
Mobile Application and Device

Power Usage Measurements1,2

Rahul Murmuria, Jeffrey Medsger, Angelos Stavrou

Computer Science Department

George Mason University

Fairfax VA 22030

Email:{rmurmuri, jmedsger, astavrou}@gmu.edu

Abstract—Reducing power consumption has become a crucial
design tenet for both mobile and other small computing devices
that are not constantly connected to a power source. However,
unlike devices that have a limited and predefined set of function
ality, recent mobile smartphone devices have a very rich set of
components and can handle multiple general purpose programs
that are not a-priori known or profiled.

In this paper, we present a general methodology for collecting
measurements and modelling power usage on smartphones. Our
goal is to characterize the device subsystems and perform
accurate power measurements. We implemented a system that
effectively accounts for the power usage of all of the primary
hardware subsystems on the phone: CPU, display, graphics, GPS,
audio, microphone, and Wi-Fi. To achieve that, we make use of
the per-subsystem time shares reported by the operating system’s
power-management module. We present the models capability to
further calculate the power consumption of individual applica
tions given measurements and the feasibility of our model to
operate in real-time and without significant impact in the power
footprint of the devices we monitor.

I. INTRODUCTION

A recent smartphone market study suggests that free mobile
applications on the Android Market which include advertising
sometimes spend up to 75% of their total power consumption
on powering these third party services [1]. According to
researchers, there is a clear trend that suggests that third party
applications in the mobile application markets are not designed
or engineered with power consumption as a priority [2].
Furthermore, software engineers and practitioners have pointed
out some of these design and implementation deficiencies and
even consider them as bugs for mobile devices due to the
constraints on the battery [3].

Being able to generate a device-specific scalable power
consumption model is therefore crucial for understanding,
designing, and implementing better mobile application soft
ware. Of course, the consumption measurement and modeling
system must have a low footprint on its own while collecting
system metrics; otherwise, it will affect the validity of the

1Disclaimer: We identify certain products in this document, but such
identification does not imply recommendation by the US National Institute
of Standards and Technology, nor does it imply that the products identified
are necessarily the best available for the purpose.

2Disclaimer: This paper was co-authored by Jeff Voas; it reflects his per
sonal opinion and does not necessarily reflect the opinions of the Department
of Commerce or NIST.

Jeffrey M. Voas

Computer Security Division

National Institute of Standards and Technology

Gaithersburg MD 20899

Email:jeff.voas@nist.gov

measurements. A system that significantly alters the power
consumption of the device can cause changes that will inval
idate the accuracy of the measurements and of the produced
consumption model.

However, we believe that a proper energy accounting infras
tructure will assist both application developers and smartphone
users to extend the battery life of their devices and make
informed decisions about where to spend the remaining device
power, and potentially in real-time. For the purpose of this
study we focused on Android devices but plan to look at other
platforms such as the iPhone or Blackberry in the future.

Earlier research in power analysis for smartphone devices
has produced power models with differing features and fo
cuses. We differ from these research efforts in the following
key aspects.

A. Paper Contributions

Our main contributions in this paper are as follows:
1) We perform measurements and data collection of each

device subsystem’s power consumption by leveraging
existing system hooks in the Android kernel wake
locks driver. This enables us to acquire both accurate
measurements and at the same time reduce the power
and computational requirements of model generation on
the phone. Furthermore, we can perform analysis at
different time-scales because the measurements happen
cumulatively and at real-time.

2) We take into account OS-specific operation states for
individual subsystems in order to construct the model
and the relative constants. However, our calculations are
independent of the time interval used in creating the data
and do not require reduction into a fixed pre-defined set
of states with power ratings for each.

3) We perform measurements of behaviour for all the
primary device subsystems under different conditions
which provide an in-depth understanding of how the
power is consumed on a smartphone.

II. RELATED WORK

There is a wealth of research studies on power models
in the existing literature. Some of them specifically target
smartphones but depend on external hardware to measure the

mailto:Email:jeff.voas@nist.gov
mailto:astavrou}@gmu.edu

actual current charge consumed by individual components of
the smartphone. For instance, PowerScope [4] is an often-cited
research tool which uses hardware instrumentation to measure
system activity and thereby allows for the determination of the
power consumption of mobile applications.

