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Abstract Linear Feedback Shift Registers (LFSRs) are the main building 
block of many classical stream ciphers; however due to their inherent linear
ity, most of the LFSR-based designs do not offer the desired security lev
els. In the last decade, using Nonlinear Feedback Shift Registers (NFSRs) in 
stream ciphers became very popular. However, the theory of NFSRs is not 
well-understood, and there is no efficient method that constructs a crypto
graphically strong feedback function with maximum period and also, given 
a feedback function it is hard to predict the period. In this paper, we study 
the maximum-length NFSRs, focusing on the nonlinearity of their feedback 
functions. First, we provide some upper bounds on the nonlinearity of the 
maximum-length feedback functions, and then we study the feedback functions 
having nonlinearity 2 in detail. We also show some techniques to improve the 
nonlinearity of a given feedback function using cross-joining. 
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1 Introduction 

Feedback Shift Registers (FSRs) are commonly used in stream cipher designs, 
due to their efficiency, large period and good statistical properties. FSRs with 
linear feedback function, Linear Feedback Shift Registers (LFSRs) are widely 
studied in the literature [1] and it is easy to find LFSRs with maximum period, 
2n−1, for a given length n. However, one important drawback of LFSR outputs 
is that they are completely linear, thus cryptographically insecure. Whenever 
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2n bits of the output is given, the sequence is totally predictable using the 
Berlekamp-Massey algorithm. 

Various design attempts have been made to add nonlinearity to the ciphers 
based on LFSRs, such as combining outputs of several LFSRs using a non
linear function, nonlinearly filtering the LFSR state or irregularly decimating 
the output [2]. However, most of these approaches do not offer desired secu
rity levels [3]. Due to the limitations of LFSRs, use of Nonlinear Feedback 
Shift Registers (NFSRs) became very popular. The eSTREAM Stream Cipher 
Project hardware finalists Grain [4], Mickey [5] and Trivium [6] use NFSRs as 
their main building blocks. 

NFSRs constitute a larger class compared to LFSRs and they are more re
sistant to algebraic attacks. However the theory of NFSRs is not well-understood. 
There is no efficient method that finds a cryptographically strong feedback 
function with maximum period 2n for a given n and also, given a feedback 
function it is hard to predict the period. 

Golomb presented a method to construct maximum-length NFSRs using 
primitive polynomials [1] (p. 115), however, these feedback functions have very 
low nonlinearity which allows them to be approximated using affine functions. 
Also, in 1982, Fredricksen [7] presented a survey on maximum-length NFSRs 
including construction methods and some properties. Tsueda et al. [8] proposed 
feedback-limited NFSRs and studied their properties in terms of correlation 
and linear complexity measures. Ç alık et al. [9] studied maximum-length NF-
SRs focusing on the number of monomials. 

In this paper, we study the nonlinearity of the feedback functions that gen
erate maximum-length sequences. First, we provide some upper bounds on the 
nonlinearity of the feedback functions, and then we study the feedback func
tions having nonlinearity 2 in detail. We also show some techniques to increase 
the nonlinearity of a given feedback function using cross-joining and present 
some results on the relation between number of monomials and nonlinearity 
for extreme cases. 

The paper is organized as follows. In Section 2, we give a brief introduction 
to Boolean functions and FSRs. The properties of maximum-length NFSRs 
are provided in Section 3. Section 4 focuses on the nonlinearity of feedback 
functions. Section 5 concludes the paper. 

2 Preliminaries 

2.1 Boolean Functions 

A Boolean function f with n variables is a mapping from Fn to F2. Let2 
αi be the n-bit vector corresponding to the binary representation of integers 
i = 0, 1, 2, . . . , 2n − 1. For a Boolean function with n variables, the sequence 

(f(α0), f(α1), . . . , f(α2n−1)) (1) 
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is called the truth table of f . Algebraic normal form (ANF) of a Boolean 
function is the polynomial 

f(x1, x2, . . . , xn) = c0 ⊕ c1x1 ⊕ . . . ⊕ c12...nx1x2 . . . xn (2) 

with ci1 ...ik ’s in F2. The highest number of terms in a monomial with nonzero 
coefficient is called the degree of f . The Boolean functions with degree 1 are 
called affine and in particular for c0 = 0, the functions are called linear. 

