Mobile Application and Device Power Usage Measurements^{1,2}

Rahul Murmuria, Jeffrey Medsger, Angelos Stavrou Computer Science Department George Mason University Fairfax VA 22030 Email:{rmurmuri, jmedsger, astavrou}@gmu.edu Jeffrey M. Voas Computer Security Division National Institute of Standards and Technology Gaithersburg MD 20899 Email:jeff.voas@nist.gov

Abstract—Reducing power consumption has become a crucial design tenet for both mobile and other small computing devices that are not constantly connected to a power source. However, unlike devices that have a limited and predefined set of functionality, recent mobile smartphone devices have a very rich set of components and can handle multiple general purpose programs that are not a-priori known or profiled.

In this paper, we present a general methodology for collecting measurements and modelling power usage on smartphones. Our goal is to characterize the device subsystems and perform accurate power measurements. We implemented a system that effectively accounts for the power usage of all of the primary hardware subsystems on the phone: CPU, display, graphics, GPS, audio, microphone, and Wi-Fi. To achieve that, we make use of the per-subsystem time shares reported by the operating system's power-management module. We present the models capability to further calculate the power consumption of individual applications given measurements and the feasibility of our model to operate in real-time and without significant impact in the power footprint of the devices we monitor.

I. INTRODUCTION

A recent smartphone market study suggests that free mobile applications on the Android Market which include advertising sometimes spend up to 75% of their total power consumption on powering these third party services [1]. According to researchers, there is a clear trend that suggests that third party applications in the mobile application markets are not designed or engineered with power consumption as a priority [2]. Furthermore, software engineers and practitioners have pointed out some of these design and implementation deficiencies and even consider them as bugs for mobile devices due to the constraints on the battery [3].

Being able to generate a device-specific scalable power consumption model is therefore crucial for understanding, designing, and implementing better mobile application software. Of course, the consumption measurement and modeling system must have a low footprint on its own while collecting system metrics; otherwise, it will affect the validity of the measurements. A system that significantly alters the power consumption of the device can cause changes that will invalidate the accuracy of the measurements and of the produced consumption model.

However, we believe that a proper energy accounting infrastructure will assist both application developers and smartphone users to extend the battery life of their devices and make informed decisions about where to spend the remaining device power, and potentially in real-time. For the purpose of this study we focused on Android devices but plan to look at other platforms such as the iPhone or Blackberry in the future.

Earlier research in power analysis for smartphone devices has produced power models with differing features and focuses. We differ from these research efforts in the following key aspects.

A. Paper Contributions

Our main contributions in this paper are as follows:

- We perform measurements and data collection of each device subsystem's power consumption by leveraging existing system hooks in the Android kernel wake locks driver. This enables us to acquire both accurate measurements and at the same time reduce the power and computational requirements of model generation on the phone. Furthermore, we can perform analysis at different time-scales because the measurements happen cumulatively and at real-time.
- 2) We take into account OS-specific operation states for individual subsystems in order to construct the model and the relative constants. However, our calculations are independent of the time interval used in creating the data and do not require reduction into a fixed pre-defined set of states with power ratings for each.
- 3) We perform measurements of behaviour for all the primary device subsystems under different conditions which provide an in-depth understanding of how the power is consumed on a smartphone.

II. RELATED WORK

There is a wealth of research studies on power models in the existing literature. Some of them specifically target smartphones but depend on external hardware to measure the

¹Disclaimer: We identify certain products in this document, but such identification does not imply recommendation by the US National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.

²Disclaimer: This paper was co-authored by Jeff Voas; it reflects his personal opinion and does not necessarily reflect the opinions of the Department of Commerce or NIST.

actual current charge consumed by individual components of the smartphone. For instance, PowerScope [4] is an often-cited research tool which uses hardware instrumentation to measure system activity and thereby allows for the determination of the power consumption of mobile applications.

Some more recent models divide the system into states and associate a fixed power consumption value to each state. In [5], the authors describe the device as a finite-state-machine. They trace system-calls in order to determine which state the system is in. On the other hand, PowerBooter [6] employs a seemingly comprehensive set of training and characterization applications in order to construct a model with power usage cost assigned to pre-defined states. They further claim that there is negligible difference in the usage patterns for two phones of the same manufacturing. However, there is sufficient literature to suggest that smartphone usage among different human users can lead to different energy models [7], [8]. Further, software updates, indoor or outdoor usage, geographical region and climate, and wear-and-tear are some of the other factors which may cause significant changes in the model over time. Therefore, characterizing the system with a fixed set of benchmarks and a model that has fixed states is not scalable, even if calculated comprehensively.

In Sesame [9], authors present a statistical power model that is adaptive and can be deployed for general-purpose computers as well as Linux-based smartphones including Nokia and Android. Their focus is on achieving high rate power estimations by performing an estimation every 10 ms. We cover a discussion about the differences of our model with Sesame in Section IV.

Pathak et al. in [2], [5] present a model based on tracing system calls. Their claim is that hardware component utilization-based models do not address the power behavior of devices, such as camera and GPS, where a process might use the subsystem for a few milliseconds, but in consequence, the operating system keeps that subsystem alive for much longer. They further claim that certain operations on the smartphone have an indirect impact on subsystem power usage. For example, file I/O can cause a change in the power state of the sdcard module. While these findings are true, it does not invalidate the use of utilization-based models. Our system receives utilization information from the power suspend driver, and therefore does not depend on sampling all device calls made from userspace activities. Moreover, our system uses a sampling rate to perform the regression while creating the model, but thereafter to actually evaluate power consumption in real-time, we do not need a sampling rate. Our subsystem constants, once calculated, are time-period independent. We explain this concept further in Section III-A. An additional problem with system call trace-based power models is that system calls do not address the power consumed by sensory inputs, such as the proximity sensor, compass, and capacitive touch-screen.

