr})^{0.725} dt > 10808.0$$

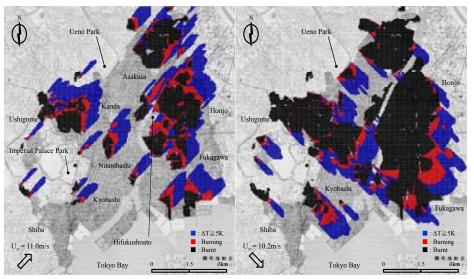
$$(R^{2} = 0.971)$$

Exposure Temperature $T_{\infty}+\Delta T_{F}-T_{cr}$ (K)


Model Validation

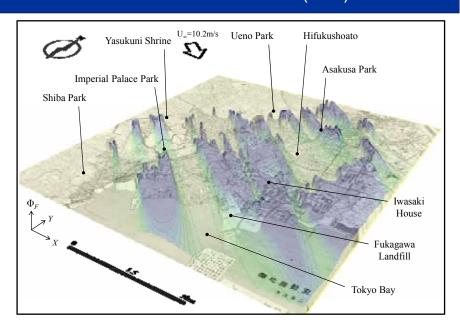
☐ Kanto Earthquake Conflagration (1923)

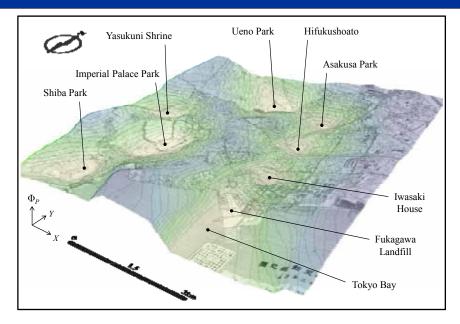
Date of Conflagration	1923. 9.1 11:58 ~ 1923. 9.3 10:00
Number of Evacuees	1,356,740
Number of Fatalities	68,660 (Fire : 65,902)
Number of Burnt Buildings	219,084 (34.7km²)



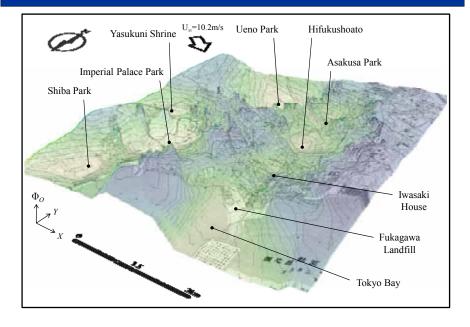
Reconstruction of the Fires

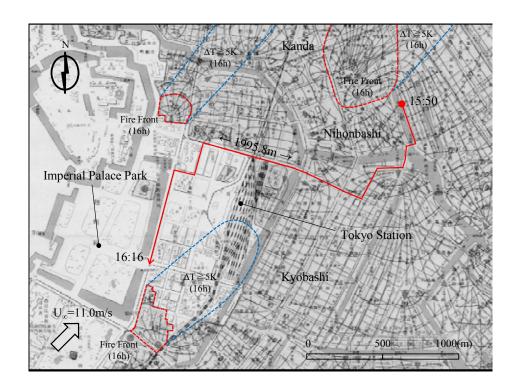
Scanning the Field Survey Data


Examples of Reconstructed Fires


4hrs after the earthquake

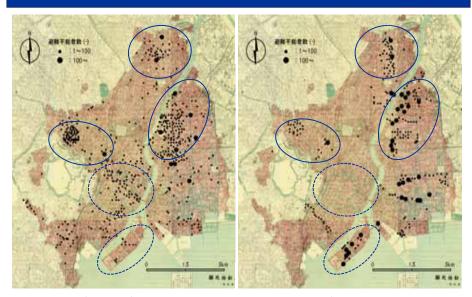
8hrs after the earthquake


Distribution of Fire Hazard Potential (8hrs)



Distribution of Psychological Hazard Potential

Distribution of Overall Potential (8hrs)



Comparison of Fatalities Number

Constant χ_{F}	Model	Survey Report
0.0	8,054	
10.0	18,985	27,902
11.0	29,097	(=65,902-38,000)
12.0	36,609	Except fatalities by fire whirs at Hihukushoato
100.0	179,430	

Comparison of Fatalities Distribution (χ_F =11.0)

27,902 fatalities (Survey Report)

29,097 fatalities (Model)

Conclusion

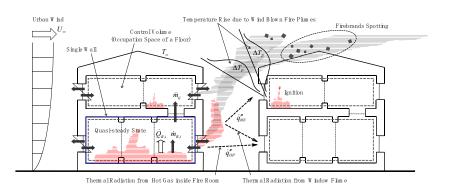
- Modeling of City Evacuation in Conflagration
- Model Validation
 - Kanto Earthquake Conflagration (1923)
- □ Future Issues
 - Further Refinement of Evacuation Model to be More Realistic
 - Model Application to Future Conflagration

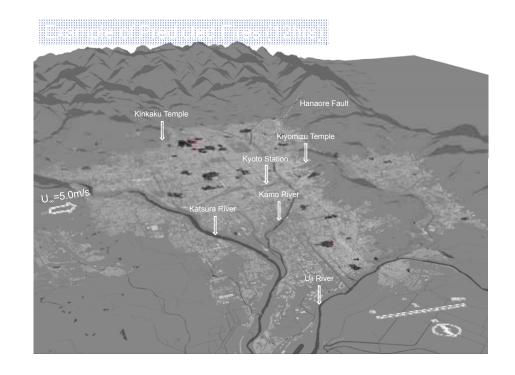
Model Application

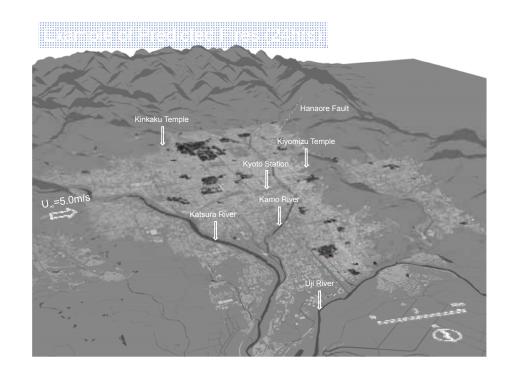
□ Kyoto Inland Earthquake (20XX)

1,467,313	
698,386	
6.3 to 7.7	
	698,386

Anticipated Outbreaks Max 96 (Winter, 6:00 PM)

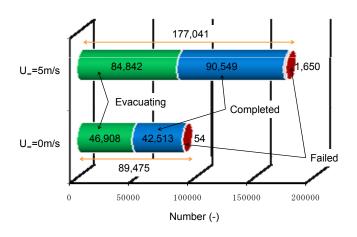


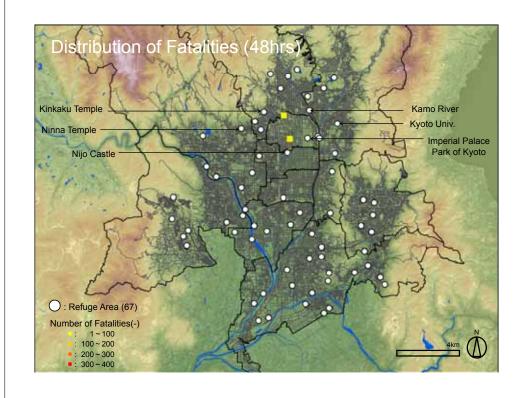


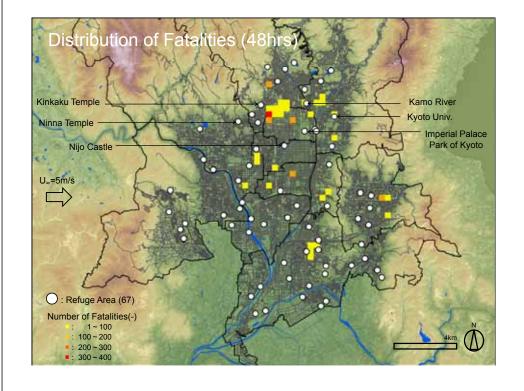


Prediction of Urban Fire Spread

- ☐ Fire Origins
 - Random Setting based on Outbreak Ratio VS. Collapse Ratio
- □ Fire Spread
 - Using a Physics-based Model by Himoto and Tanaka







Breakdown of Evacuation State

□ 48hrs after the Earthquake

The Interface Fire Problem: An Overview

Workshop on Future Japan/USA Interface Fire Research Collaborations

NIST Engineering Laboratory June 27, 2011 Gaithersburg, MD

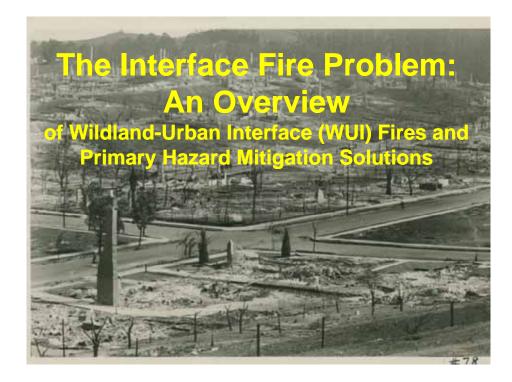
Ethan Foote, Co-Chair

Wildland-Urban Interface Committee

California Fire Prevention Officers

A Section of the California Fire Chiefs Association

Northern Division


Speaker & Contact Information

- State fire officer since 1979.
- County Fire Marshal & California Fire Prevention Officers member in 1994.
- Fire command and damage assessment assignments on major Wildland-Urban Interface conflagrations (1981-2008).
- MS (U.C. Berkeley) and BS (University of Washington) studying WUI fires.
- California/U.S.F.S. Advanced Fire Behavior instructor cadre, ten years.
- Co-chair (2004 & 2009) of advisory committees on California Building Standards Code regulations pertaining to wildfire protection.
- Assistant Chief for *Wildfire Protection Building Construction* with CALFIRE Office of the State Fire Marshal since 2007.
- Lives in Santa Rosa with his wife of 22 years, 16 year old son, and 8 year old daughter.

California Fire Prevention Officers www.firepreventionofficers.org c/o CALFIRE, Office of the State Fire Marshal 135 Ridgway Ave., Santa Rosa, CA 95401-4318

E-Mail: ethan.foote@fire.ca.gov

The Interface Fire Problem: One of Many Wildfire Problems

- Large wildland fires (2002 CA/OR Biscuit fire 500,000ac/2,000 ha < 12 cabins burned)
- "Fire Siege" (2,096 lightning fires 2008 1,200,000ac/4,86,000ha & 100 homes in 7 WEEKS)
- "Mega Fires" (Nov 2008 1,000 homes in 7 DAYS)
- "WUI fires" (Wildland-Urban Interface)

4

Only One Wildfire Problem

addressed in the

California Building Standards Code

Disastrous Loss of Homes

(and other major buildings)

During Wildfires

• Historically known as "Conflagrations"

Wildland-structural Intermix Exurban Fire Problem
Hillside/wildland Intermix
Urban-Wildland Intermix

I-ZONE Fires

After 30+ Years of Confusion
WUI or Interface Fire
is the name of this "Fire Problem"

Rural-wildland Intermix

WUM (Wildland-Urban Mosaic)

SWI (Structural Wildland Interface-Interzone)

Chaparral-urban Interface

Wildland/Urban Interface/Intermix

WURST (Wildland/Urban/Rural Structural Triage)

View "WUI" Area with Caution!