The distance between two Boolean functions f and g is defined as the 
number of different entries in their truth table and denoted by d(f, g), i.e., the 
weight of f ⊕ g. Walsh transform of f is defined to be  

(−1)f(x)⊕α.xWf (α) = . 
x∈F n 

2 

Nonlinearity of a Boolean function f , denoted as Nl(f) is the minimum dis
tance of f to the set of all affine functions, which is 

1 
2n−1 − max{|Wf (α)|}. (3)

2 α 

Nonlinearity of a Boolean function is bounded by 2n−1 − 2n/2−1 . The 
Boolean functions with even number of variables that achieve this bound are 
called bent functions. Weight of bent functions can take two values 2n−1 ± 
2n/2−1, i.e., they are not balanced, thus not very useful in cryptographic ap
plications. 

Two n-bit Boolean functions f(x) and h(x) are called affine equivalent, if 
h(x) = f(Ax + b), where A is an n by n binary non-singular matrix and b is 
an n-bit binary vector and it is known that Nl(f) and Nl(h) are equal. 

2.2 Feedback Shift Registers 

A FSR is a device that shifts its contents into adjacent positions within the 
register and fills the position on the other end with a new value generated 
by the feedback function. The individual delay cells of the register are called 
the stages and the number of the stages n is called the length of FSR. The 
contents of the n stages are called the state of the FSR. The n bit vector 
(s0, s1, . . . , sn−1) initially loaded into FSR state specify the initial state. A 
block diagram of a FSR is given in Figure 1. 

A FSR is uniquely determined by its length n and n variable Boolean 
feedback function f(x1, x2, . . . , xn). The output sequence S= {s0, s1, s2, . . .}
of a FSR satisfy the following recursion 

sn+i = f(si, . . . , sn−1+i), i ≥ 0 (4) 

given the initial state (s0, s1, . . . , sn−1). 
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Fig. 1 Block diagram of a Feedback Shift Register. 

For LFSRs, this recursion is linear and may be represented using the char
acteristic polynomial, 

n 

C(x) = cix n−i (5) 
i=0 

with c0 = 1. If C(x) is a primitive polynomial with degree n, then each of the 
2n − 1 non-zero initial states of the LFSR produce an output with maximum 
possible period 2n −1. Outputs of maximum-length LFSRs are called maximal 
length sequences or m-sequences. 

Let Ln be the set of all linear feedback functions that generate m-sequence. 
The number of primitive polynomial of degree n over F2 is given by φ(2n−1)/n, 
where φ(n) is the Euler’s phi function, hence 

|Ln| = φ(2n − 1)/n. (6) 

For NFSRs, the output sequences can achieve the period of 2n . Such se
quences include each n-bit pattern exactly once and are called de Bruijn se
quences. Let Dn be the set of all feedback functions that generate de Bruijn 
sequence and 

−n|Dn| = 22
n−1

[10]. (7) 

3 NFSRs and de Bruijn Sequences 

3.1 Properties of Maximum-Length NFSRs 

In this part of the study, we survey some of the necessary conditions of the 
feedback function f(x1, . . . , xn) to generate de Bruijn sequences. 

To guarantee that every state has a unique predecessor and successor, f 
should be written in the form f(x1, . . . , xn) = x1 + g(x2, . . . , xn) [1]. Some 
necessary conditions on f and g to generate a de Bruijn sequence are given as 
follows; 

1. To avoid all zero cycle, f(0, . . . , 0) = 1, i.e. c0 = 1. Due to unique prede
cessor and successor property, f(1, 0, . . . , 0) = 0. 
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2. To	 avoid all one cycle, f(1, . . . , 1) = 0, therefore the number of mono
mials in f is even. Due to unique predecessor and successor property, 
f(0, 1, . . . , 1) = 1. 

3. To	 avoid the cycle (00 . . . 01), there exists a coefficient ci = 0, for i = 
2, . . . , n [11]. 

4. The parity of the cycles generated by a FSR is equal to the parity of the 
truth table of g [1]. To achieve one maximum-length cycle, parity of the 
truth table of g should be 1, which implies c23...n = 1. 

5. The weight w(g) of g satisfies the following inequality 

Zn−1 ≤ w(g) ≤ 2n−1 − Z ∗ + 1	 (8)n  	  
1	 1where Zn is φ(d)2n/d and Z∗ is Zn − φ(2d)2n/2d with sumn d|n n 2 2n

mation over all even divisors of n [7]. 
6. Let f = x1 + g(x2, . . . , xn) generate a de Bruijn sequence and n > 2. Then, 

g(x2, . . . , xn)  = g(xn, . . . , x2),	 (9) 

i.e., g is not rotation symmetric [9]. 