Other researchers have attempted to model individual activities on the smartphone for better energy management. Iyer et al. demonstrated a technique to save overall energy consumption by darkening parts of the mobile organic light-emitting diode (OLED) display, which were not the focus of a user's attention [10]. They further experimented with greenscales, but did not cover a full-scale analysis of the power consumption based on the average pixel color of the screen. Our study in section V further complements their study. CoolSpots [11] is another often-cited research that demonstrates the use of quantitative measurements to automatically switch between multiple radio interfaces, such as Wi-Fi and Bluetooth, in order to save power. Castignani et al., in [12], conducted a similar study for newer Wi-Fi and 3G interfaces.

III. MODEL

On mobile systems, the battery discharge is reported by the kernel as a global value. There is no existing commercially available method to divide the measurements into per-subsystem or per-application readings on any platform. Therefore, we have created a statistical model which breaks the power consumption into subsystems.

$$power \ used = cpu + display + graphics + + gps + audio + mic + ... + wifi.$$
(1)

We accomplish this by collecting subsystem usage measurements from the operating system. We characterize each subsystem depending on its characteristics. In our sample implementation, the usage information is obtained from the power suspend driver, which was implemented for the Google Android operating system. Other than this, we record the CPU utilization, screen brightness, pixel color strength on the screen, and other such parameters which are not controlled by a subsystem or device driver, but by the operating system itself.

We consider the power used by each subsystem as a function of the time that the subsystem was used and the state in which the subsystem was operating. We express this in terms of usage U of the subsystem. This can be represented mathematically.

A. Regression model

Let C be the constant for the relative impact of a subsystem i on the power consumption, U be the total usage of the subsystem i, and P be the overall power consumption.

Therefore, we have the following equation:

$$P(t) = \sum_{i} C_i U_i(t).$$
⁽²⁾

This equation is applied for each time interval t. This is clearly a linear function of time. If we consider t_i as the actual time that a subsystem was active in this time interval t, then by dividing the function by the time interval, we can get the power P irrespective of the measured time interval. In addition, the subsystem constants C_i remain fixed, irrespective of the time interval used. This concept is also explained in the appendix section of Sesame [9], but they consider this method as impractical for their model.

Unlike Sesame, we use the Android's power suspend driver to get most of our subsystem usage data. Therefore, it is

Subsystem	Wakelock	Subsystem	Wakelock
Display	main	Graphics	kgsl
Wi-Fi	wlanrxwake	GPS	GPS
Audio	AudioHardwareQSDOut	Microphone	AudioHardwareQSDIn
Touchscreen	event3	Compass	event2

 TABLE I

 Wakelocks corresponding to each subsystem

possible for us to collect data cheaply in the required format as per this model. The Android operating system requires that every device driver register a wakelock with this suspend driver. The operating system calculates the amount of time that this driver was in an active state. The locks we chose for each subsystem are listed in Table I. The performance of our logger is discussed in Section VI.

This regression model can be used to calculate the constants C_i (in training mode), and then the power P when feeding application usage data into the model.

B. Training mode

In our experiments, we used a training stage to calculate the relative constants C. For this, we performed Ordinary Least Squares (OLS) regression on equations where usage U and power P were already known.

The constants C are the relative ratios of each subsystem's impact on the overall power consumption. These constants are subject to external factors like wear and tear, weather changes, network signal strength, and device driver updates. It is possible to perform this regression in real-time, so that the constants C update when the environment changes. However, our goal is to demonstrate a possibility of creating such a model and therefore we make certain calculations in a lab setting, even though the same can be performed on the device, in real-time.

Once these constants are calculated, they can be used in the same regression equations, in order to predict the power usage of a live system, irrespective of whether the power supply was in Alternating Current (AC) or battery mode.

C. Application power analysis

The model described so far has used subsystem usage values for the entire operating system. By extension, we replace these values with subsystem usage statistics of a given application or process, and we calculate per-application power consumption.

That is, for a given application j:

$$P^{j}(t) = C_{i}U_{i}^{j}(t).$$
(3)

In this analysis, we do not need to recalculate the constants C_i . The same constants work for the per-application analysis and for any new chosen time-interval for measurements.

D. Ordinary Least Squares (OLS) regression analysis

The least squares linear regression is one of the most basic statistical models [13]. In our system, the dependant variable or the output variable is the power P. The input variables, or features, are subsystem usages U_i . Since there

are *i* subsystems, we have an *i*-dimensional feature space for the regression, which can be plotted as an *i*-dimensional plane. The power usage P is called a 'dependent variable' and the subsystem usages U_i are called 'independent variables'. For every time interval, we get one set of input variables and an output variable.

The goal of the training mode is to find the best choice values for the constants C_i which are fixed coefficients for each subsystem. The accuracy of these chosen constants are determined by the method of least squares approach. During the training period, we have data for the subsystem usages U_i and the current discharge P, for n time intervals. The residual R is a function of the amount of error for each of the n intervals. The error is calculated by a simple formula:

$$(actual P_n - calculated P_n)^2.$$
(4)

In equation 4, the calculated P_n is the $\sum C_i U_i$ for all *i*, where the C_i are chosen coefficients. By minimizing the value of equation 4, we achieve the best values for the constants C_i . Thereafter, these derived constants C_i can be used with subsequent input readings, U, at the time interval n + 1, to calculate P_{n+1} .

