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Abstract—Reducing power consumption has become a crucial 
design tenet for both mobile and other small computing devices 
that are not constantly connected to a power source. However, 
unlike devices that have a limited and predefined set of function
ality, recent mobile smartphone devices have a very rich set of 
components and can handle multiple general purpose programs 
that are not a-priori known or profiled. 

In this paper, we present a general methodology for collecting 
measurements and modelling power usage on smartphones. Our 
goal is to characterize the device subsystems and perform 
accurate power measurements. We implemented a system that 
effectively accounts for the power usage of all of the primary 
hardware subsystems on the phone: CPU, display, graphics, GPS, 
audio, microphone, and Wi-Fi. To achieve that, we make use of 
the per-subsystem time shares reported by the operating system’s 
power-management module. We present the models capability to 
further calculate the power consumption of individual applica
tions given measurements and the feasibility of our model to 
operate in real-time and without significant impact in the power 
footprint of the devices we monitor. 

I. INTRODUCTION 

A recent smartphone market study suggests that free mobile 
applications on the Android Market which include advertising 
sometimes spend up to 75% of their total power consumption 
on powering these third party services [1]. According to 
researchers, there is a clear trend that suggests that third party 
applications in the mobile application markets are not designed 
or engineered with power consumption as a priority [2]. 
Furthermore, software engineers and practitioners have pointed 
out some of these design and implementation deficiencies and 
even consider them as bugs for mobile devices due to the 
constraints on the battery [3]. 

Being able to generate a device-specific scalable power 
consumption model is therefore crucial for understanding, 
designing, and implementing better mobile application soft
ware. Of course, the consumption measurement and modeling 
system must have a low footprint on its own while collecting 
system metrics; otherwise, it will affect the validity of the 
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measurements. A system that significantly alters the power 
consumption of the device can cause changes that will inval
idate the accuracy of the measurements and of the produced 
consumption model. 

However, we believe that a proper energy accounting infras
tructure will assist both application developers and smartphone 
users to extend the battery life of their devices and make 
informed decisions about where to spend the remaining device 
power, and potentially in real-time. For the purpose of this 
study we focused on Android devices but plan to look at other 
platforms such as the iPhone or Blackberry in the future. 

Earlier research in power analysis for smartphone devices 
has produced power models with differing features and fo
cuses. We differ from these research efforts in the following 
key aspects. 

A. Paper Contributions 

Our main contributions in this paper are as follows: 
1) We perform measurements and data collection of each 

device subsystem’s power consumption by leveraging 
existing system hooks in the Android kernel wake 
locks driver. This enables us to acquire both accurate 
measurements and at the same time reduce the power 
and computational requirements of model generation on 
the phone. Furthermore, we can perform analysis at 
different time-scales because the measurements happen 
cumulatively and at real-time. 

2) We take into account OS-specific operation states for 
individual subsystems in order to construct the model 
and the relative constants. However, our calculations are 
independent of the time interval used in creating the data 
and do not require reduction into a fixed pre-defined set 
of states with power ratings for each. 

3) We perform measurements of behaviour for all the 
primary device subsystems under different conditions 
which provide an in-depth understanding of how the 
power is consumed on a smartphone. 

II. RELATED WORK 

There is a wealth of research studies on power models 
in the existing literature. Some of them specifically target 
smartphones but depend on external hardware to measure the 
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actual current charge consumed by individual components of 
the smartphone. For instance, PowerScope [4] is an often-cited 
research tool which uses hardware instrumentation to measure 
system activity and thereby allows for the determination of the 
power consumption of mobile applications. 

Some more recent models divide the system into states 
and associate a fixed power consumption value to each state. 
In [5], the authors describe the device as a finite-state-machine. 
They trace system-calls in order to determine which state the 
system is in. On the other hand, PowerBooter [6] employs a 
seemingly comprehensive set of training and characterization 
applications in order to construct a model with power usage 
cost assigned to pre-defined states. They further claim that 
there is negligible difference in the usage patterns for two 
phones of the same manufacturing. However, there is sufficient 
literature to suggest that smartphone usage among different 
human users can lead to different energy models [7], [8]. Fur
ther, software updates, indoor or outdoor usage, geographical 
region and climate, and wear-and-tear are some of the other 
factors which may cause significant changes in the model over 
time. Therefore, characterizing the system with a fixed set of 
benchmarks and a model that has fixed states is not scalable, 
even if calculated comprehensively. 

In Sesame [9], authors present a statistical power model 
that is adaptive and can be deployed for general-purpose com
puters as well as Linux-based smartphones including Nokia 
and Android. Their focus is on achieving high rate power 
estimations by performing an estimation every 10 ms. We 
cover a discussion about the differences of our model with 
Sesame in Section IV. 