Historic Risk of Loss An Essential Element of the Interface Fire Problem

- 2009 Santa Barbara
- 2008 SoCal Again
- 2007 SoCal Again
- 2003 Southern Cal.
- 1991 Oakland
- 1990 Santa Barbara
- 1985 Nevada County
- 1980 Napa & San Bernardino

- 1977 Santa Barbara
- 1970 State of Cal.
- 1964 Santa Rosa
- 1961 Los Angeles
- 1947 State of Maine
- 1936 Bandon, OR
- 1929 Mill Valley
- 1923 Berkeley

2009 Australian Black Saturday Fires 173 dead / 2133 houses destroyed

Australia-USA Symposium on Fires at the Interface

17 June 2010 Canberra ACT Australia

Building & Risk Management Breakout Group

Dave Sapsis (CALFIRE-FRAP) Justin Leonard (CSIRO)

Doug Stone (DHS)

Mark Chladil (TFS)

Ethan Foote (CalChiefs)

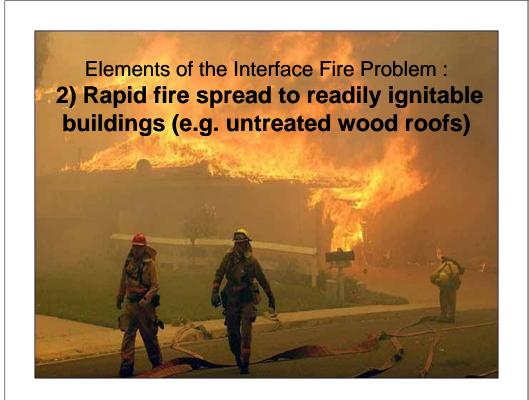
Michele Steinberg (NFPA)

Greg Buckley (NSWFB)

Rob Rogers (NSW RFS)

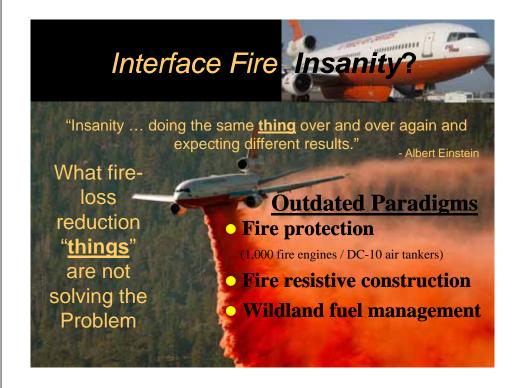
Jack Cohen (USFS)

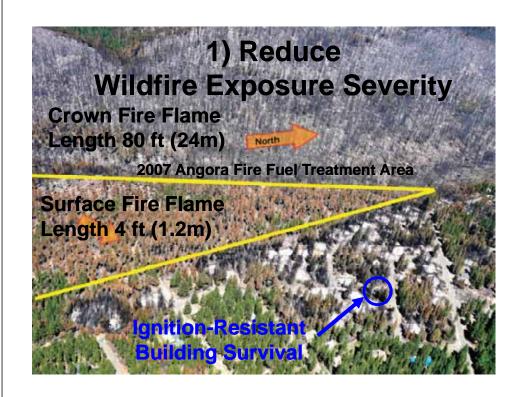
9


Australian & U.S Experts Agree on the Problem & Solution

 "Before describing house ignition potential and house vulnerability assessment, we must first define the problem in terms of house ignition."

The Interface Fire Problem


- "In its simplest terms, the fire interface is any point where the <u>fuel</u> feeding a wildfire <u>changes</u> from natural (wildland) to man-made (urban) fuel" (C.P. Butler 1974).
- More of a <u>fire-spread</u> problem, less of a geographic description.
- Four distinct elements to the problem:





Interface Fire Problem Solution: 1) Reduce Wildfire Exposure Severity & 2) Reduce Building Ignition Vulnerability 25 Years of **Research Studies: Building** 70% Survival - 1990 60% Statistical 50% **Paint Fire** Physics modeling 40% 30% Experimental 20% Observational "GOOD" Vegetation "POOR" Vegetation

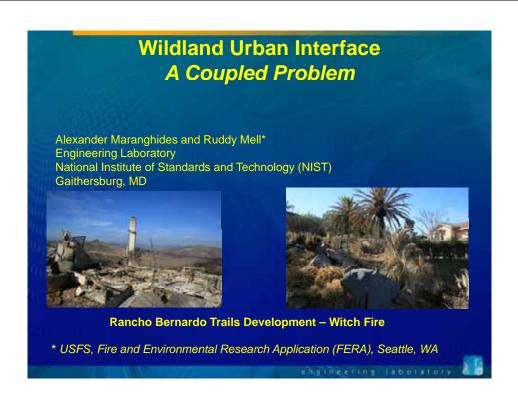
All "WUI" Building-Ignition Research Began Here

- 40+ yrs. of nuclear related fire-spread research funding.
- e.g. "Synoptic weather types associated with critical fire weather patterns" (& "their effect on mass fires following large-area ignition by nuclear attack").

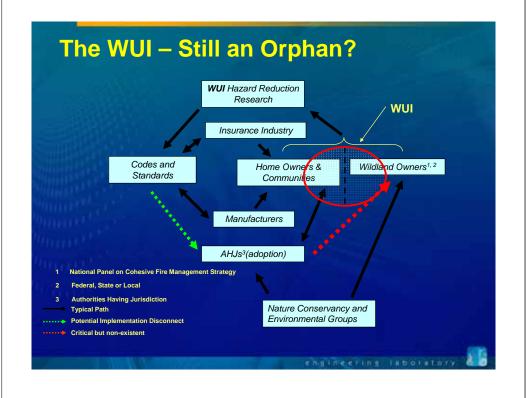
- Relevant?
- Nuclear attack related fire-spread modeling unsuccessful.
- Major interface fire-loss reduction is possible with existing (or close to) understanding.

Interface (WUI) Fires

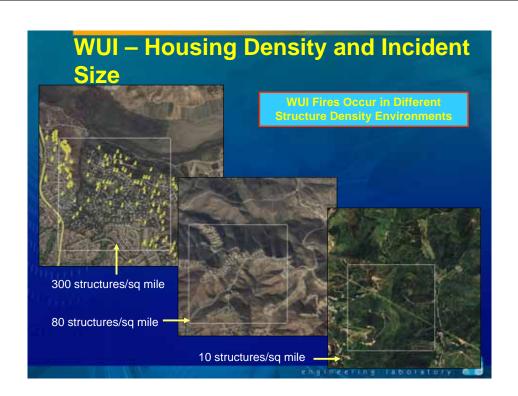
Problem Summary

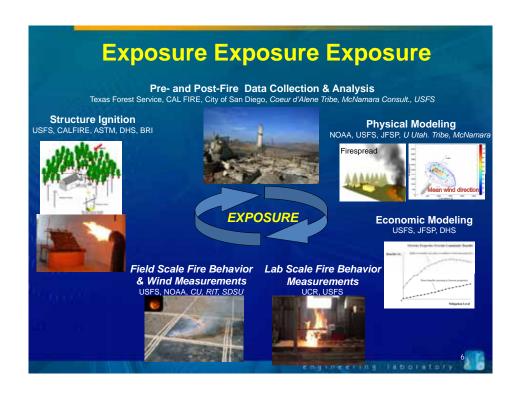

- Reducing disaster losses only major problem.
- Primarily wind-driven conflagrations with firebrand spread.
- Focus on historic risk of loss.

Solution Summary


- Untreated wood roofs, 1º hazard.
 - Hazardous vegetation management (especially first 10ft / 3m & 100ft / 30m)
 - Evidence-based building ignition hazard mitigation (small embers & flames)

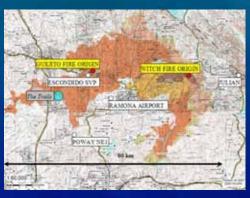
Discussion?


±78



• Wildland Urban Interface (WUI): A problem spanning many scales • The Yardstick: Exposure, Exposure, Exposure • Field Data Collection – Collecting the RIGHT data • The NIST Witch/Guejito Case Study • The Tanglewood Complex Fire (NIST/USFS/TFS partnership) • Where do we go from here?

Collecting Critical Baseline Information


- 16% of destroyed homes had wood shake roofs
- 100% of homes with wood shake roofs that were exposed to fire were destroyed**

Baseline Info Will Help Focus In On The Problem Areas

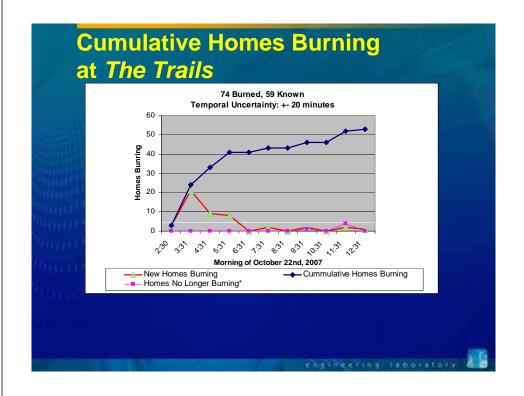
- * Baseline: all destroyed, damaged and undamaged homes within the fireline
- ** From NIST Witch/Guejito Fire Report #2 report in preparation


Witch and Guejito Fires Case Study

- NIST
- CALFIRE Chief Chamlee
- SD Fire Department Chief Jarman
- IAFF Local 145 Eddie Villavicencio
- SD Police Department Chief Lansdowne
- The Trails Home Owner
- Association Mr. Steve Arnold
- NIST Grantees and Contactors
- USGS

Witch and Guejito Fire Origins, Weather Stations and *The Trails* community

Successful Joint Effort

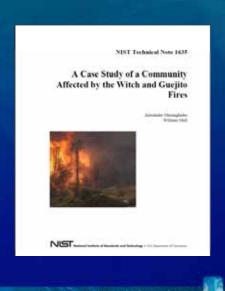

The Trails

- Identify structure ignitions and fire/ember exposure
- Develop timeline
- Identify suppression actions
- Firewise analysis
- Modeling
- Post fire incident data collection methodology

- 274 residences
- 245 within fire line
- 74 residences completely destroyed
- 16 partly damaged

The Trails - Defended Structures

- Actions taken from 2 am until 3 pm
 October 22nd, 2007
- Spotting/ smoldering fires and reignitions continued after 3 pm



Findings Structural Loses and Defensive Actions

- The arrival of the wildland fire front, not the preceding embers, caused the majority of the damage and overwhelmed the first responder resources.
- 70 % of the destroyed homes were not defended.
- 60 % of defended structures on fire were saved.
- Over 50 % of the structures were ignited within 3 hours
- Structure ignitions reached 21 per hour.
- It is estimated that 29 of the destroyed structures (40 %) were burning at the same time.

What did we accomplish to date?