This system can be adaptive if we perform the least squares analysis periodically to find better chosen constants, C. In our implementation, we simply provide the data in the form of a matrix of n rows (one for each time interval) and i columns, along with a vector of all P_n values, into a built-in OLS function in GNU Octave software [14]. If we performed this computation on the phone, we could do the same in real-time with very little overhead. However, such an implementation is not in the scope of this paper.

It is to be noted that we need certain constraints on the best chosen values for C_i . Often, the OLS function would try to over-fit the data by setting constants to zero or negative values. We restrict the function from returning such a result and assume the next best fit as our correct choice of constants.

E. Non-linearity of subsystems

It is common knowledge that most subsystems are nonlinear, such that the power consumed at a given time interval strongly depends on the state in which the device was operating. For example, different pixel color and brightness states have a strong effect on the amount of power consumed by the display subsystem.

PowerBooter reduces the system into a fixed set of states for which the power usage is pre-calculated. Thereafter, they employ a multi-variable regression on the data. In contrast, we demonstrate how we translate the non-linear power consumption of individual subsystems into a linear equivalent, without compromising the continuous nature of our data. In order to be able to make this argument, we first attempted to understand the power consumption of each subsystem under the various states in which they operate. These operating states are analysed in Section V.

IV. DISCUSSION

We are not the first at proposing a statistical regressionbased model for power consumption measurements. Sesame [9] also employs a regression technique to calculate the subsystem constants in a training mode and later use them with system parameters in order to compute the expected output or response. After model generation, their system can evaluate power consumption at a very high rate, limited only by the accuracy of the predictor data provided by the operating system about each subsystem. They do not use a fixed set of system states for which the power consumption value is predefined. However, they make very different choices on how this experiment is setup, as compared to ours.

They use the Total Least Squares (TLS) method in order to create their statistical model. The claim is that this model reduces errors in both predictors (input) as well as responses (output). We believe this argument is flawed in several ways.

- First, the way Ordinary Least Squares works is explained in Section III-D. In order to calculate error from the residual, we needed the expected result for the power (output). However, if both the output and input were to be adjusted, then relative "error" for each of the input variables needs to be known. This is usually not available in a real-time scenario.
- 2) Second, it might be fair to assume that some of the input from predictors can be noisy, or its update time period can be infrequent, but it is a questionable assumption that all the data points need to be adjusted. By doing this, we also hurt the system's capacity to identify anomalies.
- 3) Third, using TLS automatically requires you to scale the data to common terms. Running the regression on the data where one of the predictors has either 50 seconds, or 50000 ms or 0.83 of the total time window, will each give very different results. Scaling one predictor has a strong impact on the constants calculated for other predictors. On the other hand, because we use OLS, our subsystem data does not need to be carefully normalized to the same common terms.

Further, the component analysis and linear regression performed by Sesame are expensive. Their paper suggests that it can take about 10 minutes on mobile devices to collect the predictor data from the operating system and perform the regression. They perform this calculation when the device is connected to AC-power. Our technique primarily uses the wakelocks to determine subsystem usage (predictors). This interface covers all the device drivers, and as a result, most of our data comes from a single interface. Our data collection therefore is instantaneous. Our regression calculations also take only a few seconds off-line and when performed on a mobile device, we are confident that this CPU time will not increase significantly.

V. SUBSYSTEM ANALYSIS

The subsystems are each dependent on various factors that determine their power consumption. This includes the amount of time they are kept alive, but more importantly, the state of the hardware, and other environmental factors. We performed various experiments in order to tailor our regression model to fit each of the subsystems. Table II details the Nexus One device we used for our primary results.

Component	Nexus One
Processor	1 GHz Qualcomm QSD 8250 Snapdragon ARM
LCD Display	SLCD capacitive touchscreen %
Wi-Fi	Wi-Fi IEEE 802.11b/g/n
GPS	aGPS
Cellular	T-Mobile USA: GSM/UMTS/HSPA
Audio	Built-in microphone and speaker
Battery	Internal Rechargeable Li-ion: 1400 mAh
Operating System	Android 2.3.3 (Gingerbread) Cyanogenmod
	TABLE II

COMPONENTS OF GOOGLE NEXUS ONE

A. Display subsystem

Our model calculates a 'usage' value, U_{disp} , for the display component of our regression equation (Equation 2). Each pixel of the screen consumes a different amount of power depending upon its color and screen brightness. In this paper, we call this 'pixel strength'. The display subsystem usage for a given time interval t is determined by

$$U_{disp}(t) = avg. \ pixel \ strength \ * \ display \ uptime.$$
 (5)

The *display uptime* is recorded from the power suspend driver by parsing the time that the wakelock 'main' was active. In Table I we list the locks for each subsystem.

To calculate *pixel strength*, we studied the effect of the display brightness level and pixel color on the rate of current discharge. The results of our experiments concluded that red, green, and blue pixels each have a different effect on the rate of current discharge. Blue pixels cause a higher rate of current discharge than green pixels and green pixels cause a higher rate of the rate of current discharge than red pixels. We found that the effect of the remaining colors can be determined by performing calculations on their rgb components.

1) Experimental Setup: We created an Android application which sets the screen color to the programmed rgb value. The screen is further set to full screen mode, so that the entire screen is filled with that one color, eliminating the menu bar at the top of the normal screen view. We then record the rate of current discharge in milliampere-hour per minute (mAh/m) for brightness levels varying from 0% to 100%.