Some more recent models divide the system into states
and associate a fixed power consumption value to each state.
In [5], the authors describe the device as a finite-state-machine.
They trace system-calls in order to determine which state the
system is in. On the other hand, PowerBooter [6] employs a
seemingly comprehensive set of training and characterization
applications in order to construct a model with power usage
cost assigned to pre-defined states. They further claim that
there is negligible difference in the usage patterns for two
phones of the same manufacturing. However, there is sufficient
literature to suggest that smartphone usage among different
human users can lead to different energy models [7], [8]. Fur
ther, software updates, indoor or outdoor usage, geographical
region and climate, and wear-and-tear are some of the other
factors which may cause significant changes in the model over
time. Therefore, characterizing the system with a fixed set of
benchmarks and a model that has fixed states is not scalable,
even if calculated comprehensively.

In Sesame [9], authors present a statistical power model
that is adaptive and can be deployed for general-purpose com
puters as well as Linux-based smartphones including Nokia
and Android. Their focus is on achieving high rate power
estimations by performing an estimation every 10 ms. We
cover a discussion about the differences of our model with
Sesame in Section IV.

Pathak et al. in [2], [5] present a model based on trac
ing system calls. Their claim is that hardware component
utilization-based models do not address the power behavior of
devices, such as camera and GPS, where a process might use
the subsystem for a few milliseconds, but in consequence, the
operating system keeps that subsystem alive for much longer.
They further claim that certain operations on the smartphone
have an indirect impact on subsystem power usage. For
example, file I/O can cause a change in the power state of
the sdcard module. While these findings are true, it does not
invalidate the use of utilization-based models. Our system
receives utilization information from the power suspend driver,
and therefore does not depend on sampling all device calls
made from userspace activities. Moreover, our system uses
a sampling rate to perform the regression while creating the
model, but thereafter to actually evaluate power consumption
in real-time, we do not need a sampling rate. Our subsystem
constants, once calculated, are time-period independent. We
explain this concept further in Section III-A. An additional
problem with system call trace-based power models is that
system calls do not address the power consumed by sensory
inputs, such as the proximity sensor, compass, and capacitive
touch-screen.

Other researchers have attempted to model individual activ
ities on the smartphone for better energy management. Iyer et
al. demonstrated a technique to save overall energy consump

tion by darkening parts of the mobile organic light-emitting
diode (OLED) display, which were not the focus of a user’s
attention [10]. They further experimented with greenscales, but
did not cover a full-scale analysis of the power consumption
based on the average pixel color of the screen. Our study in
section V further complements their study. CoolSpots [11]
is another often-cited research that demonstrates the use of
quantitative measurements to automatically switch between
multiple radio interfaces, such as Wi-Fi and Bluetooth, in order
to save power. Castignani et al., in [12], conducted a similar
study for newer Wi-Fi and 3G interfaces.

III. MODEL

On mobile systems, the battery discharge is reported by
the kernel as a global value. There is no existing com
mercially available method to divide the measurements into
per-subsystem or per-application readings on any platform.
Therefore, we have created a statistical model which breaks
the power consumption into subsystems.

power used = cpu + display + graphics +

+ gps + audio + mic + ... + wifi. (1)

We accomplish this by collecting subsystem usage mea
surements from the operating system. We characterize each
subsystem depending on its characteristics. In our sample
implementation, the usage information is obtained from the
power suspend driver, which was implemented for the Google
Android operating system. Other than this, we record the
CPU utilization, screen brightness, pixel color strength on the
screen, and other such parameters which are not controlled
by a subsystem or device driver, but by the operating system
itself.

We consider the power used by each subsystem as a function
of the time that the subsystem was used and the state in which
the subsystem was operating. We express this in terms of usage
U of the subsystem. This can be represented mathematically.

A. Regression model

Let C be the constant for the relative impact of a subsystem
i on the power consumption, U be the total usage of the
subsystem i, and P be the overall power consumption.