- Fire behavior report NIST TN1635 - also published in Fire Technology, 2011, Volume 47, Number 2, Pages 379-420
- Firewise-type assessment of community – report in progress
 - Defensive actions
 - Fire and ember exposure
- Methodology for future
 deployments successfully used in Amarillo, TX (March 2011)

Field Data Collection –Two Tiered Approach

- WUI 1 Objective: Develop Uniform (Statewide) WUI Fire Losses Database
 - Training: Locally Trained Data Collectors
 - Hardware: Checklist or Pocket PC
 - Participants: NIST/ State/ County/ City
 - Implementation: adapt existing practices
 - Application: across entire Wildland Urban Interface fires
- WUI 2 Objective: Collect High Resolution Fire Behavior Data including timeline reconstruction information:
 - Training: NIST and State Trained Data Collectors
 - Hardware: GIS based system
 - Participants: NIST/ State/ County/ City
 - Implementation: new/ expanded data collection supported in part by NIST
 - Application: selected communities

Collecting Critical Baseline Information

- 16% of destroyed homes had wood shake roofs
- 100% of homes with wood shake roofs that were exposed to fire were destroyed**

Baseline Info Will Help Focus In On The Problem Areas

- * Baseline: all destroyed, damaged and undamaged homes within the fireline
- ** From NIST Witch/Guejito Fire Report #2 report in preparation

WUI 1 - Field Data Collection Kit Paper Solution

- · Checklist and clipboard
- GPS w/street maps
- Digital Camera
- Batteries and chargers
- Hardware and software cost ~ \$400/ kit
- Advantages
 - Easy to use checklist
 - Robust system
 - Street maps available in GPS
- Disadvantages
 - More time and labor intensive data transfer
 - Impractical for large incidents

WUI 1 - Field Data Collection Kit Electronic Solution

- PDA or Phone with GPS and street maps
- Digital Camera
- Batteries and chargers
- Hardware and software cost ~ \$500/ kit
- Advantages
 - Electronic data transfer reducing time and labor
 - Street maps built in
- Disadvantages
 - Harder to read and use in the field
 - Less robust
 - Slightly more expensive

NIST WUI 2 – GIS Data Collection Process Pre-fire

- training
- kits maintenance
- GIS data gathering
- During and shortly after fire
 - decision to collect data
 - collect and load GIS data
 - mobilize team
 - field data collection
 - demobilize team
- Post Fire
 - collect first responder and homeowners data
 - data analysis
 - report writing

WUI Assessment System Field Kits

- Equipment
 - Clinometer, Compass, Range Finder, Camera, two-way radio, hand-held GPS, Etc...
 - First Aid, Repellant, Flagging, Batteries, Etc...

- 9 Boxes
 - 7 Field Kits & Extras
- 3 Pelican Cases
 - 7 Tablet PCs
 - 7 Extra Batteries
 - Battery Chargers

Amarillo Deployment Summary

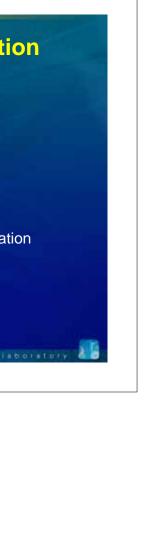
- Primary focus: Tanglewood Complex Fire
- Secondary focus: Willow Creek Fire
- 21 days
- Two to three WUI 2
 Teams
- One WUI 1
- Field data collection initiated within 48 hours of ignition

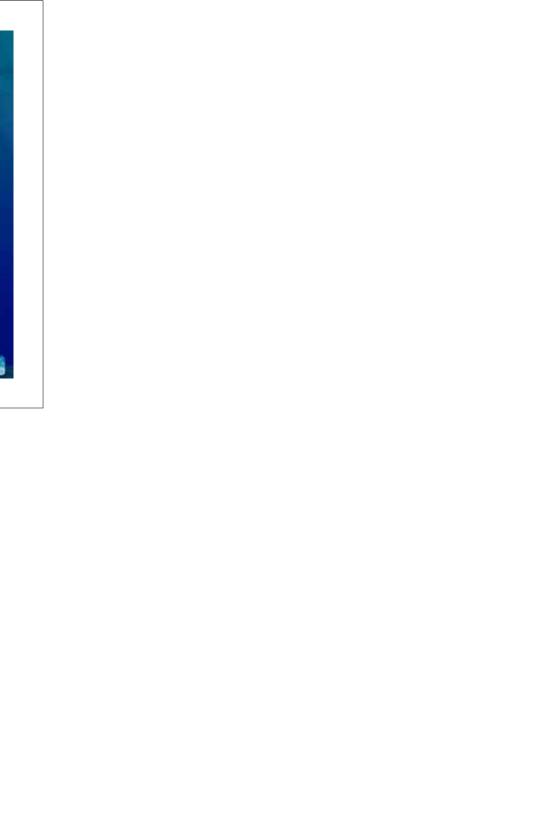
Locations of fires around Amarillo Texas

Tanglewood Complex Fire

- Over 120 structures documented using WUI 2
- 163 GB of data collected
- Timeline reconstruction data collection (85% completed)
- Summary report of deployment to be issued by NIST in next 2 weeks.
- First technical report to be issued Maranghides, Mell, Ridenour et al. in 12-18 months.

Summary


- The NIST developed two tiered data collection methodology has been successfully field tested as applied to the WUI fire problem
- Training in California (San Diego) and in Region 8 (Location TBD) scheduled for FY12


Thank You for Your Attention

Alexander Maranghides alexm@nist.gov 301-252-8747 (c) 301-975-4886 (o)

Ruddy Mell
USFS, Fire and Environmental Research Application
(FERA), Seattle, WA
wemell@fs.fed.us

240-372-5116 (c)

Ignition of Cellulose Fuel Beds by Hot Metal Particles

Sarah Scott¹, Rory Hadden², Ann Yun¹, Chris Lautenberger¹, A. Carlos Fernandez-Pello¹

¹Department of Mechanical Engineering, University of California, Berkeley, Berkeley CA 94720, USA

²BRE Centre for Fire Safety Engineering, University of Edinburgh, Edinburgh, UK

Background

- Regions with long hot dry periods are vulnerable to wide spread wild land fires
 - Western United States
 - Australia
 - Mediterranean

2

Fire Spotting

- Under dry, hot, and windy conditions (such as Santa Ana winds in California) an important mechanism of wildland fire spread is spotting
- Fire "spotting" is due to the ignition of vegetation by burning embers lofted by the plume of ground fires and transported by the wind ahead of the fire front
- Fire spotting can also be caused by metal particles ejected from arcing power lines or by burning embers generated by power lines contacting trees
- Important to understand spotting to understand fire spread

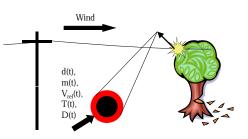
Spotting in a Forest Fire

An example of spotting

Wildland Fire Urban Inteface

Fire Patterns From Spotting

Background: Particles



Fire spotting at the urban/wild land interface

Embers and metal particle generation

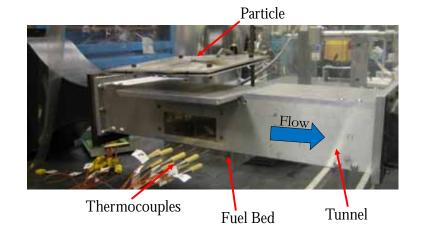
- Arcing power lines in high winds-burning ember or metal particle ejected
- Ground fire lofts burning ember
- Burning ember or spark can lead to fire "spotting"
- How is particle carried by wind?
- What is its temperature upon landing?
- Is it burning upon landing?
- Is it capable of igniting vegetation?

Objectives

• Perform experiments to determine critical temperature and size for a particle to ignite a combustible fuel bed

Southern California Fire, October 2007

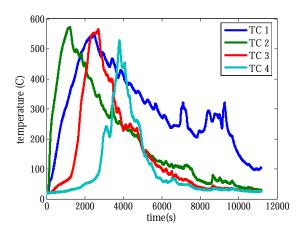
Spotting Ignition Experiment


Thermocouple

- Load sample into small scale wind tunnel
- Heat the particle outside the tunnel
- Set air flow rate
- Drop Particle
- Record Temperature Data
- Record Video Data

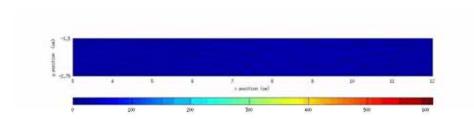
Experimental Design

Video of Test Powdered Celllose



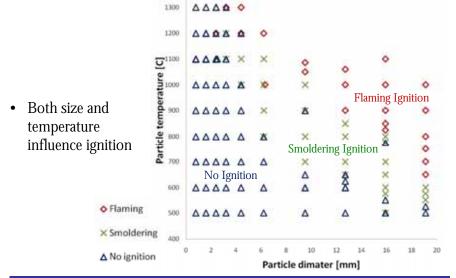
Powdered Cellulose, 1100°C 15mm Steel Sphere, 2 m/s Air Flow from the right (3.1 hour test sped up x512)

Powdered Cellulose


- Sample with sustained smolder
- 15mm Steel Sphere, Heated to ~1100°C, 2 m/s Air Flow
- 1.6 mm/min forward propagation rate

14

Powdered Cellulose



Temperature map for a sample with sustained smolder (15mm Steel Sphere, \sim 1100°C, 2 m/s Air Flow from left)

Results

15

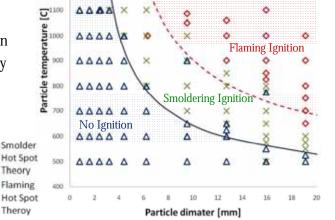
Data Correlation

• Hot Spot Theory gives a critical diameter for ignition of the form

$$d_{cr} = C_1 T_p \sqrt{\exp\left(\frac{C_2}{T_p}\right)}$$

Parameters C₁ and C₂ determined by fitting to data

Data Correlation


• Both size and temperature influence ignition

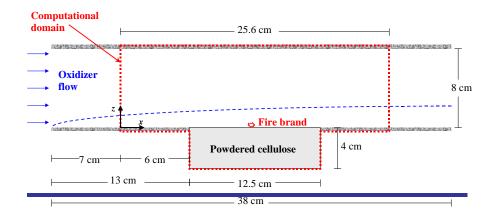
• Hot Spot Theory correlates to experiments

Flaming

× Smoldering

△ No ignition

1


AAAA O

17

Experimental / Model Schematic

• 2D schematic of experimental wind tunnel and its computer model representation:

Solid-phase Governing Equations (1)

Conservation of solid mass:

$$\frac{\partial \overline{\rho}}{\partial t} = -\dot{\omega}_{fg}^{""}$$

Conservation of solid species:

$$\frac{\partial (\overline{\rho}Y_i)}{\partial t} = \dot{\omega}_{fi}^{""} - \dot{\omega}_{di}^{""}$$

Conservation of gas mass:

$$\frac{\partial \left(\rho_g \overline{\psi}\right)}{\partial t} + \frac{\partial \dot{m}_x''}{\partial x} + \frac{\partial \dot{m}_z''}{\partial z} = \dot{\omega}_{fg}'''$$

Conservation of gas species:

$$\frac{\partial \left(\rho_{g}\overline{\psi}Y_{j}\right)}{\partial t} + \frac{\partial \left(\dot{m}_{x}''Y_{j}\right)}{\partial x} + \frac{\partial \left(\dot{m}_{z}''Y_{j}\right)}{\partial z} = -\frac{\partial \dot{j}_{j,x}''}{\partial x} - \frac{\partial \dot{j}_{j,z}''}{\partial z} + \dot{\omega}_{fj}''' - \dot{\omega}_{dj}'''$$

Solid-phase Governing Equations (2)

Conservation of solid energy:

$$\frac{\partial \left(\overline{\rho h}\right)}{\partial t} + \frac{\partial \left(\dot{m}_{x}^{"}h_{g}\right)}{\partial x} + \frac{\partial \left(\dot{m}_{z}^{"}h_{g}\right)}{\partial z} = -\frac{\partial \dot{q}_{x}^{"}}{\partial x} - \frac{\partial \dot{q}_{z}^{"}}{\partial z} + \dot{Q}_{s}^{""} + \sum_{i=1}^{M} \left(\dot{\omega}_{fi}^{""} - \dot{\omega}_{di}^{""}\right)h_{i}$$