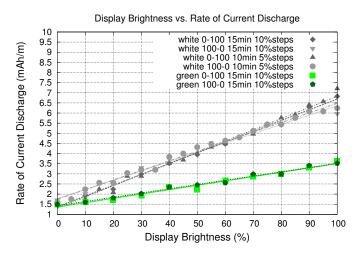


Fig. 1. Effect of measurement parameters on current discharge readings

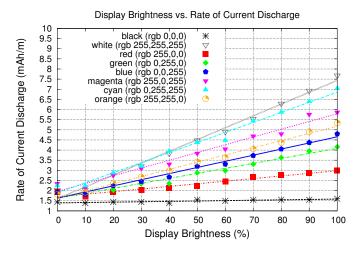


Fig. 2. Effect of Pixel Color and Display Brightness on the Rate of Current Discharge

2) Parameters chosen for measurements: The measurements were taken at 10% increments of brightness levels, with each level measured for 10 minute intervals. The readings were recorded starting from 0% brightness, moving upwards until 100%. These parameters do not influence the readings.

In Figure 1, we plotted white and green colors for different measurement environments. The plot shows that these parameters are independent from the current discharge readings and therefore we chose the values that was most convenient for our measurements. Our chosen parameters for the measurements are adequate for the analysis we perform in subsequent sections.

3) Pixel Strength Analysis: Figure 2 displays the results for different combinations of red, green and blue colors. We observe that the black pixels had the smallest effect on the rate of current discharge and white pixels had the highest effect on the rate of current discharge. Further, the blue component had a greater impact on current discharge than the green and the red components.

Black, which has an rgb value of (0,0,0), consumed some

Effect of shades in RGB values on Rate of Current Discharge 10 blue1 (rab 0.0.63) 9.5 Rate of Current Discharge (mAh/m) blue2 (rgb 0,0,127) blue3 (rgb 0,0,191) blue (rgb 0,0,255) 9 -8.5 8 7.5 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 1.5 0 10 20 30 40 50 60 70 80 90 100 Display Brightness (%)

Fig. 3. Effect of color shade on the rate of current discharge

baseline amount of current charge. We found the area between the curves for each color and the black curve. The areas are listed in Table III.

Red	Green	Blue	White	Orange	Magenta	Cyan
84.84	136.23	165.32	303.00	191.50	239.01	288.46
TABLE III						

AREA BETWEEN THE CURVES FOR EACH COLOR AND THE BLACK CURVE

We performed regression on this data for the various rgb combinations and conclude that the red, green and blue components have a linear impact on the overall current discharge. Further, for any color combination, given the rgb value, we can calculate this impact on current discharge by using Equation 6.

$$pixel\ strength = 0.4216 * r + 0.7469 * q + 1 * b.$$
 (6)

We can verify this by comparing the ratio of pixel strengths of two colors with the ratio of the area under the curves of these two colors.

For Orange Vs Blue at 100% brightness:

- Orange: 0.4216 * 255 + 0.7469 * 255 + 1 * 0 = 297.968.
- Blue: 0.4216 * 0 + 0.7469 * 0 + 1 * 255 = 255.0.

Comparing 297.968 : 255.0 to the areas obtained from actual data from the device, 191.499 : 165.315, we find that the error in our calculation is just 0.87%.

For Magenta Vs. Cyan at 100% brightness:

- Magenta: 0.4216 * 255 + 0.7469 * 0 + 1 * 255 = 362.508.
- Cyan: 0.4216 * 0 + 0.7469 * 255 + 1 * 255 = 445.46.

Comparing 362.508 : 445.46 to the areas obtained from actual data from the device, 239.011 : 288.462, we find that the error in our calculation is 1.7%.

These measurements were for the strongest shade (255) of each component. We performed further measurements with different shades of blue. These readings are plotted in Figure 3. Based on the readings, it is clear that the shade also impacts the current discharge linearly and the Equation 6 is true for weaker shades of each component as well.

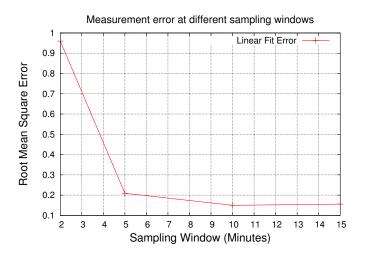


Fig. 4. Measurement error in rate of current discharge for CPU utilization increasing in steps of 5% at a fixed frequency

These results indicate that our model is effective in determining the pixel strength, given the rgb values. In order to calculate the average pixel strength of the entire screen, we find the average rgb values at any given instant from a snapshot of the framebuffer.

4) Implementation: We incorporated these observations into our logger which creates the input data for the regression equation 2.

The pixel strength is calculated using native code which samples the framebuffer for rgb values at random points, and averages them. We used Glenn's formula [15] in order to determine the right sampling size for the framebuffer for a confidence level of 99% and an error allowance of 2%. We fed these averaged values into our Equation 6 to get the corresponding pixel strength of the screen at the time of recording measurements.

Multiplying this value with the wakelock uptime gives us the best estimate of the display subsystem usage, U_{disp} , for the corresponding logging time interval t.

This usage value is recorded into a matrix, which is the input for our OLS regression model described in Section III.

B. CPU subsystem

We studied the effects of percentage CPU utilization and CPU frequency on the rate of current discharge. The percentage CPU utilization can have large effects on the overall rate of current discharge depending on the frequency in which the CPU is maintaining. The higher the CPU frequency, the greater the rate of current discharge. We ran experiments to find a pattern.