Therefore, we have the following equation:
P (t) = CiUi(t). (2)

i

This equation is applied for each time interval t. This is
clearly a linear function of time. If we consider ti as the
actual time that a subsystem was active in this time interval
t, then by dividing the function by the time interval, we can
get the power P irrespective of the measured time interval. In
addition, the subsystem constants Ci remain fixed, irrespective
of the time interval used. This concept is also explained in the
appendix section of Sesame [9], but they consider this method
as impractical for their model.

Unlike Sesame, we use the Android’s power suspend driver
to get most of our subsystem usage data. Therefore, it is

Subsystem Wakelock Subsystem Wakelock
Display main Graphics kgsl
Wi-Fi wlanrxwake GPS GPS
Audio AudioHardwareQSDOut Microphone AudioHardwareQSDIn

Touchscreen event3 Compass event2

TABLE I

WAKELOCKS CORRESPONDING TO EACH SUBSYSTEM

possible for us to collect data cheaply in the required format
as per this model. The Android operating system requires
that every device driver register a wakelock with this suspend
driver. The operating system calculates the amount of time
that this driver was in an active state. The locks we chose for
each subsystem are listed in Table I. The performance of our
logger is discussed in Section VI.

This regression model can be used to calculate the constants
Ci (in training mode), and then the power P when feeding
application usage data into the model.

B. Training mode

In our experiments, we used a training stage to calculate the
relative constants C. For this, we performed Ordinary Least
Squares (OLS) regression on equations where usage U and
power P were already known.

The constants C are the relative ratios of each subsystem’s
impact on the overall power consumption. These constants
are subject to external factors like wear and tear, weather
changes, network signal strength, and device driver updates. It
is possible to perform this regression in real-time, so that the
constants C update when the environment changes. However,
our goal is to demonstrate a possibility of creating such a
model and therefore we make certain calculations in a lab
setting, even though the same can be performed on the device,
in real-time.

Once these constants are calculated, they can be used in the
same regression equations, in order to predict the power usage
of a live system, irrespective of whether the power supply was
in Alternating Current (AC) or battery mode.

C. Application power analysis

The model described so far has used subsystem usage values
for the entire operating system. By extension, we replace these
values with subsystem usage statistics of a given application or
process, and we calculate per-application power consumption.

That is, for a given application j :
jP j (t) = CiU (t). (3)i

i

In this analysis, we do not need to recalculate the constants
Ci. The same constants work for the per-application analysis
and for any new chosen time-interval for measurements.

D. Ordinary Least Squares (OLS) regression analysis

The least squares linear regression is one of the most
basic statistical models [13]. In our system, the dependant
variable or the output variable is the power P. The input
variables, or features, are subsystem usages Ui. Since there

are i subsystems, we have an i-dimensional feature space for
the regression, which can be plotted as an i-dimensional plane.
The power usage P is called a ‘dependant variable’ and the
subsystem usages Ui are called ‘independent variables’. For
every time interval, we get one set of input variables and an
output variable.

The goal of the training mode is to find the best choice
values for the constants Ci which are fixed coefficients for
each subsystem. The accuracy of these chosen constants are
determined by the method of least squares approach. During
the training period, we have data for the subsystem usages Ui

and the current discharge P, for n time intervals. The residual R
is a function of the amount of error for each of the n intervals.
The error is calculated by a simple formula:

(actual Pn − calculated Pn)
2 . (4)

n
In equation 4, the calculated Pn is the CiUi for all i,

where the Ci are chosen coefficients. By minimizing the value
of equation 4, we achieve the best values for the constants
Ci. Thereafter, these derived constants Ci can be used with
subsequent input readings, U, at the time interval n + 1, to
calculate Pn+1.

This system can be adaptive if we perform the least squares
analysis periodically to find better chosen constants, C. In our
implementation, we simply provide the data in the form of a
matrix of n rows (one for each time interval) and i columns,
along with a vector of all Pn values, into a built-in OLS
function in GNU Octave software [14]. If we performed this
computation on the phone, we could do the same in real-time
with very little overhead. However, such an implementation is
not in the scope of this paper.