Pathak et al. in [2], [5] present a model based on trac
ing system calls. Their claim is that hardware component 
utilization-based models do not address the power behavior of 
devices, such as camera and GPS, where a process might use 
the subsystem for a few milliseconds, but in consequence, the 
operating system keeps that subsystem alive for much longer. 
They further claim that certain operations on the smartphone 
have an indirect impact on subsystem power usage. For 
example, file I/O can cause a change in the power state of 
the sdcard module. While these findings are true, it does not 
invalidate the use of utilization-based models. Our system 
receives utilization information from the power suspend driver, 
and therefore does not depend on sampling all device calls 
made from userspace activities. Moreover, our system uses 
a sampling rate to perform the regression while creating the 
model, but thereafter to actually evaluate power consumption 
in real-time, we do not need a sampling rate. Our subsystem 
constants, once calculated, are time-period independent. We 
explain this concept further in Section III-A. An additional 
problem with system call trace-based power models is that 
system calls do not address the power consumed by sensory 
inputs, such as the proximity sensor, compass, and capacitive 
touch-screen. 

Other researchers have attempted to model individual activ
ities on the smartphone for better energy management. Iyer et 
al. demonstrated a technique to save overall energy consump

tion by darkening parts of the mobile organic light-emitting 
diode (OLED) display, which were not the focus of a user’s 
attention [10]. They further experimented with greenscales, but 
did not cover a full-scale analysis of the power consumption 
based on the average pixel color of the screen. Our study in 
section V further complements their study. CoolSpots [11] 
is another often-cited research that demonstrates the use of 
quantitative measurements to automatically switch between 
multiple radio interfaces, such as Wi-Fi and Bluetooth, in order 
to save power. Castignani et al., in [12], conducted a similar 
study for newer Wi-Fi and 3G interfaces. 

III. MODEL 

On mobile systems, the battery discharge is reported by 
the kernel as a global value. There is no existing com
mercially available method to divide the measurements into 
per-subsystem or per-application readings on any platform. 
Therefore, we have created a statistical model which breaks 
the power consumption into subsystems. 

power used = cpu + display + graphics + 

+ gps + audio + mic + ... + wifi. (1) 

We accomplish this by collecting subsystem usage mea
surements from the operating system. We characterize each 
subsystem depending on its characteristics. In our sample 
implementation, the usage information is obtained from the 
power suspend driver, which was implemented for the Google 
Android operating system. Other than this, we record the 
CPU utilization, screen brightness, pixel color strength on the 
screen, and other such parameters which are not controlled 
by a subsystem or device driver, but by the operating system 
itself. 

We consider the power used by each subsystem as a function 
of the time that the subsystem was used and the state in which 
the subsystem was operating. We express this in terms of usage 
U of the subsystem. This can be represented mathematically. 

A. Regression model 

Let C be the constant for the relative impact of a subsystem 
i on the power consumption, U be the total usage of the 
subsystem i, and P be the overall power consumption. 

Therefore, we have the following equation:  
P (t) = CiUi(t). (2) 

i 

This equation is applied for each time interval t. This is 
clearly a linear function of time. If we consider ti as the 
actual time that a subsystem was active in this time interval 
t, then by dividing the function by the time interval, we can 
get the power P irrespective of the measured time interval. In 
addition, the subsystem constants Ci remain fixed, irrespective 
of the time interval used. This concept is also explained in the 
appendix section of Sesame [9], but they consider this method 
as impractical for their model. 

Unlike Sesame, we use the Android’s power suspend driver 
to get most of our subsystem usage data. Therefore, it is 



 

 

Subsystem Wakelock Subsystem Wakelock 
Display main Graphics kgsl 
Wi-Fi wlanrxwake GPS GPS 
Audio AudioHardwareQSDOut Microphone AudioHardwareQSDIn 

Touchscreen event3 Compass event2 

TABLE I
 
WAKELOCKS CORRESPONDING TO EACH SUBSYSTEM
 

possible for us to collect data cheaply in the required format 
as per this model. The Android operating system requires 
that every device driver register a wakelock with this suspend 
driver. The operating system calculates the amount of time 
that this driver was in an active state. The locks we chose for 
each subsystem are listed in Table I. The performance of our 
logger is discussed in Section VI. 

This regression model can be used to calculate the constants 
Ci (in training mode), and then the power P when feeding 
application usage data into the model. 

B. Training mode 

In our experiments, we used a training stage to calculate the 
relative constants C. For this, we performed Ordinary Least 
Squares (OLS) regression on equations where usage U and 
power P were already known. 

The constants C are the relative ratios of each subsystem’s 
impact on the overall power consumption. These constants 
are subject to external factors like wear and tear, weather 
changes, network signal strength, and device driver updates. It 
is possible to perform this regression in real-time, so that the 
constants C update when the environment changes. However, 
our goal is to demonstrate a possibility of creating such a 
model and therefore we make certain calculations in a lab 
setting, even though the same can be performed on the device, 
in real-time. 