4 On The Nonlinearity of Feedback Functions 

In this part of the paper, we study on the nonlinearity of the feedback functions 
that generate de Bruijn sequences. 

Proposition 1 Let f(x1, . . . , xn) ∈ Dn. The nonlinearity of f satisfies 

Nl(f) ≡ 2 (mod 4). 

Proof Due to the unique predecessor and successor property, f has the form; 
f = x1 + g. For any linear function l, g ⊕ l includes the monomial x2 · · · xn, 
therefore weight of g ⊕ l is always odd. This guarantees that nonlinearity of 
g is odd. Let Nl(g) = 2k + 1, then Nl(f) = 2(2k + 1) = 4k + 2, hence 
Nl(f) ≡ 2 (mod 4). 

Next, we show some upper bounds on the nonlinearity of f ∈ Dn. As men
tioned in Section 2, nonlinearity of an n-variable Boolean function is bounded 
by 2n−1 − 2n/2−1. Since the functions achieving this bound are not balanced, 
they cannot generate de Bruijn sequences. Next proposition provides an upper 
bound on the nonlinearity of f ∈ Dn based on the weight of g, w(g). 

Proposition 2 The nonlinearity of f ∈ Dn is bounded by 

Nl(f) ≤ min{2n − 2Z ∗ + 2, 2n − 2Zn−1}.n 
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Proof According to [7], the weight of g satisfies the following inequality 

Zn−1 ≤ w(g) ≤ 2n−1 − Z ∗ + 1.n 

Since the distance between g and the constant zero function is w(g), Nl(g) ≤ 
w(g) and Nl(f) ≤ 2w(g). Then 

Nl(f) ≤ 2n − 2Z ∗ + 2 (10)n 

is satisfied. Similarly, the distance between g and the constant one function is 
equal to 2n−1 − w(g). Then, 

Nl(f) ≤ 2n − 2Zn−1 (11) 

is satisfied. Combining (10) and (11), nonlinearity of f is bounded by 

Nl(f) ≤ min{2n − 2Z ∗ + 2, 2n − 2Zn−1}.n 

It should be noted these bounds are not tight, as they are only based on 
the weight of g, not on the location of 1’s in the truth table of g. Another 
bound for the nonlinearity of f is provided in the next proposition. 

Proposition 3 The nonlinearity of f ∈ Dn is bounded by 

2n−1 − 2(n−1)/2 , 

for n > 2. 

Proof The nonlinearity of the (n-1)-variable Boolean function g is bounded by 
2(n−2) − 2(n−3)/2 . It is known that for n > 2, degree of an n-variable bent 
function is bounded by n/2. Since the degree of g is n − 1, this bound cannot 
be achieved by g. Therefore, the following is satisfied; 

Nl(f) < 2(2(n−2) − 2(n−3)/2) 

< 2n−1 − 2(n−1)/2 . 

Table 1 shows two upper bounds on the nonlinearity of f . The first bound 
is the generic nonlinearity bound for Boolean functions, whereas the second 
bound is obtained using Proposition 1 and 3. 

n Bound 1 Bound 2 
5 13 10 
6 28 26 
7 58 54 
8 120 114 
9 244 238 
10 496 486 

Table 1 Nonlinearity bounds on the Nl(f). 
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n c γn(c) 
2 24 

5 6 1128 
10 896 

6 

2 
6 
10 
14 
18 
22 

32 
7408 

352,752 
6,491,072 
42,601,512 
17,656,088 

Table 2 The distribution of γn(c) for n = 5, 6. 

Let γn(c) denote the number of n-variable maximum-length feedback func
22

n−1 −ntions with nonlinearity c. Trivially, γn(c) = . The value of γn(c)c 
for arbitrary n and c is not known. According to the Proposition 1, γn(4k) = 
γn(4k + 1) = γn(4k + 3) = 0, k ≥ 0. Table 2 shows the distribution of γn(c) 
for n = 5, 6. 

Proposition 4 γn(c) ≡ 0 (mod 4), for even n ≥ 3. 