It is to be noted that we need certain constraints on the
best chosen values for Ci. Often, the OLS function would try
to over-fit the data by setting constants to zero or negative
values. We restrict the function from returning such a result
and assume the next best fit as our correct choice of constants.

E. Non-linearity of subsystems

It is common knowledge that most subsystems are non
linear, such that the power consumed at a given time interval
strongly depends on the state in which the device was oper
ating. For example, different pixel color and brightness states
have a strong effect on the amount of power consumed by the
display subsystem.

PowerBooter reduces the system into a fixed set of states
for which the power usage is pre-calculated. Thereafter, they
employ a multi-variable regression on the data. In contrast,

we demonstrate how we translate the non-linear power con
sumption of individual subsystems into a linear equivalent,
without compromising the continuous nature of our data. In
order to be able to make this argument, we first attempted to
understand the power consumption of each subsystem under
the various states in which they operate. These operating states
are analysed in Section V.

IV. DISCUSSION

We are not the first at proposing a statistical regression-
based model for power consumption measurements.
Sesame [9] also employs a regression technique to calculate
the subsystem constants in a training mode and later use them
with system parameters in order to compute the expected
output or response. After model generation, their system
can evaluate power consumption at a very high rate, limited
only by the accuracy of the predictor data provided by the
operating system about each subsystem. They do not use a
fixed set of system states for which the power consumption
value is predefined. However, they make very different
choices on how this experiment is setup, as compared to ours.

They use the Total Least Squares (TLS) method in order
to create their statistical model. The claim is that this model
reduces errors in both predictors (input) as well as responses
(output). We believe this argument is flawed in several ways.

1) First, the way Ordinary Least Squares works is explained
in Section III-D. In order to calculate error from the
residual, we needed the expected result for the power
(output). However, if both the output and input were
to be adjusted, then relative “error” for each of the
input variables needs to be known. This is usually not
available in a real-time scenario.

2) Second, it might be fair to assume that some of the input
from predictors can be noisy, or its update time period
can be infrequent, but it is a questionable assumption
that all the data points need to be adjusted. By doing this,
we also hurt the system’s capacity to identify anomalies.

3) Third, using TLS automatically requires you to scale the
data to common terms. Running the regression on the
data where one of the predictors has either 50 seconds,
or 50000 ms or 0.83 of the total time window, will
each give very different results. Scaling one predictor
has a strong impact on the constants calculated for other
predictors. On the other hand, because we use OLS, our
subsystem data does not need to be carefully normalized
to the same common terms.

Further, the component analysis and linear regression per
formed by Sesame are expensive. Their paper suggests that
it can take about 10 minutes on mobile devices to collect
the predictor data from the operating system and perform
the regression. They perform this calculation when the device
is connected to AC-power. Our technique primarily uses the
wakelocks to determine subsystem usage (predictors). This
interface covers all the device drivers, and as a result, most of
our data comes from a single interface. Our data collection
therefore is instantaneous. Our regression calculations also

take only a few seconds off-line and when performed on a
mobile device, we are confident that this CPU time will not
increase significantly.

V. SUBSYSTEM ANALYSIS

The subsystems are each dependent on various factors that
determine their power consumption. This includes the amount
of time they are kept alive, but more importantly, the state of
the hardware, and other environmental factors. We performed
various experiments in order to tailor our regression model
to fit each of the subsystems. Table II details the Nexus One
device we used for our primary results.

Component Nexus One
Processor 1 GHz Qualcomm QSD 8250 Snapdragon ARM

LCD Display SLCD capacitive touchscreen %
Wi-Fi Wi-Fi IEEE 802.11b/g/n
GPS aGPS

Cellular T-Mobile USA: GSM/UMTS/HSPA
Audio Built-in microphone and speaker
Battery Internal Rechargeable Li-ion: 1400 mAh

Operating System Android 2.3.3 (Gingerbread) Cyanogenmod

TABLE II

COMPONENTS OF GOOGLE NEXUS ONE

A. Display subsystem

Our model calculates a ‘usage’ value, Udisp, for the display
component of our regression equation (Equation 2). Each pixel
of the screen consumes a different amount of power depending
upon its color and screen brightness. In this paper, we call this
‘pixel strength’. The display subsystem usage for a given time
interval t is determined by

Udisp(t) = avg. pixel strength ∗ display uptime. (5)

The display uptime is recorded from the power suspend
driver by parsing the time that the wakelock ‘main’ was active.
In Table I we list the locks for each subsystem.