Once these constants are calculated, they can be used in the 
same regression equations, in order to predict the power usage 
of a live system, irrespective of whether the power supply was 
in Alternating Current (AC) or battery mode. 

C. Application power analysis 

The model described so far has used subsystem usage values 
for the entire operating system. By extension, we replace these 
values with subsystem usage statistics of a given application or 
process, and we calculate per-application power consumption. 

That is, for a given application j : 
jP j (t) = CiU (t). (3)i 

i 

In this analysis, we do not need to recalculate the constants 
Ci. The same constants work for the per-application analysis 
and for any new chosen time-interval for measurements. 

D. Ordinary Least Squares (OLS) regression analysis 

The least squares linear regression is one of the most 
basic statistical models [13]. In our system, the dependant 
variable or the output variable is the power P. The input 
variables, or features, are subsystem usages Ui. Since there 

are i subsystems, we have an i-dimensional feature space for 
the regression, which can be plotted as an i-dimensional plane. 
The power usage P is called a ‘dependant variable’ and the 
subsystem usages Ui are called ‘independent variables’. For 
every time interval, we get one set of input variables and an 
output variable. 

The goal of the training mode is to find the best choice 
values for the constants Ci which are fixed coefficients for 
each subsystem. The accuracy of these chosen constants are 
determined by the method of least squares approach. During 
the training period, we have data for the subsystem usages Ui 

and the current discharge P, for n time intervals. The residual R 
is a function of the amount of error for each of the n intervals. 
The error is calculated by a simple formula: 

(actual Pn − calculated Pn)
2 . (4) 

n  
In equation 4, the calculated Pn is the CiUi for all i, 

where the Ci are chosen coefficients. By minimizing the value 
of equation 4, we achieve the best values for the constants 
Ci. Thereafter, these derived constants Ci can be used with 
subsequent input readings, U, at the time interval n + 1, to 
calculate Pn+1. 

This system can be adaptive if we perform the least squares 
analysis periodically to find better chosen constants, C. In our 
implementation, we simply provide the data in the form of a 
matrix of n rows (one for each time interval) and i columns, 
along with a vector of all Pn values, into a built-in OLS 
function in GNU Octave software [14]. If we performed this 
computation on the phone, we could do the same in real-time 
with very little overhead. However, such an implementation is 
not in the scope of this paper. 

It is to be noted that we need certain constraints on the 
best chosen values for Ci. Often, the OLS function would try 
to over-fit the data by setting constants to zero or negative 
values. We restrict the function from returning such a result 
and assume the next best fit as our correct choice of constants. 

E. Non-linearity of subsystems 

It is common knowledge that most subsystems are non
linear, such that the power consumed at a given time interval 
strongly depends on the state in which the device was oper
ating. For example, different pixel color and brightness states 
have a strong effect on the amount of power consumed by the 
display subsystem. 

PowerBooter reduces the system into a fixed set of states 
for which the power usage is pre-calculated. Thereafter, they 
employ a multi-variable regression on the data. In contrast, 



we demonstrate how we translate the non-linear power con
sumption of individual subsystems into a linear equivalent, 
without compromising the continuous nature of our data. In 
order to be able to make this argument, we first attempted to 
understand the power consumption of each subsystem under 
the various states in which they operate. These operating states 
are analysed in Section V. 

IV. DISCUSSION 

We are not the first at proposing a statistical regression-
based model for power consumption measurements. 
Sesame [9] also employs a regression technique to calculate 
the subsystem constants in a training mode and later use them 
with system parameters in order to compute the expected 
output or response. After model generation, their system 
can evaluate power consumption at a very high rate, limited 
only by the accuracy of the predictor data provided by the 
operating system about each subsystem. They do not use a 
fixed set of system states for which the power consumption 
value is predefined. However, they make very different 
choices on how this experiment is setup, as compared to ours. 

They use the Total Least Squares (TLS) method in order 
to create their statistical model. The claim is that this model 
reduces errors in both predictors (input) as well as responses 
(output). We believe this argument is flawed in several ways. 

1) First, the way Ordinary Least Squares works is explained 
in Section III-D. In order to calculate error from the 
residual, we needed the expected result for the power 
(output). However, if both the output and input were 
to be adjusted, then relative “error” for each of the 
input variables needs to be known. This is usually not 
available in a real-time scenario. 

2) Second, it might be fair to assume that some of the input 
from predictors can be noisy, or its update time period 
can be infrequent, but it is a questionable assumption 
that all the data points need to be adjusted. By doing this, 
we also hurt the system’s capacity to identify anomalies. 