Proof The complement cS and the reverse rS of a de Bruijn sequence S = 
{s0, s1, . . . , s2n−1} is defined to be cS = {s0S , s1S , . . . , s2S n−1} where sS is the bii 
nary complement of si and rS = {s2n−1, . . . , s1, s0}. Let f(x1, x2, . . . , xn) ∈ 

S Sgenerate S, then f(x1, x2, . . . , x ) generates cS and f(x1, xn, xn−1, . . . , x2)Dn	 n
S Sgenerates rS [7]. Since f(x1, . . . , xn), f(x1, x2, . . . , x ), f(x1, xn, . . . , x2) andn

S S Sf(x1, x , xn−1, . . . , x2) are affine equivalent, the nonlinearity of feedback funcn

tions generating S, rS, cS and rsS are equal. In [12], it is shown that S, rS, cS 
and rsS are distinct sequences, for even n. Hence, γn(c) ≡ 0 (mod 4) for 
even n ≥ 3. 

4.1 Feedback Functions with Nonlinearity 2 

As shown in Proposition 1, the minimum value of the nonlinearity of a maximum-
length feedback function is 2. Following proposition shows a construction 
method of feedback functions having nonlinearity 2 using primitive polyno
mials. 

n n−1Proposition 5 Let F = c1x +c2x +. . .+cnx+1 be a primitive polynomial 
with degree n over the finite field GF(2). 

S S S(i) f1(x1, . . . , xn) = c1x1+c2x2+. . .+cnxn+x2x3 · · · x ∈ Dn [1] and Nl(f1) = n 
2. 

(ii)	 f2(x1, . . . , xn) = 1 + c1x1 + c2x2 + . . . + cnxn + x2x3 · · · xn ∈ Dn [9] and 
Nl(f2) = 2. 

Proof Given a primitive polynomial F (x), it is known that l(x) = c1x1 + . . . + 
cnxn generates a state diagram with two cycles, one of which is the all-zero 
cycle and the other is a cycle of length 2n − 1. 
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2x3 · 
equivalent to changing the the truth table entries corresponding to (10 . . . 0) 

SS S(i) These two cycles can be combined by adding x to l(x), which is · · xn 

and (00 . . . 0) [1]. Then, f1(x1, . . . , xn) = l(x) + x · · xS 
n generates a2x3 · 

cycle with length 2n and since only two truth table entries of l are changed, 
Nl(f1) = 2. 

(ii) Since F (x) is primitive, the number of monomials in F (x), also in l(x), 

SS 

1 + . . . + cnx
generates two cycles one of which is the all-one cycle and the other one is 
the cycle of length 2n −1, which are the complements of the cycles generated 
by l(x). These two cycles are combined by adding x2x3 · · · xn to f(x), which 
is equivalent to changing the truth table entries corresponding to (011 . . . 1) 
and (11 . . . 1), therefore Nl(f2) = 2. 

Sis odd, so lS(x) S 1 + c1x1 + c2x2 + . . . + cnxn. lS(x)= c1x = n 

Primitive polynomial Feedback Functions with Nonlinearity 2 

1 + x2 + x5 x1 + x4 + x 
2x

 
3x

 
4x

 
5 

1 + x1 + x4 + x2x3x4x5 

1 + x + x2 + x3 + x5 x1 + x3 + x4 + x5 + x 
2x

 
3x

 
4x

 
5 

1 + x1 + x3 + x4 + x5 + x2x3x4x5 

1 + x3 + x5 x1 + x3 + x 
2x

 
3x

 
4x

 
5 

1 + x1 + x3 + x2x3x4x5 

1 + x + x3 + x4 + x5 x1 + x2 + x3 + x5 + x x2
 
3x

 
4x

 
5 

1 + x1 + x2 + x3 + x5 + x2x3x4x5 

1 + x2 + x3 + x4 + x5 x1 + x2 + x3 + x4 + x 
2x

 
3x

 
4x

 
5 

1 + x1 + x2 + x3 + x4 + x2x3x4x5 

1 + x + x2 + x4 + x5 x1 + x2 + x4 + x5 + x 
2x

 
3x

 
4x

 
5 

1 + x1 + x2 + x4 + x5 + x2x3x4x5 

Table 3 Construction of f with nonlinearity 2, for n=5, using primitive polynomials. 

Table 3 lists 12 feedback functions generated using the primitive polynomi
als, for n = 5. There exists other feedback functions with nonlinearity 2 which 
can be constructed using affine functions having two cycles, where length of 
the shortest cycle is greater than 1. These functions are highlighted in Table 
4.1. These cycles can also be combined in various ways to generate feedback 
functions having nonlinearity 2, as given in the next example. 