To calculate pixel strength, we studied the effect of the
display brightness level and pixel color on the rate of current
discharge. The results of our experiments concluded that red,
green, and blue pixels each have a different effect on the
rate of current discharge. Blue pixels cause a higher rate of
current discharge than green pixels and green pixels cause a
higher rate of current discharge than red pixels. We found
that the effect of the remaining colors can be determined by
performing calculations on their rgb components.

1) Experimental Setup: We created an Android application
which sets the screen color to the programmed rgb value. The
screen is further set to full screen mode, so that the entire
screen is filled with that one color, eliminating the menu bar
at the top of the normal screen view. We then record the rate
of current discharge in milliampere-hour per minute (mAh/m)
for brightness levels varying from 0% to 100%.

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 10 20 30 40 50 60 70 80 90 100

R
a

te
 o

f
C

u
rr

e
n

t
D

is
c
h

a
rg

e
 (

m
A

h
/m

)

Display Brightness (%)

Display Brightness vs. Rate of Current Discharge

white 0-100 15min 10%steps
white 100-0 15min 10%steps
white 0-100 10min 5%steps
white 100-0 10min 5%steps

green 0-100 15min 10%steps
green 100-0 15min 10%steps

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 10 20 30 40 50 60 70 80 90 100

R
a

te
 o

f
C

u
rr

e
n

t
D

is
c
h

a
rg

e
 (

m
A

h
/m

)

Display Brightness (%)

Effect of shades in RGB values on Rate of Current Discharge

blue1 (rgb 0,0,63)
blue2 (rgb 0,0,127)
blue3 (rgb 0,0,191)
blue (rgb 0,0,255)

Fig. 1. Effect of measurement parameters on current discharge readings

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 0 10 20 30 40 50 60 70 80 90 100

R
a

te
 o

f
C

u
rr

e
n

t
D

is
c
h

a
rg

e
 (

m
A

h
/m

)

Display Brightness (%)

Display Brightness vs. Rate of Current Discharge

black (rgb 0,0,0)
white (rgb 255,255,255)

red (rgb 255,0,0)
green (rgb 0,255,0)

blue (rgb 0,0,255)
magenta (rgb 255,0,255)

cyan (rgb 0,255,255)
orange (rgb 255,255,0)

Fig. 2. Effect of Pixel Color and Display Brightness on the Rate of Current
Discharge

2) Parameters chosen for measurements: The measure
ments were taken at 10% increments of brightness levels, with
each level measured for 10 minute intervals. The readings were
recorded starting from 0% brightness, moving upwards until
100%. These parameters do not influence the readings.

In Figure 1, we plotted white and green colors for different
measurement environments. The plot shows that these param
eters are independent from the current discharge readings and
therefore we chose the values that was most convenient for
our measurements. Our chosen parameters for the measure
ments are adequate for the analysis we perform in subsequent
sections.

3) Pixel Strength Analysis: Figure 2 displays the results
for different combinations of red, green and blue colors. We
observe that the black pixels had the smallest effect on the rate
of current discharge and white pixels had the highest effect on
the rate of current discharge. Further, the blue component had
a greater impact on current discharge than the green and the
red components.

Black, which has an rgb value of (0,0,0), consumed some

Fig. 3. Effect of color shade on the rate of current discharge

baseline amount of current charge. We found the area between
the curves for each color and the black curve. The areas are
listed in Table III.