3) Third, using TLS automatically requires you to scale the 
data to common terms. Running the regression on the 
data where one of the predictors has either 50 seconds, 
or 50000 ms or 0.83 of the total time window, will 
each give very different results. Scaling one predictor 
has a strong impact on the constants calculated for other 
predictors. On the other hand, because we use OLS, our 
subsystem data does not need to be carefully normalized 
to the same common terms. 

Further, the component analysis and linear regression per
formed by Sesame are expensive. Their paper suggests that 
it can take about 10 minutes on mobile devices to collect 
the predictor data from the operating system and perform 
the regression. They perform this calculation when the device 
is connected to AC-power. Our technique primarily uses the 
wakelocks to determine subsystem usage (predictors). This 
interface covers all the device drivers, and as a result, most of 
our data comes from a single interface. Our data collection 
therefore is instantaneous. Our regression calculations also 

take only a few seconds off-line and when performed on a 
mobile device, we are confident that this CPU time will not 
increase significantly. 

V. SUBSYSTEM ANALYSIS 

The subsystems are each dependent on various factors that 
determine their power consumption. This includes the amount 
of time they are kept alive, but more importantly, the state of 
the hardware, and other environmental factors. We performed 
various experiments in order to tailor our regression model 
to fit each of the subsystems. Table II details the Nexus One 
device we used for our primary results. 

Component Nexus One 
Processor 1 GHz Qualcomm QSD 8250 Snapdragon ARM 

LCD Display SLCD capacitive touchscreen % 
Wi-Fi Wi-Fi IEEE 802.11b/g/n 
GPS aGPS 

Cellular T-Mobile USA: GSM/UMTS/HSPA 
Audio Built-in microphone and speaker 
Battery Internal Rechargeable Li-ion: 1400 mAh 

Operating System Android 2.3.3 (Gingerbread) Cyanogenmod 

TABLE II
 
COMPONENTS OF GOOGLE NEXUS ONE
 

A. Display subsystem 

Our model calculates a ‘usage’ value, Udisp, for the display 
component of our regression equation (Equation 2). Each pixel 
of the screen consumes a different amount of power depending 
upon its color and screen brightness. In this paper, we call this 
‘pixel strength’. The display subsystem usage for a given time 
interval t is determined by 

Udisp(t) = avg. pixel strength ∗ display uptime. (5) 

The display uptime is recorded from the power suspend 
driver by parsing the time that the wakelock ‘main’ was active. 
In Table I we list the locks for each subsystem. 

To calculate pixel strength, we studied the effect of the 
display brightness level and pixel color on the rate of current 
discharge. The results of our experiments concluded that red, 
green, and blue pixels each have a different effect on the 
rate of current discharge. Blue pixels cause a higher rate of 
current discharge than green pixels and green pixels cause a 
higher rate of current discharge than red pixels. We found 
that the effect of the remaining colors can be determined by 
performing calculations on their rgb components. 

1) Experimental Setup: We created an Android application 
which sets the screen color to the programmed rgb value. The 
screen is further set to full screen mode, so that the entire 
screen is filled with that one color, eliminating the menu bar 
at the top of the normal screen view. We then record the rate 
of current discharge in milliampere-hour per minute (mAh/m) 
for brightness levels varying from 0% to 100%. 
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Fig. 1. Effect of measurement parameters on current discharge readings 
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Fig. 2. Effect of Pixel Color and Display Brightness on the Rate of Current 
Discharge 

2) Parameters chosen for measurements: The measure
ments were taken at 10% increments of brightness levels, with 
each level measured for 10 minute intervals. The readings were 
recorded starting from 0% brightness, moving upwards until 
100%. These parameters do not influence the readings. 

In Figure 1, we plotted white and green colors for different 
measurement environments. The plot shows that these param
eters are independent from the current discharge readings and 
therefore we chose the values that was most convenient for 
our measurements. Our chosen parameters for the measure
ments are adequate for the analysis we perform in subsequent 
sections. 

3) Pixel Strength Analysis: Figure 2 displays the results 
for different combinations of red, green and blue colors. We 
observe that the black pixels had the smallest effect on the rate 
of current discharge and white pixels had the highest effect on 
the rate of current discharge. Further, the blue component had 
a greater impact on current discharge than the green and the 
red components. 

Black, which has an rgb value of (0,0,0), consumed some 

Fig. 3. Effect of color shade on the rate of current discharge 

baseline amount of current charge. We found the area between 
the curves for each color and the black curve. The areas are 
listed in Table III. 