1) Experimental Setup: We created an Android application which stabilizes the CPU utilization at a target percentage using an arbitrary CPU load and maintains that percentage CPU level for a fixed interval while we record the rate of current discharge. We set the desired CPU frequency in the operating system for each test run. This setting can be found under the *sys* filesystem.

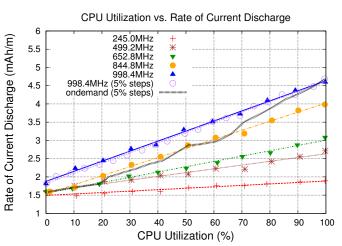


Fig. 5. Effect of CPU Frequency and Percentage CPU Utilization on the Rate of Current Discharge

For the set of tests performed in this experiment, the application was configured to start each test by stabilizing itself at 0% CPU and running for a 10 minute interval at that level. We then changed the utilization in steps of 2%, 5%, and 10%. The tests were performed with frequencies set to 245.0 MHz, 499.2 MHz, 652.8 MHz, 844.8 MHz, 998.4 MHz and 'on-demand'. The 10 minute interval was chosen due to low variance in the collected data. For any measurements made with lesser time interval, the current discharge curve did not fit with as low variance. We plotted the mean squared error for measurements at 5% steps in Figure 4.

2) CPU Performance Analysis: The curves for the selected frequencies are plotted in Figure 5. At regular increasing levels of CPU utilization, the amount of current discharge per minute was recorded. At any given percentage CPU utilization, the power consumption is linearly comparable depending upon their set frequency.

- In summary:
- (a) The effect of the percentage CPU utilization on the rate of current discharge can be accurately represented linearly.
- (b) The CPU frequency has a large effect on the rate of current discharge and the higher the CPU frequency, the greater the rate of current discharge.

3) Implementation: In our logger, we parse the CPU utilization and the current CPU frequency from the *proc* and *sys* filesystems respectively. Since CPU utilization is equivalent to the time ratio of CPU usage for a given interval, and there is no corresponding wakelock in the power suspend driver, the parsed values are used directly in the regression model for the CPU subsystem usage, U_{cpu} .

C. Wi-Fi Subsystem

The power consumption by the Wi-Fi subsystem during transmission depends on the rate of packets sent or received. We conducted experiments to determine the exact relationship between these factors and to create equations to fit the findings

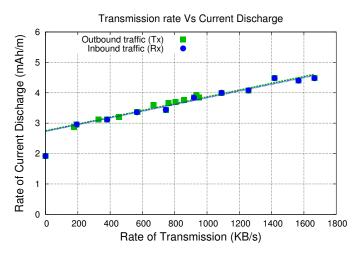


Fig. 6. Effect of Wi-Fi transmission rates on current discharge

into our model. We were able to generalise the readings to arrive at one single equation to govern all states of transmission. Our study does not include or identify the power consumed to seek a connection with a Wi-Fi access-point. A separate study can be conducted to extend our model to include the power consumed to find and connect to different access points.

1) Experimental Setup: The network link used was a Local Area Network (LAN) with a Wi-Fi 802.11G router. For testing for outgoing traffic Tx a program was used, which sent User Datagram Protocol (UDP) packets from the mobile device over Wi-Fi at different data transmission rates. The program was run natively on a mobile device. UDP packets were sent from the device at a rate of 0 KB/s for the first 20 minutes and the transmission rate increased by approximately 100 KB/s each 20 minutes until a transmission rate of 950 KB/s was reached. The number of bytes transmitted from the device and the battery charge count were recorded.

A second experiment was conducted to determine if the amount of incoming traffic Rx had a similar impact on the rate of current discharge. A program was run on the device to receive UDP packets sent to the device at different transfer rates by another client on the network. The client on the network sent UDP packets to the device at a rate of 0 KB/s for the first 20 minutes and then increased the rate at which it sent packets by 100 KB/s each 20 minutes, until a rate of 1700 KB/s was reached.

The device was kept stationary for this entire experiment, and the effect of mobility during Wi-Fi communication is not yet covered in our model.

2) Analysis: Figure 6 displays the results from the inbound and outbound transmissions performed. As the Wi-Fi transmission rate increases by 100 KB/s, the rate of power discharge increases by an average of 0.11 mAh/m. The slope of the two curves can be averaged to form the Equation 7.

$$current \ discharge \ rate \ (cdr) = 0.0011x * 2.739.$$
(7)

For each time window we can calculate the average transmission rate from Equation 7 and the time that the Wi-Fi subsystem was used, in order to calculate the Wi-Fi subsystem usage, U_{WiFi} .

$$U_{WiFi}(t) = cdr * WiFi \ uptime.$$
(8)

The subsystem uptime is found using the wakelock *wlanxwake* as mentioned in Table I. This lock records cumulatively the amount of time that the Wi-Fi device was active.

D. Audio subsystem

The audio subsystem is associated with the wakelock *AudioHardwareQSDOut*. The audio subsystem wakelock records the amount of time that the device was active.

We created an experiment in which we set the volume of the phone to 13%, 60% and 87% for 10 minutes each. We recorded the following results:

- Results at 13%: averaged an uptime of 60.000 seconds per minute over the 10 minutes the test ran at 13% volume.
- Results at 60%: average an uptime of 59.999 seconds per minute over the 10 minutes the test ran at 60% volume.
- Results at 87%: averaged an uptime of 60.000 seconds per minute over the 10 minutes the test ran at 87% volume.