Red Green Blue White Orange Magenta Cyan
84.84 136.23 165.32 303.00 191.50 239.01 288.46

TABLE III
AREA BETWEEN THE CURVES FOR EACH COLOR AND THE BLACK CURVE

We performed regression on this data for the various rgb
combinations and conclude that the red, green and blue com
ponents have a linear impact on the overall current discharge.
Further, for any color combination, given the rgb value, we can
calculate this impact on current discharge by using Equation 6.

pixel strength = 0.4216 ∗ r + 0.7469 ∗ g + 1 ∗ b. (6)

We can verify this by comparing the ratio of pixel strengths
of two colors with the ratio of the area under the curves of
these two colors.

For Orange Vs Blue at 100% brightness:
• Orange: 0.4216 * 255 + 0.7469 * 255 + 1 * 0 = 297.968.
• Blue: 0.4216 * 0 + 0.7469 * 0 + 1 * 255 = 255.0.
Comparing 297.968 : 255.0 to the areas obtained from actual

data from the device, 191.499 : 165.315, we find that the error
in our calculation is just 0.87%.

For Magenta Vs. Cyan at 100% brightness:
• Magenta: 0.4216 * 255 + 0.7469 * 0 + 1 * 255 = 362.508.
• Cyan: 0.4216 * 0 + 0.7469 * 255 + 1 * 255 = 445.46.
Comparing 362.508 : 445.46 to the areas obtained from

actual data from the device, 239.011 : 288.462, we find that
the error in our calculation is 1.7%.

These measurements were for the strongest shade (255) of
each component. We performed further measurements with
different shades of blue. These readings are plotted in Figure 3.
Based on the readings, it is clear that the shade also impacts
the current discharge linearly and the Equation 6 is true for
weaker shades of each component as well.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
o

o
t

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Sampling Window (Minutes)

Measurement error at different sampling windows

Linear Fit Error

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 10 20 30 40 50 60 70 80 90 100

R
a

te
 o

f
C

u
rr

e
n

t
D

is
c
h

a
rg

e
 (

m
A

h
/m

)

CPU Utilization (%)

CPU Utilization vs. Rate of Current Discharge

245.0MHz
499.2MHz
652.8MHz
844.8MHz
998.4MHz

998.4MHz (5% steps)
ondemand (5% steps)

Fig. 4. Measurement error in rate of current discharge for CPU utilization
increasing in steps of 5% at a fixed frequency

These results indicate that our model is effective in deter
mining the pixel strength, given the rgb values. In order to
calculate the average pixel strength of the entire screen, we
find the average rgb values at any given instant from a snapshot
of the framebuffer.

4) Implementation: We incorporated these observations
into our logger which creates the input data for the regression
equation 2.

The pixel strength is calculated using native code which
samples the framebuffer for rgb values at random points,
and averages them. We used Glenn’s formula [15] in order
to determine the right sampling size for the framebuffer for
a confidence level of 99% and an error allowance of 2%.
We fed these averaged values into our Equation 6 to get
the corresponding pixel strength of the screen at the time of
recording measurements.

Multiplying this value with the wakelock uptime gives us
the best estimate of the display subsystem usage, Udisp, for
the corresponding logging time interval t.

This usage value is recorded into a matrix, which is the
input for our OLS regression model described in Section III.

B. CPU subsystem

We studied the effects of percentage CPU utilization and
CPU frequency on the rate of current discharge. The percent
age CPU utilization can have large effects on the overall rate
of current discharge depending on the frequency in which the
CPU is maintaining. The higher the CPU frequency, the greater
the rate of current discharge. We ran experiments to find a
pattern.

1) Experimental Setup: We created an Android application
which stabilizes the CPU utilization at a target percentage
using an arbitrary CPU load and maintains that percentage
CPU level for a fixed interval while we record the rate of
current discharge. We set the desired CPU frequency in the
operating system for each test run. This setting can be found
under the sys filesystem.