Conservation of gas energy (thermal equilibrium):

$$T_g = T$$

Pressure evolution equation (from Darcy's law):

$$\frac{\partial}{\partial t} \left(\frac{P\overline{M}\overline{\psi}}{RT_g} \right) = \frac{\partial}{\partial x} \left(\frac{\overline{K}}{v} \frac{\partial P}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\overline{K}}{v} \frac{\partial P}{\partial z} \right) + \dot{\omega}_{fg}^{"'}$$

Reaction Source Terms

Stoichiometry:
$$1 \log A_k + \sum_{j=1}^N \nu'_{j,k} \log \text{gas } j \to \nu_{B,k} \log B_k + \sum_{j=1}^N \nu''_{j,k} \log \text{gas } j$$

Thermal pyrolysis reaction rate:

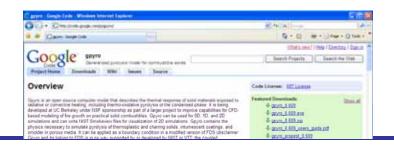
$$\dot{\omega}_{dA_k}^{"'} = \left(\frac{\overline{\rho}Y_{A_k}}{\left(\overline{\rho}Y_{A_k}\right)_{\Sigma}}\right)^{n_k} \left(\overline{\rho}Y_{A_k}\right)_{\Sigma} Z_k \exp\left(-\frac{E_k}{RT}\right)$$

Oxidative pyrolysis reaction rate:

$$\dot{\omega}_{dA_{k}}^{"''} = \left(\frac{\overline{\rho}Y_{A_{k}}}{(\overline{\rho}Y_{A_{k}})_{\Sigma}}\right)^{n_{k}} (\overline{\rho}Y_{A_{k}})_{\Sigma} \left[\left(1 + Y_{O_{2}}\right)^{n_{O_{2},k}}\right] Z_{k} \exp\left(-\frac{E_{k}}{RT}\right)$$

Reaction Mechanism

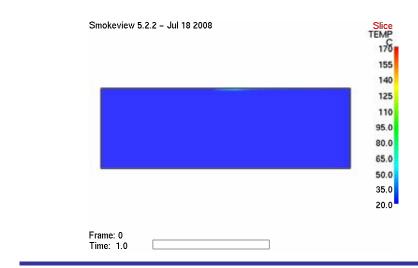
3-step reaction mechanism developed for white pine:


cellulose
$$\rightarrow \nu_{\rm char}$$
 char $+\nu_{\rm tp}$ thermal pyrolysate cellulose $+\nu_{\rm O_2cell}$ O₂ $\rightarrow \nu_{\rm char}$ char $+\nu_{\rm op}$ oxidative pyrolysate

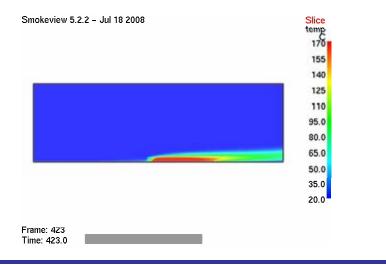
char
$$+\nu_{\rm O_2 char}$$
 ${\rm O_2} \rightarrow \nu_{\rm ash}$ ash $+\nu_{\rm cop}$ char oxidation products

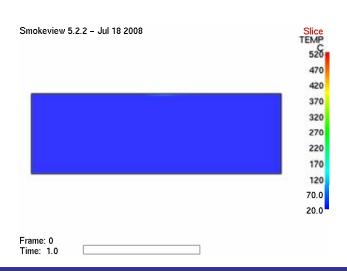
Computer Code - Solid Phase

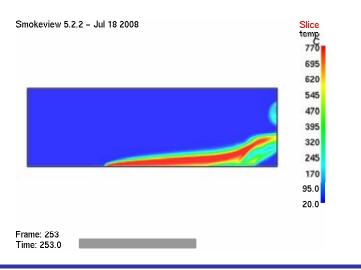
- Gpyro http://code.google.com/p/gpyro
 - Open source funded by NSF as part of larger project
 - Conjugate heat transfer in reacting porous media (2D)
 - Solves for pressure and gas/solid species in porous fuel bed
 - Coupled to FDS where it is applied as boundary condition

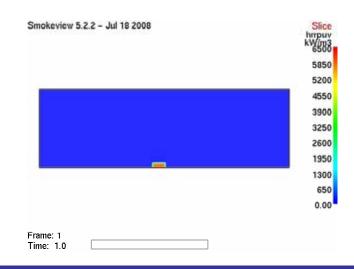

Computer Code – Gas Phase

- Fire Dynamics Simulator (FDS)
 - CFD-based fire model developed by NIST and VTT
 - 2D implementation applied here
 - Single step finite rate combustion reaction
 - Ember modeled as volumetric heat source (4 or 6 MW/m³)


Smoldering Ignition – Solid Temperature

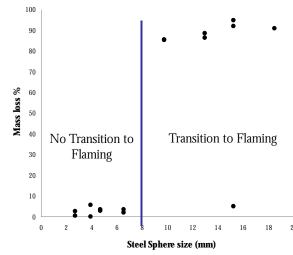

Smoldering Ignition – Gas Temperature


Flaming Ignition – Solid Temperature


Flaming Ignition – Gas Temperature

Flaming Ignition – Gaseous Reaction Rate

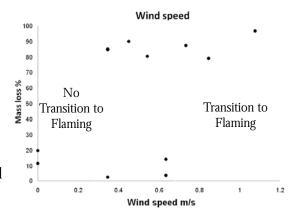
Video of Tests Ponderosa Pine Needles



Ponderosa Pine Needles, $\sim 1100 \, ^{\circ} \text{C}$ 13mm Steel Sphere, 0.54 m/s Air Flow from the right

Minimum Particle Size for Ignition

- Mass loss used as indication of burning
- Pine needles are an inhomogeneous sample, causing inconsistent ignition
- Possible minimum particle size for ignition



31

Minimum Wind Speed for Ignition

- Possible minimum wind speed range for ignition
- Pine needles are an inhomogeneous sample, causing inconsistent ignition
- More testing required

Summary

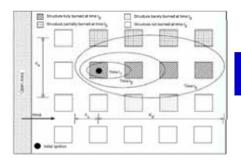
- Cellulose testing suggest demarked ignition regimes
 - At 1100°C the minimum size for:
 - smolder ignition is 3mm
 - flaming ignition is 9mm
 - At 19.1mm the minimum temperature for:
 - smoldering ignition is 550°C
 - flaming ignition is 650°C
- Pine needles testing suggests a critical steel sphere size
 - At 1100°C the minimum size for ignition is 8mm
- Hot Spot Theory provides a correlation of flaming and smoldering ignition
- Numerical models coupling solid and gas phases provide a better understanding of the ignition controlling mechanisms

33

An Urban Fire Simulation Model (UFS)

Rachel Davidson (University of Delaware)
with students Sizheng Li (current) and Selina Lee (former)

Urban and Wildland-Urban Interface (WUI) Fires:


A Workshop to Explore Future Japan/USA Research Collaborations

NIST, June 27, 2011

Background on (post-eq) urban fire models

Hamada-based models

Macro, empirical

- Scawthorn et al. 1981
- HAZUS-MH (FEMA 1999)

Physics-based models

Micro, physics-based Spread modes explicit

- Himoto/Tanaka (2008)
- Cousins et al. (2002)
- Iwami et al. (2004)
- ResQ Firesimulator (2004)

(Simplify physics, geometry in different ways)

2

Urban Fire Simulation (UFS) Model

Applicability

- Involves many buildings
- Possibly many ignitions
- Post-eq and WUI

Components

- Ignition
- Spread
- Suppression

Introduction

- Background
- Uses and applicability of model
- UFS model description

Presentation Outline

- Inputs and GIS pre-processing
- Overview
- Modules
- Grass Valley case study
 - Inputs
 - Results
- Conclusions and future work

Anticipated uses

- Improve understanding, contributing factors, how they interact
- Estimate risk under different circumstances
- Identify, evaluate effectiveness of risk reduction measures
- Identify areas for further study

3

Model Inputs

Building

- Num. stories
- Occupancy type (e.g., singlefamily, school)
- % exterior wall that's windows
- Cladding, roof type
- Home ignition zone (HIZ) level
- Geometric attributes from building footprint

Region

NFDRS Ignition Component (IC), Spread Component (SC)

Ianition

- Deterministic. User-specified.
- Probabilistic. Negative binomial regression→mean number of ignitions per census tract for an eg; simulate exact location.

Wind

- Deterministic. User-specified.
- Probabilistic. Sample time series from historical data

5

GIS Pre-processing

Divide building footprints into rooms

Assume min. room wall length, min. room area

1. Buildina footprint

2. Enclosina

3 Grid lines

4. Divide rooms

Find "facing wall" for each building wall

Nearest wall of another building s.t. line connecting them doesn't intersect any buildings

1. Threshold area 2. Select bldgs

3. Line intersects

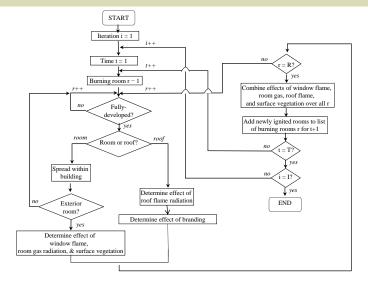
4. All possible

5 Choose

Shortest facing building wall pairs

Fire Spread Modules

Evolution of fire within a room or roof


Room-to-room spread within a building

- Doorway
- Burn through walls, ceilings, and floors
- Leapfrogging

Building-to-building spread

- Flame impingement and radiation from window flame and room gas
- Radiation from roof flame
- Branding
- Surface vegetation

Overall Fire Spread Simulation Process

Evolution within a Room or Roof

Temperature-time curves (Law and O'Brien 1981)

- Reasonable results
- Requires only room dimensions, window area, fire load
- Includes other modules → ensures consistency

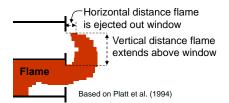
Rate of burning

- Draft conditions (thru or no)
- Occupancy-dependent fuel load
- Room, window dimensions

Fully developed phase if $0.3 < L_t < 0.8$

Room-to-Room Spread within a Building

Through doorways (1 door/interior wall)

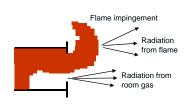

- If open (p=0.5) → immediate ignition
- If closed (p=0.5) → wall subject to burnthrough

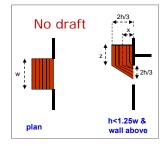
Burn through walls, ceilings, floors

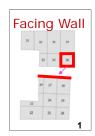
 $t_{burnthru} \sim LN(\mu_{FR\ barrier}, \sigma)$ $t_{down} = 2t_{up}$

(based on IBC 2006)	Mean time to burnthrough in hours			
	Fire-resisitive	Protected	Unprotected	
Interior beaing walls	2	1	0.25	
Interior non-bearing walls	0.25	0.25	0.25	
Floor-ceiling assemblies	2	1	0.25	
Roof-ceiling assemblies	1.5	1	0.25	

Leapfrogging




External wall spread

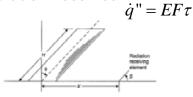

If cladding flammable $\rightarrow t_{spread} \sim U(2, 10 \text{ min})$

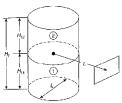
Building-to-Building Spread: FI, Window Flame & Room Gas Radiation

- 1. Window flame geometry (Law and O'Brien 1981)
- 2. Configuration factor ϕ
 - Radiator: vertical rectangle (window or flame front)
 - Multiple receivers. Centroids of windows in facing wall on same floor as burning room.
- 3. Radiation received $I_z = \phi_z \varepsilon_z \sigma (T_z^4 T_a^4)$

Building-to-Building Spread: Radiation from Roof Flame

Assume roof flame is large, open pool fire (Mudan 1984)


1. Burning rate


Assume roof is room with N.P. at ceiling.