Red Green Blue White Orange Magenta Cyan 
84.84 136.23 165.32 303.00 191.50 239.01 288.46 

TABLE III 
AREA BETWEEN THE CURVES FOR EACH COLOR AND THE BLACK CURVE 

We performed regression on this data for the various rgb 
combinations and conclude that the red, green and blue com
ponents have a linear impact on the overall current discharge. 
Further, for any color combination, given the rgb value, we can 
calculate this impact on current discharge by using Equation 6. 

pixel strength = 0.4216 ∗ r + 0.7469 ∗ g + 1 ∗ b. (6) 

We can verify this by comparing the ratio of pixel strengths 
of two colors with the ratio of the area under the curves of 
these two colors. 

For Orange Vs Blue at 100% brightness: 
• Orange: 0.4216 * 255 + 0.7469 * 255 + 1 * 0 = 297.968. 
• Blue: 0.4216 * 0 + 0.7469 * 0 + 1 * 255 = 255.0. 
Comparing 297.968 : 255.0 to the areas obtained from actual 

data from the device, 191.499 : 165.315, we find that the error 
in our calculation is just 0.87%. 

For Magenta Vs. Cyan at 100% brightness: 
• Magenta: 0.4216 * 255 + 0.7469 * 0 + 1 * 255 = 362.508. 
• Cyan: 0.4216 * 0 + 0.7469 * 255 + 1 * 255 = 445.46. 
Comparing 362.508 : 445.46 to the areas obtained from 

actual data from the device, 239.011 : 288.462, we find that 
the error in our calculation is 1.7%. 

These measurements were for the strongest shade (255) of 
each component. We performed further measurements with 
different shades of blue. These readings are plotted in Figure 3. 
Based on the readings, it is clear that the shade also impacts 
the current discharge linearly and the Equation 6 is true for 
weaker shades of each component as well. 
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increasing in steps of 5% at a fixed frequency 

These results indicate that our model is effective in deter
mining the pixel strength, given the rgb values. In order to 
calculate the average pixel strength of the entire screen, we 
find the average rgb values at any given instant from a snapshot 
of the framebuffer. 

4) Implementation: We incorporated these observations 
into our logger which creates the input data for the regression 
equation 2. 

The pixel strength is calculated using native code which 
samples the framebuffer for rgb values at random points, 
and averages them. We used Glenn’s formula [15] in order 
to determine the right sampling size for the framebuffer for 
a confidence level of 99% and an error allowance of 2%. 
We fed these averaged values into our Equation 6 to get 
the corresponding pixel strength of the screen at the time of 
recording measurements. 

Multiplying this value with the wakelock uptime gives us 
the best estimate of the display subsystem usage, Udisp, for 
the corresponding logging time interval t. 

This usage value is recorded into a matrix, which is the 
input for our OLS regression model described in Section III. 

B. CPU subsystem 

We studied the effects of percentage CPU utilization and 
CPU frequency on the rate of current discharge. The percent
age CPU utilization can have large effects on the overall rate 
of current discharge depending on the frequency in which the 
CPU is maintaining. The higher the CPU frequency, the greater 
the rate of current discharge. We ran experiments to find a 
pattern. 

1) Experimental Setup: We created an Android application 
which stabilizes the CPU utilization at a target percentage 
using an arbitrary CPU load and maintains that percentage 
CPU level for a fixed interval while we record the rate of 
current discharge. We set the desired CPU frequency in the 
operating system for each test run. This setting can be found 
under the sys filesystem. 

Fig. 5. Effect of CPU Frequency and Percentage CPU Utilization on the 
Rate of Current Discharge 

For the set of tests performed in this experiment, the 
application was configured to start each test by stabilizing 
itself at 0% CPU and running for a 10 minute interval at that 
level. We then changed the utilization in steps of 2%, 5%, and 
10%. The tests were performed with frequencies set to 245.0 
MHz, 499.2 MHz, 652.8 MHz, 844.8 MHz, 998.4 MHz and 
‘on-demand’. The 10 minute interval was chosen due to low 
variance in the collected data. For any measurements made 
with lesser time interval, the current discharge curve did not 
fit with as low variance. We plotted the mean squared error 
for measurements at 5% steps in Figure 4. 

2) CPU Performance Analysis: The curves for the selected 
frequencies are plotted in Figure 5. At regular increasing levels 
of CPU utilization, the amount of current discharge per minute 
was recorded. At any given percentage CPU utilization, the 
power consumption is linearly comparable depending upon 
their set frequency. 

In summary: 
(a) The effect of the percentage CPU utilization	 on the 

rate of current discharge can be accurately represented 
linearly. 

(b) The CPU frequency has a large effect on the rate of 
current discharge and the higher the CPU frequency, the 
greater the rate of current discharge. 

3) Implementation: In our logger, we parse the CPU uti
lization and the current CPU frequency from the proc and sys 
filesystems respectively. Since CPU utilization is equivalent to 
the time ratio of CPU usage for a given interval, and there is 
no corresponding wakelock in the power suspend driver, the 
parsed values are used directly in the regression model for the 
CPU subsystem usage, Ucpu. 