Example 1 The cycle decomposition of affine function f = 1 + x1 + x3 + x5 

includes two cycles; (000001011011100111110100100011) and (01). The long 
cycle includes all n-bit patterns except (10101) and (01010). The (01) pattern 
is embedded to the long cycle such that the new generated cycle includes all 
n-bit patterns and it can be done in two ways as shown in the following figure. 

Proposition 6 The number of maximum-length feedback functions with non
linearity 2 satisfies 

φ(2n − 1)
2 ≤ γn(2) ≤ 22n , (12) 

n 



  
  

On The Nonlinearity of Maximum-length NFSR Feedbacks 9 

New sequence Feedback function 
(00000101011011100111110100100011) f + (x3 + x5) x2 x4 
(00001011011100111110101001000110) f + (x2 + x4) x3 x5 

Table 4 Combining the two cycles of f = 1 + x1 + x3 + x5 

Affine function Cycle decomposition # cycles 
1 + x1 + x2 + x3 + x5 (0000010111011010100111100011001) (1) 2 
1 + x1 + x2 + x3 + x4 (0000011011001111010010101110001) (1) 2 
1 + x1 + x4 (0000011001011011110101000100111) (1) 2 
1 + x1 + x3 (0000011100100010101111011010011) (1) 2 
1 + x1 + x3 + x4 + x5 (0000010001110101001011110011011) (1) 2 
1 + x1 + x2 + x4 + x5 (0000010011000111100101011011101) (1) 2 
1 + x1 + x3 + x5 (000001011011100111110100100011) (01) 2 
1 + x1 + x2 + x4 (000001100010010111110011101101) (01) 2 
1 + x1 + x2 + x3 (0000011101011011111000101001) (0011) 2 
1 + x1 + x4 + x5 (0000010010100011111011010111) (0011) 2 
1 + x1 (0000011111) (0001011101) (0010011011) (01) 4 
1 + x1 + x5 (000001010110011101111) (0001101) (001) (1) 4 
1 + x1 + x3 + x4 (000001101011) (0001) (001010011111) (0111) 4 
1 + x1 + x2 (000001111011100110101) (0001011) (001) (1) 4 
1 + x1 + x2 + x5 (00000101) (00011011) (00100111) (01011111) 4 

1 + x1 + x2 + x3 + x4 + x5 (000001) (000111) (001011) (001101) (01) (011111) 6 

Table 5 Cycle decompositions of affine functions with c0 = 1, for n=5. 

where φ(n) is the Euler’s phi function. 

Proof Proposition 5 provides a method to construct two distinct feedback func
tions with nonlinearity 2 using a primitive polynomial of degree n. Therefore, 
γn(2) is lower bounded by 2 times the number of primitive polynomials, which 

φ(2n−1)is equal to 2 . n 
The number of Boolean functions having nonlinearity 2 is calculated by 

counting the number of 2 possible changes to all affine functions and is equal f
2n
n 
2n+1to . For the functions in Dn, the changes should be symmetric, in 2 

other words, f(a1, a2, . . . , an) and f(a1 + 1, a2, . . . , an) should be changed si
multaneously. Therefore, the number of feedback functions with nonlinearity 2 f

2n−1 n 
is upper bounded by 2n+1 = 22n .1 

Proposition 7 The number of maximum-length feedback functions with non
linearity t is bounded by   

2n−1 

2n+1γn(t) ≤ , (13)
t/2

for even t < 2n−2 . 

Proof The number of functions having nonlinearity t is calculated by counting f n
2n 

2n+1the number of t possible changes to all affine functions and is equal to ,t 
for t < 2n−2 [13]. Since the changes should be symmetric, the total number of f n

2n−1−2changes that can be given to an affine function is bounded by .t/2 
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4.2 Cross-joining to Increase Nonlinearity 

Cross-joining is a well-known method to construct maximum-length feedback 
functions given another feedback function [7]. Given f ∈ Dn, the method first 
flips one position of the truth table of g, this splits the output of f into two 
cycles. Then, if a second position in the truth table of g exists, such that 
flipping it combines the two cycles to produce a new cycle of length 2n, then 
this pair of positions is called a cross-join pair. 

In the previous section, construction of feedback functions with nonlinear
ity 2 is described. By cross-joining, the nonlinearity of the feedback functions 
can be improved. Cross-joining flips four positions of the truth tables, there
fore the nonlinearity of the newly constructed feedback function is bounded 
by Nl(f) + 4. Helleseth and Kløve [14] proved that the number of cross-join 
pairs in an n-bit maximum-length LFSR is (2n−1 − 1)(2n−1 − 2)/6. 