The Audio results indicated that, similarly to Wi-Fi, the rate of increase in the uptime of the Audio wakelock remains constant. However, the power consumption also depends on the volume of the sound being output from the speakers. Therefore, just as we did in the case of transmission rate for Wi-Fi, we need to derive an equation that calculates the power consumption at different audio volume levels.

E. Other subsystems

Other subsystems can also be characterised using the same method as described for display, Wi-Fi and audio. For a few of the subsystems, like graphics and touchscreen, it is adequate to just use the amount of uptime the subsystem was active as the subsystem usage U.

VI. PERFORMANCE OF OUR LOGGER

The experiment discussed in this section determined the efficiency of our logger application when using different sampling windows. The logger was developed to capture only essential statistics for the power model. The logger was tested to be 2.6 times more power efficient when set at a 30 second sampling window than at a 5 second sampling window.

A. Experimental setup

All tests in this experiment were performed on a Nexus One phone running Android 2.3.3, Cyogenmod build. The current version of the logger application captures battery charge readings and wakelock driver statistics at regular intervals and writes them to two log files. The efficiency of the logger was tested in its 5 second, 30 second, and 300 second sampling window modes. The following steps were performed:

 A baseline rate of current discharge was calculated by noting the current charge before performing the test by reading the *charge_counter* file provided by *sys* filesystem, then letting the phone go into a low power

Sampling Window	mAh/m
5 s	0.47 mAh/m
30 s	0.18 mAh/m
300 s (5min)	0.11 mAh/m

TABLE IV EFFECT OF TRANSMISSION RATE ON THE AVERAGE UPTIME OF THE WI-FI WAKELOCK

state with the screen off for 90 minutes, and then noting the current charge after the 90 minute test. The rate of current discharge was calculated by using the following formula:

rate of current discharge = $\frac{\Delta current \ charge}{\Delta time}$.

The rate of current discharge for the baseline was determined to be 0.0003 mAh/m.

2) Then, the logger application was started and set to the 5 second sampling window. The current charge was noted at the beginning of the test, then the phone ran in a low power state for 90 minutes, and then the current charge was noted after the test. The logger application has an alarm function that allows the application to keep logging while the phone has gone into a low power state. The increase in the rate of current discharge due to running the application at the 5 second sampling window was calculated by using the following formula:

rate of current discharge added by logger application = rate of current discharge with logger app – rate of current discharge of baseline.

3) The tests for the 30 second and 300 second sampling windows were performed using the same procedures as in step 2 except with the logger application set to the respective sampling window for each test.

B. Results

Table IV shows the performance of the logger at the various chosen sampling windows. It is quite obvious that the application would use less current charge per minute if the sampling window to parse system data was set to a larger value. What is to be noted here is that although a 5 second interval produces 0.47 mAh/m, a 30 second interval brings this down to 0.18 mAh/m, and thereafter, the reduction in power consumption is not as much even for a time interval 10 times as large.

In summary:

- 1) The logger is 2.6 times more power efficient at a 30 second sampling window than at a 5 second sampling window.
- 2) It is 1.6 times more power efficient at a 300 second sampling window than at a 30 second sampling window.
- 3) As the sampling window is increased further, the gain in power efficiency tends towards 1.

VII. APPLICATION ANALYSIS

We used the generated power model to meter a few chosen applications on the Nexus One device. Each test case consisted of running an application on the phone for 30 minutes, and having our logger application log statistics that were used to perform off-line calculations using our power model. This allowed us to demonstrate that the calculated subsystem constants, C_i can be used in predicting the rate of current discharge attributed to an application.

A. Test Setup

The applications were evaluated by running multiple tests as described below, and the collected data was operated upon using the Octave scripts described in Section III. Each test ran for 30 minutes.

The tests run were in the following combinations:

- 1) Only the logger application.
- 2) The logger + Music.

Music is an application that comes standard with Android Nexus One phones. The Music application was set to play a 3 minute music file repeatedly for the duration of the test.

- The logger + Sound Recorder. This Sound Recorder application is also one of the standard applications on the device, and uses the microphone to record ambient sound.
- The logger + GPSTracker. GPSTracker is an application from the market which logs the GPS coordinates into a trace file.

B. Analysis

This analysis compares the manually calculated power consumption to the consumption calculated by our power model.

Table V shows a list of applications along with their actual power usage. This value was calculated as follows:

- 1) The application was started and set to a state close to normal use-case.
- 2) The state was maintained for 30 minutes.
- The beginning and ending current discharge values were recorded and subtracted.

In the above procedure, the phone was left on battery mode, so that the discharge values were available. The mAh value obtained was subtracted from the baseline, in order to account for system noise.

Application	Actual Avg. mAh/m
Logger	0.32 mAh/m
Music	1.17333 mAh/m
Sound Recorder	2.0267 mAh/m
GPSTracker	0.32 mAh/m

TABLE V

Actual Avg. Rate of power discharge for each application

We then used the logger application to monitor the chosen application using the tests listed in Section VII-A. We have the subsystem constant values, C_i from a previously run regression

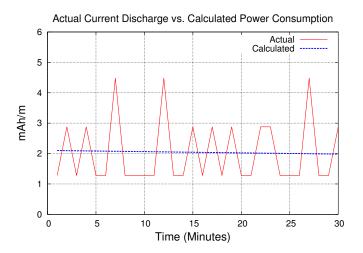


Fig. 7. Regression based results for each application

Application	Calculated Avg. mAh/m	Error
Logger	0.3082 mAh/m	3.69 %
Music	1.1882 mAh/m	1.27 %
Sound Recorder	2.0416 mAh/m	0.74 %
GPSTracker	0.3318 mAh/m	3.68%

TABLE VI

REGRESSION BASED RESULTS FOR EACH APPLICATION

analysis. We collect the subsystem usage data, U_i^j for the given application *j*. We can therefore calculate the power consumed by the chosen application for every time interval.