C. Wi-Fi Subsystem 

The power consumption by the Wi-Fi subsystem during 
transmission depends on the rate of packets sent or received. 
We conducted experiments to determine the exact relationship 
between these factors and to create equations to fit the findings 
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into our model. We were able to generalise the readings to ar
rive at one single equation to govern all states of transmission. 
Our study does not include or identify the power consumed to 
seek a connection with a Wi-Fi access-point. A separate study 
can be conducted to extend our model to include the power 
consumed to find and connect to different access points. 

1) Experimental Setup: The network link used was a Local 
Area Network (LAN) with a Wi-Fi 802.11G router. For testing 
for outgoing traffic Tx a program was used, which sent User 
Datagram Protocol (UDP) packets from the mobile device over 
Wi-Fi at different data transmission rates. The program was 
run natively on a mobile device. UDP packets were sent from 
the device at a rate of 0 KB/s for the first 20 minutes and 
the transmission rate increased by approximately 100 KB/s 
each 20 minutes until a transmission rate of 950 KB/s was 
reached. The number of bytes transmitted from the device and 
the battery charge count were recorded. 

A second experiment was conducted to determine if the 
amount of incoming traffic Rx had a similar impact on the 
rate of current discharge. A program was run on the device to 
receive UDP packets sent to the device at different transfer 
rates by another client on the network. The client on the 
network sent UDP packets to the device at a rate of 0 KB/s 
for the first 20 minutes and then increased the rate at which 
it sent packets by 100 KB/s each 20 minutes, until a rate of 
1700 KB/s was reached. 

The device was kept stationary for this entire experiment, 
and the effect of mobility during Wi-Fi communication is not 
yet covered in our model. 

2) Analysis: Figure 6 displays the results from the inbound 
and outbound transmissions performed. As the Wi-Fi transmis
sion rate increases by 100 KB/s, the rate of power discharge 
increases by an average of 0.11 mAh/m. The slope of the two 
curves can be averaged to form the Equation 7. 

current discharge rate (cdr) = 0.0011x ∗ 2.739. (7) 

For each time window we can calculate the average trans
mission rate from Equation 7 and the time that the Wi-Fi 

subsystem was used, in order to calculate the Wi-Fi subsystem 
usage, UW iF i. 

UW iF i(t) = cdr ∗ W iF i uptime. (8) 

The subsystem uptime is found using the wakelock 
wlanxwake as mentioned in Table I. This lock records cumu
latively the amount of time that the Wi-Fi device was active. 

D. Audio subsystem 

The audio subsystem is associated with the wakelock Au
dioHardwareQSDOut. The audio subsystem wakelock records 
the amount of time that the device was active. 

We created an experiment in which we set the volume of 
the phone to 13%, 60% and 87% for 10 minutes each. We 
recorded the following results: 

•	 Results at 13%: averaged an uptime of 60.000 seconds per 
minute over the 10 minutes the test ran at 13% volume. 

•	 Results at 60%: average an uptime of 59.999 seconds per 
minute over the 10 minutes the test ran at 60% volume. 

•	 Results at 87%: averaged an uptime of 60.000 seconds per 
minute over the 10 minutes the test ran at 87% volume. 

The Audio results indicated that, similarly to Wi-Fi, the 
rate of increase in the uptime of the Audio wakelock remains 
constant. However, the power consumption also depends on 
the volume of the sound being output from the speakers. 
Therefore, just as we did in the case of transmission rate for 
Wi-Fi, we need to derive an equation that calculates the power 
consumption at different audio volume levels. 

E. Other subsystems 

Other subsystems can also be characterised using the same 
method as described for display, Wi-Fi and audio. For a few of 
the subsystems, like graphics and touchscreen, it is adequate 
to just use the amount of uptime the subsystem was active as 
the subsystem usage U. 

VI. PERFORMANCE OF OUR LOGGER 

The experiment discussed in this section determined the 
efficiency of our logger application when using different 
sampling windows. The logger was developed to capture only 
essential statistics for the power model. The logger was tested 
to be 2.6 times more power efficient when set at a 30 second 
sampling window than at a 5 second sampling window. 