Cross-joining is also equivalent to dividing a de Bruijn sequence into five 
parts and permuting the parts as given in Figure 2. The permutation basically 
interchanges the positions of the part II and part IV . It is possible to verify 
that the sequence generated by interchanging the positions of the unique runs 
of n and n − 2 zeros in a de Bruijn sequence, is also a de Bruijn sequence. This 
is also true for interchanging the unique runs of n and n − 2 ones [12]. 

(← I → || ← II → || ← III → || ← IV → || ← V →) 

⇐⇒ 

(← I → || ← IV → || ← III → || ← II → || ← V →) 

Fig. 2 Cross join pair effect on de Bruijn sequence 

S S SProposition 8 If f(x1, . . . , xn) ∈ Dn, then f1 = f ⊕ (x2 ⊕ xn)x3x4 . . . xn−1 
and f2 = f ⊕ (x2 ⊕ xn)x3x4 . . . xn−1 ∈ Dn. 

S SProof The monomial (x2 ⊕ xn)x3x
S 
4 . . . xn−1 takes the value 1 in four posi

tions of the truth table of f , i.e. flips the output of f in the following inputs; 
f(0, 1, 0, . . . , 0), f(1, 1, 0, . . . , 0), f(0, . . . , 0, 1), f(1, 0, . . . , 0, 1). These changes 
results in interchanging the runs of n and n − 2 zeros. Similarly, adding 
(x2 ⊕ xn)x3x4 . . . xn−1, changes the following outputs of f ; f(0, 1, . . . , 1, 0), 
f(1, 1, . . . , 1, 0), f(0, 0, 1 . . . , 1), f(1, 0, 1, . . . , 1). These changes results in in
terchanging the runs of n and n − 2 ones. Therefore, f1 and f2 also generate 
de Bruijn sequences. 

Given a feedback function with nonlinearity 2, applying the changes given 
in Proposition 8 increases the nonlinearity to 6. Independent cross-join pairs 
may be applied to further increase the nonlinearity of the feedback function. 
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4.3 Number of Monomials 

Hardware efficiency of NFSRs is extremely important, especially for stream 
ciphers designed for restricted environments. In general, the feedback functions 
with less number of monomials are implemented more efficiently in hardware 
and these functions are of interest. Ç alık et al. [9] studied the number of 
monomials in the maximum-length feedback functions and showed that it is 
at least 4. 

Proposition 9 Let f ∈ Dn be a 4-monomial feedback function. 

2n 

Nl(f) ≤ . 
n − 1 

Proof 4-monomial feedback functions are of the form; 

f(x1, x2, . . . , xn) = 1 + x1 + x2 · · · xn + h(x2, . . . , xn), 

where the degree of h(x) is upper bounded by log2n [9]. Nonlinearity of f is 
equal to 2Nl(h(x)+x2 · · · xn) and the weight of h(x)+x2 · · · xn, which is equal 
to 2n−1−deg(h(x)) − 1, gives two upper bounds on the nonlinearity. 

Nl(h(x) + x2 · · · xn) ≤ min{2n−1−deg(h(x)) − 1, 2n−1(1 − 2−deg(h(x)) + 1}
≤ min{2n−1−log2n − 1, 2n−1(1 − 2log2n) + 1}
≤ min{2n−1/n − 1, 2n−1(1 − 1/n) + 1}
≤ 2n−1/n − 1. 

Then, Nl(f) ≤ 2n 
is satisfied. n−1 

Ç alık et al. [9] conjectured that for n > 12, the degree of h(x) is 1, after 
experimenting for n ≤ 36. Assuming the conjecture is true, we can say that 
the nonlinearity of 4-monomial feedback functions is 2 for n > 12. 

The maximum number of monomials in a maximum-length feedback func
tion is 2n − 1 and these functions are of the form 

f = x1 + x S · · x S + xi,2 · n 

for 2 ≤ i ≤ n [9]. It is easy to verify that the nonlinearity of these functions is 
also 2. 

5 Conclusion 

To have a better understanding of NFSRs, in this study, we focused on the 
nonlinearity properties of feedback functions of maximum-length NFSRs. We 
provided some upper bounds on the nonlinearity, and studied the feedback 
functions having nonlinearity 2 and provided some techniques to increase the 
nonlinearity of a given feedback function using cross-joining. 
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