This calculation is basically a product of the constants vector of length i and the subsystem usage matrix of size n * i, for n recorded time intervals. Equation 3 discussed in Section III-C explains the basic calculation that is represented by this matrix multiplication. Since we are running this for 30 mins, on a 1 min sampling interval, we have 30 readings. By computing the matrix multiplication, we can determine a power consumption vector P of size n, which is the power consumed for every time interval. These values are averaged and tabulated in Table VI. Further, the error calculated is the deviation from the manually calculated power usage from Table V.

We can further analyse the per-interval results calculated using the matrix multiplication. Figure 7 shows the actual readings for current discharge plotted against those calculated using our power model. The readings for Sound Recorder in Tables V and VI present the averaged values of the readings which were plotted. It can be observed that the actual current discharge readings were quite bursty. This is primarily due to the fact that the battery driver in Nexus One records current discharge in multiples of 1.6 mAh only. The baseline noise of 0.32 mAh has been subtracted from all the points of the 'actual' curve plot. In contrast, the 'calculated' plot purely depends on the subsystem usage measurements U and the subsystem constants C. When the power consumption Pis predicted or calculated using our regression model, the resulting per-minute consumption is almost like a curve-fit of the data plot from raw current charge data.

VIII. USE CASES

A. Energy performance ratings

Since we are able to characterize power consumption for individual subsystems as well as applications, we can use the calculated energy consumption rates as a benchmark for rating applications. Applications can be classified in the market depending upon their amount of power consumption. Even more interesting is that we can assign power consumption ranges to different types of applications. Thereby, we can give an 'Energy Star'-like rating which is relative to the average power consumption of an application in its own class of applications.

B. Power usage based automatic policy enforcement

The results and analysis from our model can be fed into a policy enforcement subsystem which limits the use of individual components based on a set policy. Traditional Linux systems have existing tools in order to limit processes based on CPU and memory consumption [16], [17]. On smartphones, energy can be used as the metric for such rationing. Pering et al. demonstrated using their tool, CoolSpots [11], that automatic policy enforcement based on expected power consumtion is effective. Their study was focused only on wireless interfaces of mobile devices.

C. Malware detection

If we record the calculated power consumption statistics for each application as well as the entire system with enough data from multiple users, we will be able to perform granular anomaly detection. There is existing preliminary research for creating such a tool. Andromaly [18] is a behavior-based intrusion detection framework. The researchers attempted to identify power usage patterns for different classes of applications, such as games and tools, and report abnormalities if an application failed to behave like others in its class. Buennemeyer et al. proposed a technique to correlate Snort alerts with abnormality alerts from their battery-sensing Intrusion Detection System in order to justify the use of energy patterns as a method to identify abnormalities [19].

D. Prediction of power consumption

We can perform power-use predictions using the data analyzed in this model. Since we would have a record of various power profiles describing the power consumption patterns over time for a given type of task or application for a given environmental state, we can make predictions on the expected time of the phone's battery life. Research conducted by Trung et al. suggests that users were able to save energy consumption by just being aware of the amount of energy a task on the phone consumes [20]. Their tool predicts expected energy consumption for individual tasks on the device, based on surveying the usage patterns of multiple users.

By automating this process, we can also create a real-time hard deadline type of framework, where a user can check the lifetime before starting a task, for example: playing Angry Birds in the train when returning home from work. Ravi et al. presented a system to project the current state of the smartphone in order to predict the expected uptime and warn the user if the expected next battery-charging opportunity wasn't within this timeline [21].

IX. CONCLUSION

Our study indicates that our measuring and power modelling approach is both accurate and has a small power footprint. This allows our approach to avoid interference with the actual measuring process. From our performance analysis of our logging facilities, we conclude that due to the use of native hooks and simplicity of the model, the power consumption of the logger is as low as 0.32 mAh/m. The computation of the subsystem constants (C_i) using OLS is instantaneous on an external computer and we argue that this regression is simple enough to be performed on the phone in real-time. We expect the calculations to be efficient enough to be used frequently in order to keep the subsystem constants current and adapt according to environmental changes. We also conclude that the regression model is fairly accurate and we are able to attribute power usage to individual applications with an error rate of under 4%, as presented in Table VI.

The individual subsystem results presented in Section V have their use even outside our power model. Knowing that the variation in power consumption is a function of pixel strength of the display and the exact behaviour of the Wi-Fi subsystem under various modes can help developers make better decisions for power efficiency.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Nelson Nazzicari from the Center of Secure Information Systems at GMU for his formal explanation of the least squares regression technique with respect to our dataset.