A. Experimental setup 

All tests in this experiment were performed on a Nexus One 
phone running Android 2.3.3, Cyogenmod build. The current 
version of the logger application captures battery charge 
readings and wakelock driver statistics at regular intervals and 
writes them to two log files. The efficiency of the logger was 
tested in its 5 second, 30 second, and 300 second sampling 
window modes. The following steps were performed: 

1) A baseline rate of current discharge was calculated by 
noting the current charge before performing the test 
by reading the charge counter file provided by sys 
filesystem, then letting the phone go into a low power 



Sampling Window mAh/m VII. APPLICATION ANALYSIS 
5 s 0.47 mAh/m 
30 s 0.18 mAh/m 

300 s (5min) 0.11 mAh/m 

TABLE IV
 
EFFECT OF TRANSMISSION RATE ON THE AVERAGE UPTIME OF THE
 

WI-FI WAKELOCK
 

state with the screen off for 90 minutes, and then noting 
the current charge after the 90 minute test. The rate of 
current discharge was calculated by using the following 
formula: 

Δcurrent charge rate of current discharge = .Δtime 

The rate of current discharge for the baseline was 
determined to be 0.0003 mAh/m. 

2) Then, the logger application was started and set to the 5 
second sampling window. The current charge was noted 
at the beginning of the test, then the phone ran in a 
low power state for 90 minutes, and then the current 
charge was noted after the test. The logger application 
has an alarm function that allows the application to keep 
logging while the phone has gone into a low power 
state. The increase in the rate of current discharge due to 
running the application at the 5 second sampling window 
was calculated by using the following formula: 

rate of current discharge added by logger application = 
rate of current discharge with logger app − 

rate of current discharge of baseline. 

3) The tests for the 30 second and 300 second sampling 
windows were performed using the same procedures as 
in step 2 except with the logger application set to the 
respective sampling window for each test. 

B. Results 

Table IV shows the performance of the logger at the 
various chosen sampling windows. It is quite obvious that the 
application would use less current charge per minute if the 
sampling window to parse system data was set to a larger 
value. What is to be noted here is that although a 5 second 
interval produces 0.47 mAh/m, a 30 second interval brings this 
down to 0.18 mAh/m, and thereafter, the reduction in power 
consumption is not as much even for a time interval 10 times 
as large. 

In summary: 
1) The logger is 2.6 times more power efficient at a 30 

second sampling window than at a 5 second sampling 
window. 

2) It is 1.6 times more power efficient at a 300 second 
sampling window than at a 30 second sampling window. 

3) As the sampling window is increased further, the gain 
in power efficiency tends towards 1. 

We used the generated power model to meter a few chosen 
applications on the Nexus One device. Each test case consisted 
of running an application on the phone for 30 minutes, 
and having our logger application log statistics that were 
used to perform off-line calculations using our power model. 
This allowed us to demonstrate that the calculated subsystem 
constants, Ci can be used in predicting the rate of current 
discharge attributed to an application. 

A. Test Setup 

The applications were evaluated by running multiple tests 
as described below, and the collected data was operated upon 
using the Octave scripts described in Section III. Each test ran 
for 30 minutes. 

The tests run were in the following combinations: 
1) Only the logger application. 
2) The logger + Music. 

Music is an application that comes standard with An
droid Nexus One phones. The Music application was set 
to play a 3 minute music file repeatedly for the duration 
of the test. 

3) The logger + Sound Recorder. 
This Sound Recorder application is also one of the stan
dard applications on the device, and uses the microphone 
to record ambient sound. 

4) The logger + GPSTracker. 
GPSTracker is an application from the market which 
logs the GPS coordinates into a trace file. 

B. Analysis 

This analysis compares the manually calculated power con
sumption to the consumption calculated by our power model. 

Table V shows a list of applications along with their actual 
power usage. This value was calculated as follows: 

1) The application was started and set to a state close to 
normal use-case. 

2) The state was maintained for 30 minutes. 
3) The beginning and ending current discharge values were 

recorded and subtracted. 
In the above procedure, the phone was left on battery mode, 
so that the discharge values were available. The mAh value 
obtained was subtracted from the baseline, in order to account 
for system noise. 

Application Actual Avg. mAh/m 
Logger 0.32 mAh/m 
Music 1.17333 mAh/m 

Sound Recorder 2.0267 mAh/m 
GPSTracker 0.32 mAh/m 

TABLE V 
ACTUAL AVG. RATE OF POWER DISCHARGE FOR EACH APPLICATION 

We then used the logger application to monitor the chosen 
application using the tests listed in Section VII-A. We have the 
subsystem constant values, Ci from a previously run regression 
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Application Calculated Avg. mAh/m Error 
Logger 0.3082 mAh/m 3.69 % 
Music 1.1882 mAh/m 1.27 % 

Sound Recorder 2.0416 mAh/m 0.74 % 
GPSTracker 0.3318 mAh/m 3.68% 

TABLE VI
 
REGRESSION BASED RESULTS FOR EACH APPLICATION
 

the data plot from raw current charge data. 

VIII. USE CASES 

A. Energy performance ratings 

Since we are able to characterize power consumption for 
individual subsystems as well as applications, we can use 
the calculated energy consumption rates as a benchmark for 
rating applications. Applications can be classified in the market 
depending upon their amount of power consumption. Even 
more interesting is that we can assign power consumption 
ranges to different types of applications. Thereby, we can give 
an ‘Energy Star’-like rating which is relative to the average 
power consumption of an application in its own class of 
applications. 