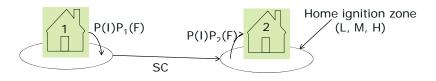
- 2. Roof flame geometry
- 3. Configuration factor, F

All bldgs. in semi-circle; roofs, windows in flame height

4. Radiation received

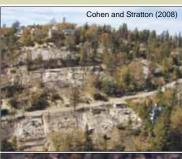
Building-to-Building Spread: Branding

1. Generation

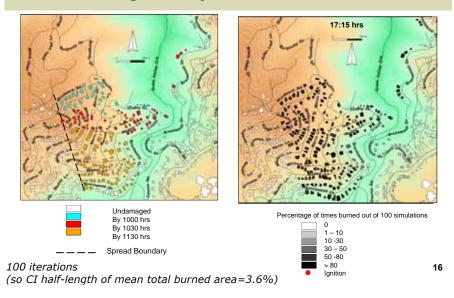

- Empirical (e.g., Waterman 1969)
- Depends on wind speed, roof area
- Size: Fine, medium, coarse
- 2. Transport (Himoto and Tanaka 2008)

3. Host ignition

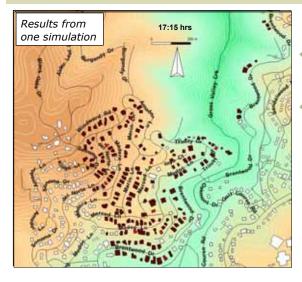
- Empirical (e.g., Waterman and Takata 1969)
- Depends on roof type


Building-to-Building Spread: Surface Vegetation

- P(I) Probability fuel will ignite f(air temp, moisture content) (from NFDRS ignition component)
- P(F) Probability there is fuel to ignite near home Based on home ignition zone level (L, M, H)
- SC Speed of spread f(wind speed, slope, moisture content, fuel characteristics)
 Spread component NFDRS 14

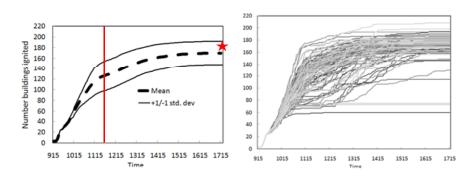

Grass Valley, CA fire

- October 22, 2007
- Part of 23-fire outbreak in So. Calif.
- Burned 1250 acres, destroyed 174 homes, damaged 25
- Steep terrain
- Lots of vegetation (Pine/oak overstory, brush understory, needle/leave/branch surface litter)
- Large 2- to 3-story woodframe SFDs with clapboard siding, wood or asphalt shingle roofs
- Drought, Santa Ana winds
 N-NE 18 mph, gusts 27 mph, RH=10%
- Suppression. \$5.7M, 109 engines, 3 helicopters, up to 1051 firefighters



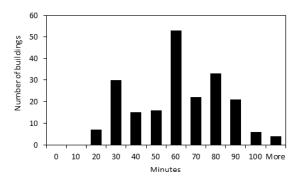
Grass Valley fire spread

Nature of fire spread


- >95% simulations spread stopped at actual Eastern border
- Spotty, not a uniform front, as observed.

Percentage of building area burned

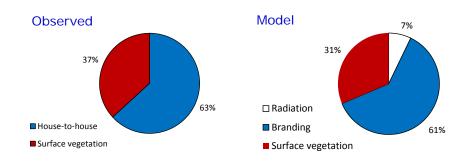
17


Speed of spread through neighborhood

- On avg. 170 bldgs ignited vs. 180 in real life
- At 11:41a, on avg. 125 ignited and 85 >50% burned.
 vs. 75 to 100 reported destroyed
- High variability as in real life

18

Speed of spread thru a building



Time from ignition to 100% burned

19

- Mean=57 min
- Consistent with common belief
- Possibly a little fast because of external wall spread

Modes of fire spread

- Similar modes of spread
- Branding and surface vegetation both important
- In reality, difficult to determine mode & may be multiple modes

Key features

- Physics-based with simplified rules
 - Evolution within room based on temp-time curves
 - Room-to-room spread within building by
 - Open doors
 - Burn through walls, ceilings, floors
 - Leapfrogging
 - Building-to-building spread by
 - · Radiation from room gas, window flame, roof flame
 - Flame impingement from window flame
 - Branding
 - Surface vegetation
- Use real building footprints
- Room-based spread
- Configuration factors
- Treat roof flame as a pool fire
- Appropriate level of detail
- Quantifies uncertainty
- Ignition model
- No suppression currently

Final remarks

- UFS results match Grass Valley observations well w.r.t. spatial pattern, timing, modes of spread
- Validation is difficult (e.g., Oreskes et al. 1994)
 - Match between observations and model results doesn't prove model is correct
 - Variability and few events to observe
 - Observations incomplete
- Future work
 - Incorporate suppression
 - Improve spread around external walls
 - Incorporate topography

22

Acknowledgements

National PERISHIP Awards
Dissertation reliewships in Bazards, Risk, and Disserters

- Jack Cohen, USFS
- Craig Beyler, Hughes Associates
- · Jason Floyd, Hughes Associates
- Charles Scawthorn, UCBerkeley (formerly Kyoto U.)

For more information

- Li, S., and Davidson, R. Application of an urban fire simulation model, *Earthquake Spectra Special Issue on Fire Following Earthquakes*, in review.
- Lee, S., and Davidson, R. 2010a. Application of a physics-based simulation model to examine post-earthquake fire spread. *Journal of Earthquake Engineering* 14(5), 688-705.
- Lee, S., and Davidson, R. 2010b. Physics-based simulation model of post-earthquake fire spread. *Journal of Earthquake Engineering* 14(5), 670-687.
- Davidson, R. 2009. Modeling Post-earthquake fire ignitions using generalized linear (mixed) models. *Journal of Infrastructure Systems* 15(4), 351-360.
- Lee, S., Davidson, R., Scawthorn, C., and Ohnishi, N. 2008. Fire following earthquake—Review of the state-of-the-art modeling. Earthquake Spectra 24(4), 1-35.

References

- Cohen, J., and Stratton, R., 2008. Home Destruction Examination: Grass Valley Fire, Lake Arrowhead, CA, R5-TP-026b, United States Department of Agriculture.
- Cousins, W., Thomas, G., Llyodd, D., Heron, D., and Mazzoni, S., 2002. Estimating Risks from Fire Following Earthquake, Research Report Number 27. New Zealand Fire Service Commission, Wellington. (Also available as PDF at http://www.fire.org.nz/research/reports/reports/Report 27.htm)
- Federal Emergency Management Agency (FEMA), 1999. HAZUS99 Technical Manual. Developed by the Federal Emergency Management Agency through agreements with the National Institute of Building Sciences. Washington DC, 732 pp.
- Hamada, M., 1951. On Fire Spreading Velocity in Disasters, Sagami Shobo, Tokyo. (J)
- Hamada, M., 1975. Fire Resistant Construction, Akira National Corporation. (J)
- Himoto, K., and Tanaka, T. 2008. Development and validation of a physics-based urban fire spread model. Fire Safety Journal, in press (available online).
- Iwami, T., Ohmiya, Y., Hayashi, Y., Kagiya, K., Takahashi, W., and Naruse, T. 2004. Simulation of city fire. Fire Science and Technology 23(2), 132-140.
- Law, M. and T. O'Brien (1981). Fire safety of bare external structural steel, Constrado: London.
- Mudan, K. 1984. Thermal radiation hazards from hydrocarbon pool fires. *Progress Energy Combustion Science* 10, p. 59-80.
- Nussle, T., Kleiner, A., and Brenner, M., 2004. Approaching urban diasaster reality: The ResQ Firesimulator, www.science.uva.nl/~arnoud/research/roboresc/robocup2004/tdps-Rescue-Simulation-2004/01.PDF
- Oreskes, N., Shrader-Frechette, K., and Belitz, K., 1994. Verification, validation, and confirmation of numerical models in the earth sciences, *Science* **263**(5147), 641–646.
- Platt, D., Elms, D., and Buchanan, A. 1994. A probabilistic model of fire spread with time effects. *Fire Safety Journal* 22, p. 367-398.
- Journal 22, p. 367-398. Scawthorn, C., Yamada, Y., and Iemura, H., 1981. A model for urban post-earthquake fire hazard. *Disasters* 5(2), 125-132.
- Waterman TE (1969) 'Experimental Study of Firebrand Generation.' IIT Research Institute, Project J6130. (Chicago, IL)
- (Cinicago, IL)
 Waterman TE, Takata AN (1969) 'Laboratory study of ignition of host materials by firebrands.' IIT Research Institute, Project J6142. (Chicago, IL)

 25

Quantifying Structure Vulnerabilities to Ignition from Firebrand Showers

Dr. Samuel L. Manzello

Mechanical Engineer Fire Measurements Group Engineering Laboratory (EL) National Institute of Standards and Technology (NIST) Gaithersburg, MD 20899-8662 USA samuelm@nist.gov; +1-301-975-6891 (office)

> Japan/USA Workshop June 27th, 2011

al Institute of Standards and Technology U.S. Department of Commerce

WUI: What is the Problem?

- Post-fire studies firebrands a major cause of ignition
- Understanding firebrand ignition of structures important to mitigate fire spread in communities

Improved understanding of structure ignition in WUI fires

Major recommendation (GAO 05-380)

National Science and Technology Subcommittee on Disaster Reduction Homeland Security Presidential Directive (HSPD 8; Paragraph 11)

2007 Southern California Fire

2003 Southern California Fire

lational Institute of Standards and Technology U.S. Department of Commerce

Partnerships

- BRI Japan
- US Department of Homeland Security

Who Cares?

- CALFIRE
- ASTM
- ISO, ICC, NFPA, Insurance Industry
- Homeowners

al Institute of Standards and Technology U.S. Department of Commerce

International Collaboration **BRI (Japan) and EL-NIST (USA)**

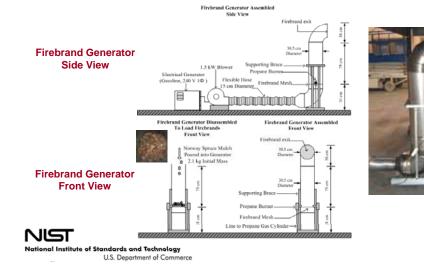
- Firebrands: generation, transport, ignition
- Research focused on how far firebrands travel for 40 yrs!!
- Nice Academic Problem Not helpful to design structures
- · Vulnerable points where firebrands may enter structure
 - Unknown/quessed!
- Difficult to replicate firebrand attack!
- **Entirely new experimental methods needed!** Goals

Science - Building Codes/Standards; Retrofit construction Design structures to be more resistant to firebrand ignition

lational Institute of Standards and Technology U.S. Department of Commerce

Douglas-Fir Tree Burns at NIST

- Firebrand Collection using water pan array
 - Range of crown heights: 2.4 m 4.5 m
 - Different moisture regimes
- Mass loss using load cells


 $\sqrt{15}$ 4.5 m Douglas Fir, MC = 25%

lational Institute of Standards and Technology
U.S. Department of Commerce

Firebrand Generator (NIST Dragon)

龍

Capable of producing controlled and repeatable size and mass distribution of firebrands

Building Research Institute (BRI)

- Fire Research Wind Tunnel Facility (FRWTF)
- Unique facility investigate influence of wind on fire
 - Constructed more than 10 years before IBHS wind tunnel

Fire Research Wind Tunnel Facility (FRWTF)

Firebrand size/mass commensurate to full scale tree burns and actual WUI fire (2007 Angora Fire)

National Institute of Standards and Technology
U.S. Department of Commerce

NIST

Current Roofing Standards

Roofing test: ASTM E108; UL 790
Does not simulate dynamic firebrand attack!