Fig. 5. Effect of CPU Frequency and Percentage CPU Utilization on the
Rate of Current Discharge

For the set of tests performed in this experiment, the
application was configured to start each test by stabilizing
itself at 0% CPU and running for a 10 minute interval at that
level. We then changed the utilization in steps of 2%, 5%, and
10%. The tests were performed with frequencies set to 245.0
MHz, 499.2 MHz, 652.8 MHz, 844.8 MHz, 998.4 MHz and
‘on-demand’. The 10 minute interval was chosen due to low
variance in the collected data. For any measurements made
with lesser time interval, the current discharge curve did not
fit with as low variance. We plotted the mean squared error
for measurements at 5% steps in Figure 4.

2) CPU Performance Analysis: The curves for the selected
frequencies are plotted in Figure 5. At regular increasing levels
of CPU utilization, the amount of current discharge per minute
was recorded. At any given percentage CPU utilization, the
power consumption is linearly comparable depending upon
their set frequency.

In summary:
(a) The effect of the percentage CPU utilization	 on the

rate of current discharge can be accurately represented
linearly.

(b) The CPU frequency has a large effect on the rate of
current discharge and the higher the CPU frequency, the
greater the rate of current discharge.

3) Implementation: In our logger, we parse the CPU uti
lization and the current CPU frequency from the proc and sys
filesystems respectively. Since CPU utilization is equivalent to
the time ratio of CPU usage for a given interval, and there is
no corresponding wakelock in the power suspend driver, the
parsed values are used directly in the regression model for the
CPU subsystem usage, Ucpu.

C. Wi-Fi Subsystem

The power consumption by the Wi-Fi subsystem during
transmission depends on the rate of packets sent or received.
We conducted experiments to determine the exact relationship
between these factors and to create equations to fit the findings

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400 1600 1800

R
a

te
 o

f
C

u
rr

e
n

t
D

is
c
h

a
rg

e
 (

m
A

h
/m

)

Rate of Transmission (KB/s)

Transmission rate Vs Current Discharge

Outbound traffic (Tx)
Inbound traffic (Rx)

Fig. 6. Effect of Wi-Fi transmission rates on current discharge

into our model. We were able to generalise the readings to ar
rive at one single equation to govern all states of transmission.
Our study does not include or identify the power consumed to
seek a connection with a Wi-Fi access-point. A separate study
can be conducted to extend our model to include the power
consumed to find and connect to different access points.

1) Experimental Setup: The network link used was a Local
Area Network (LAN) with a Wi-Fi 802.11G router. For testing
for outgoing traffic Tx a program was used, which sent User
Datagram Protocol (UDP) packets from the mobile device over
Wi-Fi at different data transmission rates. The program was
run natively on a mobile device. UDP packets were sent from
the device at a rate of 0 KB/s for the first 20 minutes and
the transmission rate increased by approximately 100 KB/s
each 20 minutes until a transmission rate of 950 KB/s was
reached. The number of bytes transmitted from the device and
the battery charge count were recorded.

A second experiment was conducted to determine if the
amount of incoming traffic Rx had a similar impact on the
rate of current discharge. A program was run on the device to
receive UDP packets sent to the device at different transfer
rates by another client on the network. The client on the
network sent UDP packets to the device at a rate of 0 KB/s
for the first 20 minutes and then increased the rate at which
it sent packets by 100 KB/s each 20 minutes, until a rate of
1700 KB/s was reached.

The device was kept stationary for this entire experiment,
and the effect of mobility during Wi-Fi communication is not
yet covered in our model.

2) Analysis: Figure 6 displays the results from the inbound
and outbound transmissions performed. As the Wi-Fi transmis
sion rate increases by 100 KB/s, the rate of power discharge
increases by an average of 0.11 mAh/m. The slope of the two
curves can be averaged to form the Equation 7.

current discharge rate (cdr) = 0.0011x ∗ 2.739. (7)

For each time window we can calculate the average trans
mission rate from Equation 7 and the time that the Wi-Fi

subsystem was used, in order to calculate the Wi-Fi subsystem
usage, UW iF i.

UW iF i(t) = cdr ∗ W iF i uptime. (8)

The subsystem uptime is found using the wakelock
wlanxwake as mentioned in Table I. This lock records cumu
latively the amount of time that the Wi-Fi device was active.

D. Audio subsystem

The audio subsystem is associated with the wakelock Au
dioHardwareQSDOut. The audio subsystem wakelock records
the amount of time that the device was active.