B. Power usage based automatic policy enforcement 

The results and analysis from our model can be fed into 
a policy enforcement subsystem which limits the use of 
individual components based on a set policy. Traditional Linux 
systems have existing tools in order to limit processes based 
on CPU and memory consumption [16], [17]. On smartphones, 
energy can be used as the metric for such rationing. Pering 
et al. demonstrated using their tool, CoolSpots [11], that 
automatic policy enforcement based on expected power con
sumtion is effective. Their study was focused only on wireless 
interfaces of mobile devices. 

analysis. We collect the subsystem usage data, U j
i for the given 

C. Malware detection application j. We can therefore calculate the power consumed 
by the chosen application for every time interval. If we record the calculated power consumption statistics 

This calculation is basically a product of the constants 
vector of length i and the subsystem usage matrix of size 
n ∗ i, for n recorded time intervals. Equation 3 discussed in 
Section III-C explains the basic calculation that is represented 
by this matrix multiplication. Since we are running this for 
30 mins, on a 1 min sampling interval, we have 30 readings. 
By computing the matrix multiplication, we can determine a 
power consumption vector P of size n, which is the power 
consumed for every time interval. These values are averaged 
and tabulated in Table VI. Further, the error calculated is 
the deviation from the manually calculated power usage from 
Table V. 

We can further analyse the per-interval results calculated 
using the matrix multiplication. Figure 7 shows the actual 
readings for current discharge plotted against those calculated 
using our power model. The readings for Sound Recorder in 
Tables V and VI present the averaged values of the readings 
which were plotted. It can be observed that the actual current 
discharge readings were quite bursty. This is primarily due 
to the fact that the battery driver in Nexus One records 
current discharge in multiples of 1.6 mAh only. The baseline 
noise of 0.32 mAh has been subtracted from all the points 
of the ‘actual’ curve plot. In contrast, the ‘calculated’ plot 
purely depends on the subsystem usage measurements U and 
the subsystem constants C. When the power consumption P 
is predicted or calculated using our regression model, the 
resulting per-minute consumption is almost like a curve-fit of 

for each application as well as the entire system with enough 
data from multiple users, we will be able to perform granular 
anomaly detection. There is existing preliminary research for 
creating such a tool. Andromaly [18] is a behavior-based 
intrusion detection framework. The researchers attempted to 
identify power usage patterns for different classes of appli
cations, such as games and tools, and report abnormalities if 
an application failed to behave like others in its class. Buen
nemeyer et al. proposed a technique to correlate Snort alerts 
with abnormality alerts from their battery-sensing Intrusion 
Detection System in order to justify the use of energy patterns 
as a method to identify abnormalities [19]. 

D. Prediction of power consumption 

We can perform power-use predictions using the data ana
lyzed in this model. Since we would have a record of various 
power profiles describing the power consumption patterns over 
time for a given type of task or application for a given 
environmental state, we can make predictions on the expected 
time of the phone’s battery life. Research conducted by Trung 
et al. suggests that users were able to save energy consumption 
by just being aware of the amount of energy a task on the 
phone consumes [20]. Their tool predicts expected energy 
consumption for individual tasks on the device, based on 
surveying the usage patterns of multiple users. 

By automating this process, we can also create a real-time 
hard deadline type of framework, where a user can check the 



lifetime before starting a task, for example: playing Angry 
Birds in the train when returning home from work. Ravi 
et al. presented a system to project the current state of the 
smartphone in order to predict the expected uptime and warn 
the user if the expected next battery-charging opportunity 
wasn’t within this timeline [21]. 

IX. CONCLUSION 

Our study indicates that our measuring and power modelling 
approach is both accurate and has a small power footprint. 
This allows our approach to avoid interference with the actual 
measuring process. From our performance analysis of our 
logging facilities, we conclude that due to the use of native 
hooks and simplicity of the model, the power consumption of 
the logger is as low as 0.32 mAh/m. The computation of the 
subsystem constants (Ci) using OLS is instantaneous on an 
external computer and we argue that this regression is simple 
enough to be performed on the phone in real-time. We expect 
the calculations to be efficient enough to be used frequently 
in order to keep the subsystem constants current and adapt 
according to environmental changes. We also conclude that 
the regression model is fairly accurate and we are able to 
attribute power usage to individual applications with an error 
rate of under 4%, as presented in Table VI. 

The individual subsystem results presented in Section V 
have their use even outside our power model. Knowing that 
the variation in power consumption is a function of pixel 
strength of the display and the exact behaviour of the Wi-
Fi subsystem under various modes can help developers make 
better decisions for power efficiency. 
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