Japan/USA Use This Test!

12 mi/hr (5.3 m/s)

Mitchell &Patashnik [2007] – possible correlation homes ignited in 2003 Cedar Fire with those homes fitted with ceramic tile roofing

National Institute of Standards and Technology
U.S. Department of Commerce

Ceramic Roofing

Aged Roofing Simulated: OSB, then tiles (no tar paper)

U_{∞} (m/s)	OSB/TP/CT	OSB/TP/CT	OSB/CT	OSB/CT
	No Bird Stops	With Bird	No Bird Stops	With Bird
		Stops		Stops
7	SI	SI	SI to FI	SI
9	SI	SI	SI to FI	SI

New Roofing Construction: OSB, Tar Paper, then Ceramic Tiles

Pine Needles/Leaves Under Tiles

National Institute of Standards and Technology
U.S. Department of Commerce

Ceramic Roofing

Aged Roofing Simulated: OSB, then tiles (no tar paper)

U_{∞} (m/s)	OSB/TP/CT	OSB/TP/CT	OSB/CT	OSB/CT
	No Bird Stops	With Bird	No Bird Stops	With Bird
		Stops		Stops
7	SI	NI	SI to FI	SI
9	SI	NI	SI to FI	SI

New Roofing Construction: OSB, Tar Paper, then Ceramic Tiles

National Institute of Standards and Technology
U.S. Department of Commerce

Roofing Tests

- · Roofing section constructed for testing
- Gutters filled with needles/leaves
- Firebrands cause SI; then transition to FI

lational Institute of Standards and Technology
U.S. Department of Commerce

Firebrand Penetration Through Vents

Experiments conducted in 2007

National Institute of Standards and Technology
U.S. Department of Commerce

Gable Vent

Research Plan

- Quantify firebrand penetration through building vents
 - · Full scale experiments at BRI
 - Only full scale wind driven testing in the world
 - Compare to new NIST reduced scale tests (Dragon's LAIR)
 - Compare to apparatus developed by ASTM E05.14.06 Vents
 - · Wind driven firebrand attack at reduced scale
 - 6 mesh sizes (5.72 mm to 1.04 mm)
 - Four types of ignitable materials behind mesh
 - · Cotton,
 - · Shredded Paper,
 - OSB Wood Crevice (filled with shredded paper)
 - OSB Wood Crevice (bare no shredded paper)

Manzello/Quarles preparing paper summarizing results

National Institute of Standards and Technology
U.S. Department of Commerce

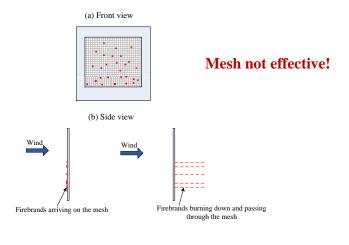
BRI/NIST Full Scale Experiments

20 x 20 mesh (1.04 mm) is shown

National Institute of Standards and Technology
U.S. Department of Commerce

Summary of BRI/NIST Results

- SI Smoldering Ignition; FI Flaming Ignition
- NI No Ignition
- Each case three repeat experiments


Mesh	Paper Cotton		Crevice	Crevice with paper
4 x 4 (5.72 mm)	SI to FI	SI	SI	SI to FI (paper) SI (OSB)
8 x 8 (2.74 mm)	SI to FI	SI	SI	SI to FI (paper) SI (OSB)
10 x 10 (2.0 mm)	SI to FI	SI	NI	SI to FI (paper) (SI OSB)
14 x 14 (1.55 mm)	SI	SI	NI	SI (paper) SI (OSB)
16 x 16 (1.35 mm)	SI	SI	NI	NI
20 x 20 (1.04 mm)	Two tests: NI; One test SI	Two tests: SI One Test NI	NI	NI

National Institute of Standards and Technology
U.S. Department of Commerce

Mesh Effectiveness

BRI/NIST full scale and NIST reduced scale tests - mesh is not effective

Workshop Held For Testing Input in CA in 2010

Industry
Fire Service
CALFIRE/OSFM
Building Officials
Code Consultants

National Institute of Standards and Technology U.S. Department of Commerce

of Standards and Technology

U.S. Department of Commerce

Research Plan

- Determine siding treatment vulnerability to firebrand showers
 - Do firebrands become trapped within corner post/under siding itself?
- Determine glazing assembly vulnerability to firebrand showers
 - Do firebrands accumulate inside corner of framing of glazing assemblies, and lead to window breakage?
- Determine eave vulnerability to firebrand showers
 - Do firebrands become lodged within joints between walls/eave overhang?
- Determine if fine fuels adjacent to structure can produce ignition

First experiments ever conducted

National Institute of Standards and Technology
U.S. Department of Commerce

Siding Treatments

- Corner believed that firebrands may become trapped within the corner post and under the siding itself
- OSB, moisture barrier applied (OSB dried; 11 %)

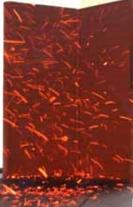
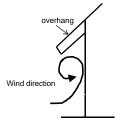


Image of vinyl siding (from bottom) after firebrand exposure at 7 m/s

National Institute of Standards and Technology
U.S. Department of Commerce


Eave Vulnerability

- A very important, long standing question is whether firebrands may become lodged within joints between walls and the eave overhang
- There are essentially two types of eave construction commonly used in California and the USA
 - · Open eave
 - · Boxed in eave
- In open eave construction, the roof rafter tails extend beyond the exterior wall and are readily visible
- In the second type of eave construction, known as boxed in eave construction, the eaves are essentially enclosed and the rafter tails are no longer exposed

Firebrand accumulation in eaves Does this really happen??

National Institute of Standards and Technology

U.S. Department of Commerce

Side view

Walls Fitted With Eaves

Images of eave assemblies constructed for testing Open eave construction is thought to the worst possible situation, this configuration was used

Vent holes: 50 mm (2") fitted with mesh 2.75 mm opening

ational Institute of Standards and Technology U.S. Department of Commerce

Wall Fitted With Eave Exposed to Firebrand Showers

al Institute of Standards and Technology U.S. Department of Commerce

Wall Fitted With Eave Results

- The number of firebrands arriving at the vent locations increased as the wind speed increased
- Yet was very small as compared to the number of firebrands that bombarded the wall/eave assembly

U _∞ (m/s)	Open Eave With No Vents	Open Eave with Vents
7	No Accumulation	11 Firebrands Arrived at Vents
9	No Accumulation	28 Firebrands Arrived at Vents

ational Institute of Standards and Technology U.S. Department of Commerce

Wall Fitted With Eave Results

- The base of the wall actually ignited due to the accumulation of firebrands (9 m/s)
- It was very easy to produce ignition outside the structure since many firebrands were observed to accumulate in front of the structure during the tests
- Although some firebrands were observed to enter the vents, the ignition of the wall assembly itself demonstrates the dangers of wind driven firebrand showers

 The base of wall assembly ignited without the presence of other combustibles that may be found near real structures (e.g. mulch, vegetation)

Firebrand Accumulation

Wood Boards Placed In Front

Easily Ignited!!!

National Institute of Standards and Technology
U.S. Department of Commerce

Fine Fuels Near Structure

Wall Ignited

National Institute of Standards and Technology
U.S. Department of Commerce

Reentrant Corner

- Firebrand generation from structure Components
- NIST Dragon will produce structure firebrand size/mass

National Institute of Standards and Technology
U.S. Department of Commerce

Recent Impacts

- · State of New Jersey using NIST video in training courses
- Worked with CALFIRE as part of a task force (invitation only) to reduce mesh size
 used to cover building vent openings to lessen the potential hazard of firebrand entry
 into structures.
 - Changes were formally adopted into the 2010 California Code of Regulations,
 Title 24, Part 2, Chapter 7A, and are effective January, 2011
- "Your research will certainly further our understanding of the risks of flying embers during a wildfire event, and will help guide us as we make recommendations to our policyholders on how to better protect their home from the threat of wildfires"

Stan Rivera - Chartis Insurance (http://www.chartisinsurance.com)

- Work has garnered the attention of Australian Government.
 - · ABCB is joint initiative of all levels of Australian Government
 - ABCB has requested a formal partnership with NIST to assess Australian Standards to see whether they can account for ignition vulnerabilities observed by firebrands
- IBHS has used NIST's Dragon concept for use in their wind tunnel facility to generate firebrand showers

National Institute of Standards and Technology

U.S. Department of Commerce

Special Thanks

- Dr. Sayaka Suzuki (NIST)
- LFL Staff (Dr. Matthew Bundy Supervisor)
- Dr. Yoshihiko Hayashi (BRI)

Summary

- NIST Dragon coupled to BRI's FRWTF
 - Capability to experimentally expose structures to wind driven firebrand showers for first time!
- Structure vulnerability experiments conducted for:
 - Roofing (cermaic/asphalt)
 - Vents/mesh (gable/different mesh sizes)
 - Siding (vinyl, polypropylene, cedar)
 - Eaves (open)
- NIST Dragon's LAIR Facility
 - Capability to expose materials/firebrand resistant technologies to wind driven firebrand showers
 - With newly developed Continuous Feed Baby Dragon, evaluate and compare relative performance

National Institute of Standards and Technology

U.S. Department of Commerce

Future Plans

Determine vulnerabilities of Decking assemblies to firebrand Showers

DELIVERABLE

Report to ASTM and CALFIRE regarding vulnerabilities of decking treatments to firebrand attack; journal publication on testing results

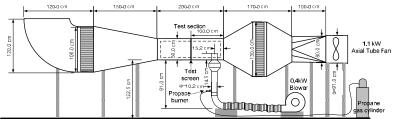
lational Institute of Standards and Technology

U.S. Department of Commerce

Improved NIST Dragon's LAIR

Expose materials to continuous, wind driven firebrand showers

National Institute of Standards and Technology
U.S. Department of Commerce


Ignition Regime Maps for Materials Exposed to Firebrand Showers **Using NIST Dragon's LAIR Facility**

Dr. Savaka Suzuki **Guest Researcher Fire Measurements Group** Fire Research Division **Engineering Laboratory (EL)** National Institute of Standards and Technology(NIST) Gaithersburg, MD 20899 USA sayaka.suzuki@nist.gov; +1-301-975-3908

> June 27th, 2011 Japan/USA Workshop

of Standards and Technology U.S. Department of Commerce

NIST Dragon's LAIR (Lofting and Ignition Research)

- **NIST Reduced Scale Firebrand Generator (NIST baby Dragon)** coupled with bench scale wind tunnel
- Reproduced results from full scale tests

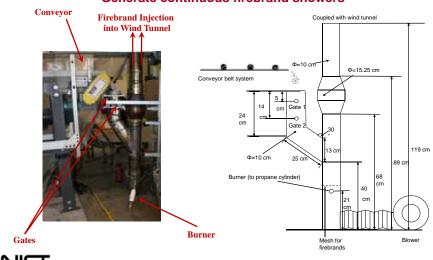
Baby Dragon -

Both NIST Dragon/Dragon's LAIR have limited exposure duration

NIST

To develop test methods, it is necessary to generate firebrand onal Institute of Standards and Technology showers of varying duration U.S. Department of Commerce