REFERENCES

- T. Mogg and B. B. Corporation, "Free mobile apps drain battery faster," 2012, [accessed 3-April-2012]. [Online]. Available: http: //www.bbc.co.uk/news/technology-17431109
- [2] A. Pathak, Y. C. Hu, and M. Zhang, "Where is the energy spent inside my app? fine grained energy accounting on smartphones with eprof," in *Proceedings of the sixth conference on Computer systems*, ser. EuroSys '12. New York, NY, USA: ACM, 2012.
- [3] —, "Bootstrapping energy debugging on smartphones: a first look at energy bugs in mobile devices," in *Proceedings of the 10th* ACM Workshop on Hot Topics in Networks, ser. HotNets '11. New York, NY, USA: ACM, 2011, pp. 5:1–5:6. [Online]. Available: http://doi.acm.org/10.1145/2070562.2070567
- [4] J. Flinn and M. Satyanarayanan, "Powerscope: A tool for profiling the energy usage of mobile applications," in *Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications*, ser. WMCSA '99. Washington, DC, USA: IEEE Computer Society, 1999, pp. 2–. [Online]. Available: http://dl.acm.org/citation.cfm?id=520551.837522
- [5] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, "Finegrained power modeling for smartphones using system call tracing," in *Proceedings of the sixth conference on Computer systems*, ser. EuroSys '11. New York, NY, USA: ACM, 2011, pp. 153–168. [Online]. Available: http://doi.acm.org/10.1145/1966445.1966460

- [6] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang, "Accurate online power estimation and automatic battery behavior based power model generation for smartphones," in *Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis*, ser. CODES/ISSS '10. New York, NY, USA: ACM, 2010, pp. 105–114. [Online]. Available: http://doi.acm.org/10.1145/1878961.1878982
- [7] A. Shye, B. Scholbrock, and G. Memik, "Into the wild: Studying real user activity patterns to guide power optimizations for mobile architectures."
- [8] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin, "Diversity in smartphone usage," in *Proceedings of the 8th international conference on Mobile systems, applications, and services,* ser. MobiSys '10. New York, NY, USA: ACM, 2010, pp. 179–194. [Online]. Available: http://doi.acm.org/10.1145/1814433.1814453
- [9] M. Dong and L. Zhong, "Self-constructive high-rate system energy modeling for battery-powered mobile systems," in *Proceedings of the 9th international conference on Mobile systems, applications, and services*, ser. MobiSys '11. New York, NY, USA: ACM, 2011, pp. 335–348. [Online]. Available: http://doi.acm.org/10.1145/1999995.2000027
- [10] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan, "Energy-adaptive display system designs for future mobile environments," in *Proceedings* of the 1st international conference on Mobile systems, applications and services, ser. MobiSys '03. New York, NY, USA: ACM, 2003, pp. 245– 258. [Online]. Available: http://doi.acm.org/10.1145/1066116.1189045
- [11] T. Pering, Y. Agarwal, R. Gupta, and R. Want, "Coolspots: reducing the power consumption of wireless mobile devices with multiple radio interfaces," in *Proceedings of the 4th international conference* on Mobile systems, applications and services, ser. MobiSys '06. New York, NY, USA: ACM, 2006, pp. 220–232. [Online]. Available: http://doi.acm.org/10.1145/1134680.1134704
- [12] G. Castignani, N. Montavont, and A. Lampropulos, "Energy considerations for a wireless multi-homed environment," in *Proceedings of the* 17th international conference on Energy-aware communications, ser. EUNICE'11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 181–192. [Online]. Available: http://dl.acm.org/citation.cfm?id=2040416.2040443
- [13] R. Myers, Classical and Modern Regression With Applications, ser. Duxbury classic series. Duxbury/Thompson Learning, 1990. [Online]. Available: http://books.google.com/books?id=LOHHKQAACAAJ
- [14] J. W. Eaton, "Gnu octave," 1994, [accessed 3-April-2012]. [Online]. Available: http://www.gnu.org/software/octave/
- [15] G. D. Israel, "Determining sample size," Program Evaluation and Organizational Development, IFAS, University of Florida, 1992. [Online]. Available: http://edis.ifas.ufl.edu/pd006
- [16] A. Marletta, "cpulimit," 2006, [accessed 3-April-2012]. [Online]. Available: http://cpulimit.sourceforge.net/
- [17] P. Menage, R. Seth, P. Jackson, and C. Lameter, "Linux control groups," 2008, [accessed 3-April-2012]. [Online]. Available: http: //www.mjmwired.net/kernel/Documentation/cgroups.txt
- [18] A. Shabtai and Y. Elovici, "Applying behavioral detection on androidbased devices," in *Mobile Wireless Middleware, Operating Systems,* and Applications - Third International Conference, Mobilware 2010, Chicago, IL, USA, June 30 - July 2, 2010. Revised Selected Papers, ser. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Y. Cai, T. Magedanz, M. Li, J. Xia, and C. Giannelli, Eds., vol. 48. Springer, 2010, pp. 235–249.
- [19] T. K. Buennemeyer, T. M. Nelson, L. M. Clagett, J. P. Dunning, R. C. Marchany, and J. G. Tront, "Mobile device profiling and intrusion detection using smart batteries," *Hawaii International Conference on System Sciences*, vol. 0, p. 296, 2008.
- [20] K. N. Truong, J. A. Kientz, T. Sohn, A. Rosenzweig, A. Fonville, and T. Smith, "The design and evaluation of a task-centered battery interface," in *Proceedings of the 12th ACM international* conference on Ubiquitous computing, ser. Ubicomp '10. New York, NY, USA: ACM, 2010, pp. 341–350. [Online]. Available: http://doi.acm.org/10.1145/1864349.1864400
- [21] N. Ravi, J. Scott, L. Han, and L. Iftode, "Context-aware battery management for mobile phones," in *Proceedings of the 2008 Sixth Annual IEEE International Conference on Pervasive Computing and Communications*, ser. PERCOM '08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 224–233. [Online]. Available: http://dx.doi.org/10.1109/PERCOM.2008.108