Motivation for Dragon's LAIR Facility


- NIST Firebrand Generator (NIST Dragon) shown the vulnerabilities of structures to ignition from firebrand showers for first time
- Full scale experiments are required to observe the vulnerabilities
- Bench scale test methods afford the capability to evaluate firebrand resistant building materials/technologies
- Bench scale test methods may serve as the basis for new standard testing methodologies

nal Institute of Standards and Technology U.S. Department of Commerce

Continuous Feed Baby Dragon

Generate continuous firebrand showers

nal Institute of Standards and Technology U.S. Department of Commerc

Coupled to Dragon's LAIR

Improved NIST Dragon's LAIR

Expose materials to continuous, wind driven firebrand showers

- Coupled continuous feed baby dragon with bench scale wind tunnel
- Ability to evaluate and compare material performance to firebrand showers

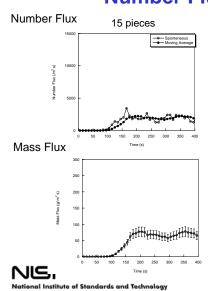
National Institute of Standards and Technology
U.S. Department of Commerce

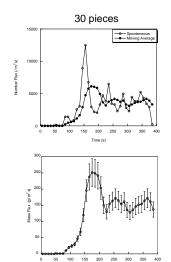
Characteristics of Continuous Feed Baby Dragon

- Varied wood feeding rates to find the optimal feeding rate for constant firebrand showers
- Loadings of wood pieces were 15 pieces (34.6 g/min), 30 pieces (69.1 g/min), 35 pieces (81.1 g/min), 40 pieces (91.7 g/min)
- Measured number flux and mass flux as a function of feeding rate
- It was observed that a feeding rate of 15 pieces (34.6 g/min) provided the most constant and uniform continuous firebrand production

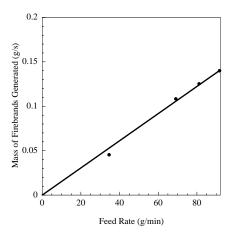
National Institute of Standards and Technology
U.S. Department of Commerce

Experimental Conditions


- Douglas-fir wood pieces with 7.9 mm (H) by 7.9 mm (W) by 12.7 mm (L)
- Wood pieces were placed every 12.5 cm and conveyer speed was 1.0 cm/s
- Varied loadings of wood pieces



National Institute of Standards and Technology
U.S. Department of Commerce


Number Flux & Mass Flux

U.S. Department of Commerce

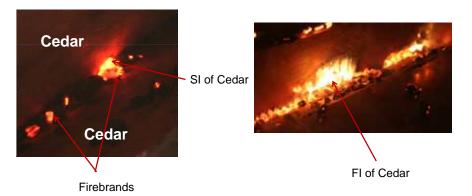
Mass generation rate of firebrands

Generation rate (g/s) was linear and increased with an increase in wood feed rate

ational Institute of Standards and Technology

U.S. Department of Commerce

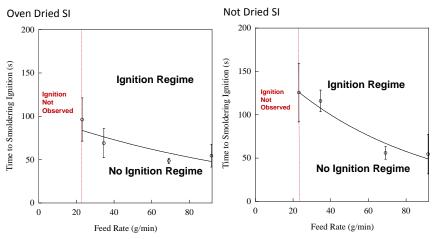
Experimental Conditions for Ignition Regime Map


- Oven Dried Cedar Crevice and Not Dried Cedar Crevice
- Loadings of wood pieces
- 5 pieces (11.7 g/min)
 - 10 pieces (23.1 g/min)
 - 15 pieces (34.6 g/min)
 - 30 pieces (69.1 g/min)
 - 40 pieces (91.7 g/min)

National Institute of Standards and Technology

U.S. Department of Commerce

Ignition

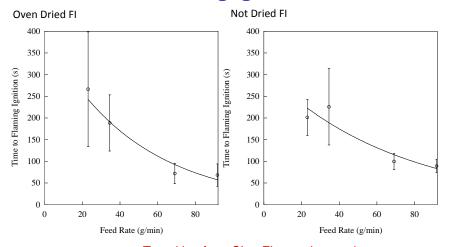


Smoldering Ignition

Flaming Ignition

National Institute of Standards and Technology U.S. Department of Commerce

Ignition Regime Map



•No SI for 5 pieces (11.7 g/m)

•Ignition delay time was observed to decrease

use of Standards and Technology
U.S. Department of Commerce as the firebrand generation rate was increased

Flaming Ignition

•Transition from SI to FI was observed

Less repeatable

ational Institute of Standards and Technology

U.S. Department of Commerce

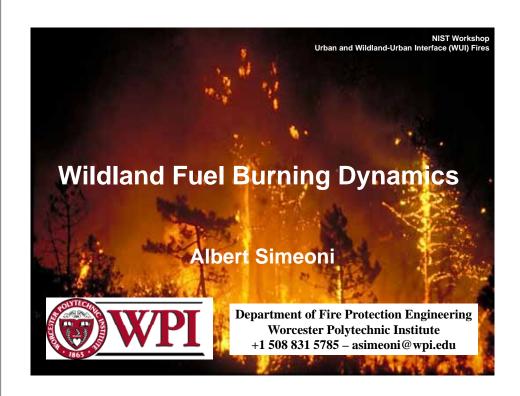
Summary

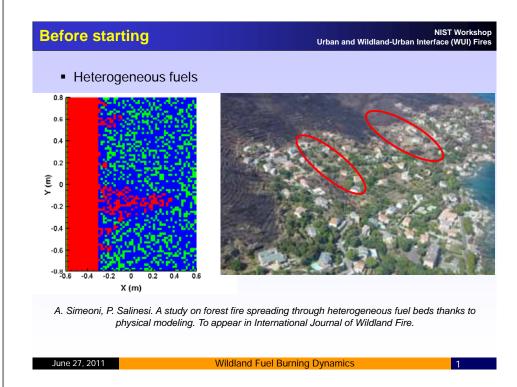
- The time to flaming ignition, after the onset of smoldering ignition, was also measured
- As compared to the time required to reach smoldering ignition, the time to reach flaming ignition was less repeatable
- This work has set the stage to be able to evaluate and compare various building materials resistance to ignition from firebrand showers for the first time
- Feeding concept has been used to develop full-scale continuous feed dragon

National Institute of Standards and Technology
U.S. Department of Commerce

Summary

- · A new and improved Dragon's LAIR facility was presented
- Ignition regime maps were determined as a function of glowing firebrand generation rate for fixed wind tunnel speed and two different moisture contents
- For given moisture content and wind speed, the ignition delay time was observed to decrease as the firebrand generation rate was increased
- This facility has the capability to produce a constant firebrand shower in order to expose building materials to continual firebrand bombardment


National Institute of Standards and Technology
U.S. Department of Commerce


Acknowledgements

- Dr. Matthew F. Bundy from LFL, EL-NIST
- Mr. Laurean DeLauter from LFL, EL-NIST
- Mr. Anthony Chakalis from LFL, EL-NIST
- Mr. John R. Shields from EL-NIST
- US Department of Homeland Security

Before starting Urban at

NIST Workshop Urban and Wildland-Urban Interface (WUI) Fires

Extreme fire behavior

J. Dold, A. Simeoni, A. Zinoviev, R. Weber. "The Palasca fire, September 2000: Eruption or Flashover?" in Recent Forest Fire Accidents in Europe, D.X. Viegas (Ed.) JRC-IES, European Commission, Ispra, Italy, 2009, ISBN 978-92-79-14604-6.

D.X. Viegas, A. Simeoni. Eruptive behavior of forest fires, Fire Technology, 47(2), 303-320.

Outline

Urban and Wildland-Urban Interface (WUI) Fires

- Introduction
- Experimental protocol
- Burning dynamics
- Time to ignition
- Bulk properties

June 27, 2011 Wildland Fuel Burning Dynamics

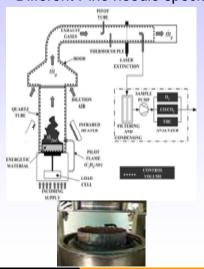
June 27, 2011

Wildland Fuel Burning Dynamics

Introduction

Urban and Wildland-Urban Interface (WUI) Fires

- · CFD-based fire models are closed thanks to a variety of sub-models
- The accuracy of the models depends on the reliability of the sub models
- · Several sub-models are based on empirical data with a lack of understanding of the underlying chemical and physical processes
- This is particularly true for wildland fires because of the complexity of wildland fuels
- This work aims at better understanding the ignition and burning of porous (wildland) fuels


Wildland Fuel Burning Dynamics

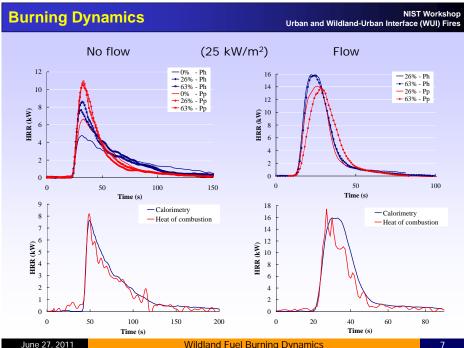
Introduction Urban and Wildland-Urban Interface (WUI) Fire The thinnest particles are primarily involved in the fire spread Pinus Halepensis Pinus Pinaster L≈8-10 cm Ø<1 mm L ≈ 15 - 20 cm $\emptyset > 3 \text{ mm}$ Forest fuels are extremely porous (95% porosity for pine needle litters) June 27, 2011 Wildland Fuel Burning Dynamics

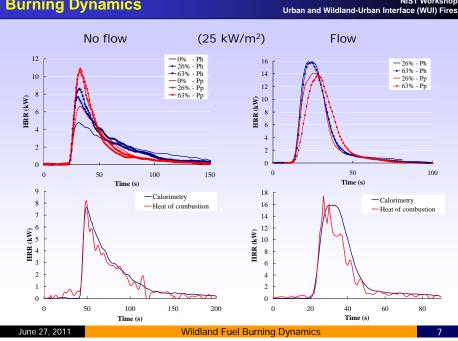
Experimental protocol

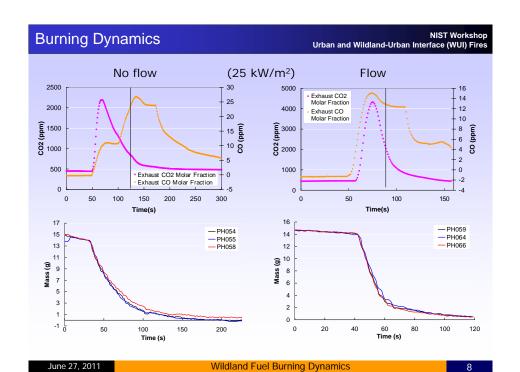
Urban and Wildland-Urban Interface (WUI) Fires

- Test series used a FM Global FPA
- > Different Pine needle species

Specific design of fuel sample holders (porous beds)






Pinus halepensis 0% basket

Pinus pinaster 63% basket

- Moisture content: 4.9-6.4%
- mass: 15 g, fuel bed porosity: 95%
- No flow (natural convection)
- Different levels of forced flow
- Heat fluxes from 8 to 50 kW/m²

Burning Dynamics - Conclusions

NIST Workshop Urban and Wildland-Urban Interface (WUI) Fires

CO concentration profiles are a good indicator of the dynamics of the combustion process

- ➤ HRR, time to ignition and time to reach peak HRR indicated a strong dependence on flow conditions within the fuel bed
- ➤ Transport processes have a significant impact and seem to be the rate limiting phenomenon for the combustion process in these porous fuel beds

June 27, 2011

Vildland Fuel Burning Dynamics

Time to Ignition

NIST Workshop Urban and Wildland-Urban Interface (WUI) Fires

Two different models:

• Solid fuel model: 1D, thermally thick, semi-infinite solid:

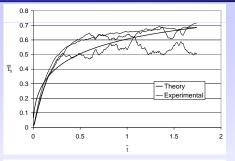
$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha_T} \frac{\partial T}{\partial t}$$

$$\begin{aligned} \text{BC: } & x = 0, -k \frac{\partial T}{\partial x} = \dot{q}_S''(0, t), & t = 0 \\ & \dot{q}_S''(0, t) = a \dot{q}_S'' - h_T(T(0, t) - T_\infty) \end{aligned} \qquad T = T_\infty$$

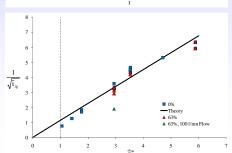
Global parameters representative of the ignition process

• Porous fuel model: 1D, thermally thick, thermal equilibrium:

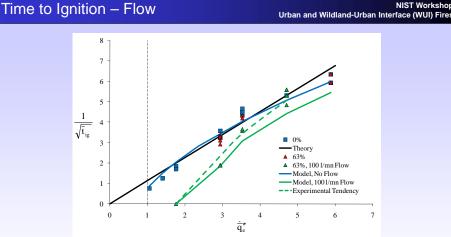
$$\alpha_{s}\rho_{s}c_{ps}\frac{\partial T}{\partial t} + \alpha_{g}\rho_{g}c_{pg}V_{g,x}\frac{\partial T}{\partial x} = k_{R}\frac{\partial^{2}T}{\partial x^{2}} + \dot{\overline{q}}_{e}''Ke^{-Kx}$$


$$K = \frac{\alpha_s \sigma_s}{4}$$
 (attenuation coefficient)

Parameters come from literature or from measurements


$\rho_{\rm s} [{\rm kg/m}^3]$	$\sigma_{\rm s} [{\rm m}^{\text{-}1}]$	$\alpha_{\rm s} [{\rm m}^3/{\rm m}^3]$	\mathbf{a}_{s}	C _{ps} [J/kg K]
789	7377	0.0492	1	3100

Urban and Wildland-Urban Interface (WUI) Fires



- ➤ Only overall agreement
- ➤ Relevant temperature for long times
- ➤ Bigger discrepancies for high values of the flux

- ➤ 53 experiments (some discarded)
- > Closed basket displays a good agreement with theory (!!)
- ➤ Natural convection induces more scattering but similar results

June 27, 2011

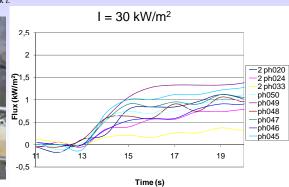
- ➤ K fitted to obtain the best agreement (K = 167 m⁻¹ instead of 91 m⁻¹)
- > V_{q,x} set to 50 mm/s (estimated at 30 mm/s by PIV)
- > Good agreement for low flows
- > For high flows, the times get closer to the no-flow conditions
- > When the pyrolysis gas production is massive, dilution is decreased

June 27, 2011

Wildland Fuel Burning Dynamics

12

Time to Ignition

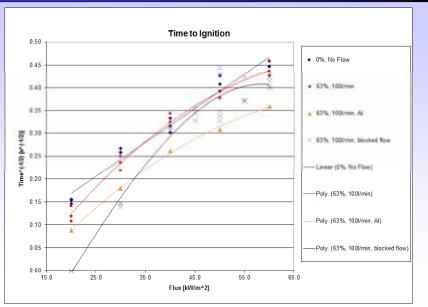

NIST Workshop Urban and Wildland-Urban Interface (WUI) Fires

Coefficient of attenuation??

$$\vec{e}.\vec{\nabla}(\alpha_{g}L_{g}^{\Omega}) = \alpha_{g}a_{g}\left(\frac{\beta T_{g}^{4}}{\pi} - L_{g}^{\Omega}\right) + \sum_{k}\left[\frac{\alpha_{k}\sigma_{k}}{4}\left(\frac{\beta T_{k}^{4}}{\pi} - L_{g}^{\Omega}\right)\right]$$

Beer-Lambert law: $I = I_0 e^{-KL}$

- \triangleright If I = 1 kW/m², K = 170 m⁻¹ and δ = 5.88 mm
- ➤ Very consistent with the value used in the model (167 m⁻¹ and 6 mm)


June 27, 2011

Vildland Fuel Burning Dynamics

13

Time to Ignition – High Fluxes

Urban and Wildland-Urban Interface (WUI) Fires

Time to Ignition - Conclusions

Urban and Wildland-Urban Interface (WUI) Fires

- ➤ If the flow is blocked, the fuel bed behaves like solid fuels and classical theory is sufficient to describe times to ignition
- > If the flow is allowed
 - Natural convection induces more scattering
 - Forced convection induces a cooling of the fire front but mixing is likely to be important for high flows
- ➤ The coefficient of attenuation of the pine needle beds is higher than the one currently estimated in fire spread models

e 27, 2011 Wildland Fuel Burning Dynamics

June 27, 2011

Bulk properties

NIST Workshop Urban and Wildland-Urban Interface (WUI) Fires

Characterization of the fuel beds

Permeability of the porous medium estimated using Darcy's law:

$$\nabla P = -\frac{\mu}{K}v$$

Experimental parameters

- Basket opening (0%, 63%)
- Incoming flow (Natural Flow (NF), 100 *L.min*-1 (LF), 200 *L.min*-1 (HF)
- Use of different fuel species
- Variation of fuel bed permeability

Work module filled with pine needles

Contraction

Wire meshing

Electric fan

Sol1

June 27, 2011

Wildland Fuel Burning Dynamics

16

Bulk properties

NIST Workshop
Urban and Wildland-Urban Interface (WUI) Fires

Characterization of the pine needles

Three pine species were studied: *Pinus halepensis (PH)*, *Pinus laricio* (PL) and *Pinus pinaster* (PP). *Samples* collected from the fuel layer across the forest floor. Dead needles not conditioned prior to testing

• Surface to volume ratios and densities of the three pine needle species

	Surface to volume ratio (m ⁻¹) with relative uncertainty	Density (kg.m ⁻³) with relative uncertainty	Mean diameter (mm)	Mean thickness (mm)
Ph	7377 (2.4%)	789 (2.4%)	0.7003	0.5045
Pl	4360 (3.3%)	485 (8.1%)	1.1234	0.7998
Pp	3057 (1.3%)	511 (6.6%)	1.8519	1.1569

· Ultimate analysis (mass fraction) and low heating value of the three forest fuels

	C	H	0	N	LHV (kJ.kg ⁻¹)
Ph	49.17	6.75	39.14	1.19	21202
Pl	50.39	6.72	39.65	0.3	21328
Pp	49.87	6.72	40.16	0.26	20411

The main differences between the species are linked to their geometry and specifically to their SVR

June 27, 2011

Wildland Fuel Burning Dynamics

17

Bulk properties

NIST Workshop Urban and Wildland-Urban Interface (WUI) Fires

Characterisation of the fuel beds

Experimental results: Fuel beds permeabilities

Equivalent		Permeability (m²)				
mass load (kg.m ⁻²)	Pinus halepensis	Pinus pinaster	Pinus laricio			
0.8	-	2.64.10-7	3.14.10 ⁻⁷			
1.2	9.06.10-8	1.01.10-7	1.45.10-7			
1.6	5.70.10-8	6.39.10-8	8.91.10-8			
2	3.02.10-8	3.96.10-8	4.48.1Q-8 ermeability law			

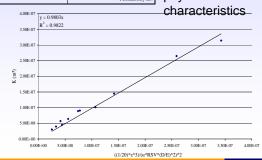
The fuel beds permeability depends upon:

- their
- compactness,
 the pine needles
- geometrical and physical

Empirical law derived from the experiments

$$K = \frac{1}{20} \frac{\varepsilon^{3}}{\left(\alpha * \sigma * \left(D/E\right)^{2}\right)^{2}}$$

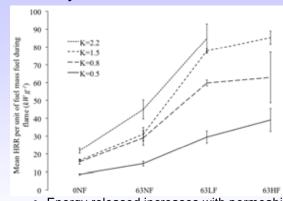
K: permeability a: fuel volume


σ: SVR

D: diameter E: thickness

ε: porosity

fraction

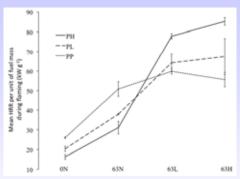

June 27, 2011 Wildland Fuel Burning Dynamics

Fuel bed effects

Urban and Wildland-Urban Interface (WUI) Fires

Permeability

Mean HRR during flaming (global heat of combustion)


- Energy released increases with permeability: combustion enhanced
- · Slopes of curves increase with permeability
- Inflexion for high flows: limiting effect of air supply (but higher peak)
- · Influence of mean path of radiation

June 27, 2011

NIST Workshop Urban and Wildland-Urban Interface (WUI) Fire

Mean heat of combustion (flaming)

- No and natural flow: Heat released increases with flow (*Pinus pinaster*. lowest LHV but more flammable gases and attenuation of radiation)
- Forced flow: tendency is changing. PH more influenced than PL: high surface-to-volume ratio and more oxygen at the particle surface
- Inflexion for the two species when a high flow (HF) is applied and decrease for PP (flow enhancement reaches a maximum)

June 27, 2011

Wildland Fuel Burning Dynamics

20

Bulk properties - Conclusions

NIST Workshop Urban and Wildland-Urban Interface (WUI) Fires

- Taking into account fuel composition improved HRR calculations
- Permeability is an important parameter driving the burning dynamics of forest fuel beds
- Mean free path of radiation is important too (for same permeability)
- For a given permeability, species have an influence but does not seem to be due to the chemistry
- Pinus pinaster displayed a specific behavior

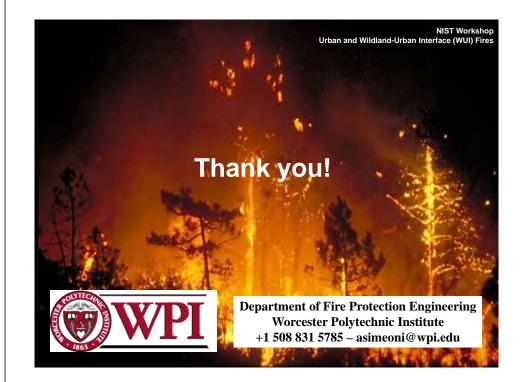
June 27, 2011

Wildland Fuel Burning Dynamics

21

Acknowledgements

NIST Workshop
Urban and Wildland-Urban Interface (WUI) Fires


- ➤ Jose Torero: *University of Edinburgh*
- Nicolas Bal, Hubert Biteau, Adam Cowlard, Emile Martinot, Pedro Reszka University of Edinburgh
 - ➤ Pauline Bartoli

University of Corsica and University of Edinburgh

➤ Jan Thomas

WPI

> FM Global: Donation of the FPA

Future Collaborations / Workshops

National Institute of Standards and Technology

U.S. Department of Commerce

For the Future Workshop (continued)

- Who
 - Invitation only ?
 - US/Japan or International ?
- Focus
 - Research oriented ?
 - With focus of application (e.g., revision of standards) ?
 - Difference between other meeting?

National Institute of Standards and Technology U.S. Department of Commerce

For the Future Workshop

- Intervals
 - Associated with IAFSS meeting
 - Associated with Asia-Oceania IAFSS meeting
 - Others
- Topics
 - Large fires
 - Relatively emerging topics
 - Other
- Size
 - 30 people : less or more ?
 - One day or more ?

National Institute of Standards and Technology

U.S. Department of Commerce