We created an experiment in which we set the volume of
the phone to 13%, 60% and 87% for 10 minutes each. We
recorded the following results:

•	 Results at 13%: averaged an uptime of 60.000 seconds per
minute over the 10 minutes the test ran at 13% volume.

•	 Results at 60%: average an uptime of 59.999 seconds per
minute over the 10 minutes the test ran at 60% volume.

•	 Results at 87%: averaged an uptime of 60.000 seconds per
minute over the 10 minutes the test ran at 87% volume.

The Audio results indicated that, similarly to Wi-Fi, the
rate of increase in the uptime of the Audio wakelock remains
constant. However, the power consumption also depends on
the volume of the sound being output from the speakers.
Therefore, just as we did in the case of transmission rate for
Wi-Fi, we need to derive an equation that calculates the power
consumption at different audio volume levels.

E. Other subsystems

Other subsystems can also be characterised using the same
method as described for display, Wi-Fi and audio. For a few of
the subsystems, like graphics and touchscreen, it is adequate
to just use the amount of uptime the subsystem was active as
the subsystem usage U.

VI. PERFORMANCE OF OUR LOGGER

The experiment discussed in this section determined the
efficiency of our logger application when using different
sampling windows. The logger was developed to capture only
essential statistics for the power model. The logger was tested
to be 2.6 times more power efficient when set at a 30 second
sampling window than at a 5 second sampling window.

A. Experimental setup

All tests in this experiment were performed on a Nexus One
phone running Android 2.3.3, Cyogenmod build. The current
version of the logger application captures battery charge
readings and wakelock driver statistics at regular intervals and
writes them to two log files. The efficiency of the logger was
tested in its 5 second, 30 second, and 300 second sampling
window modes. The following steps were performed:

1) A baseline rate of current discharge was calculated by
noting the current charge before performing the test
by reading the charge counter file provided by sys
filesystem, then letting the phone go into a low power

Sampling Window mAh/m VII. APPLICATION ANALYSIS
5 s 0.47 mAh/m
30 s 0.18 mAh/m

300 s (5min) 0.11 mAh/m

TABLE IV

EFFECT OF TRANSMISSION RATE ON THE AVERAGE UPTIME OF THE

WI-FI WAKELOCK

state with the screen off for 90 minutes, and then noting
the current charge after the 90 minute test. The rate of
current discharge was calculated by using the following
formula:

Δcurrent charge rate of current discharge = .Δtime

The rate of current discharge for the baseline was
determined to be 0.0003 mAh/m.

2) Then, the logger application was started and set to the 5
second sampling window. The current charge was noted
at the beginning of the test, then the phone ran in a
low power state for 90 minutes, and then the current
charge was noted after the test. The logger application
has an alarm function that allows the application to keep
logging while the phone has gone into a low power
state. The increase in the rate of current discharge due to
running the application at the 5 second sampling window
was calculated by using the following formula:

rate of current discharge added by logger application =
rate of current discharge with logger app −

rate of current discharge of baseline.

3) The tests for the 30 second and 300 second sampling
windows were performed using the same procedures as
in step 2 except with the logger application set to the
respective sampling window for each test.

B. Results

Table IV shows the performance of the logger at the
various chosen sampling windows. It is quite obvious that the
application would use less current charge per minute if the
sampling window to parse system data was set to a larger
value. What is to be noted here is that although a 5 second
interval produces 0.47 mAh/m, a 30 second interval brings this
down to 0.18 mAh/m, and thereafter, the reduction in power
consumption is not as much even for a time interval 10 times
as large.

In summary:
1) The logger is 2.6 times more power efficient at a 30

second sampling window than at a 5 second sampling
window.

2) It is 1.6 times more power efficient at a 300 second
sampling window than at a 30 second sampling window.

3) As the sampling window is increased further, the gain
in power efficiency tends towards 1.

We used the generated power model to meter a few chosen
applications on the Nexus One device. Each test case consisted
of running an application on the phone for 30 minutes,
and having our logger application log statistics that were
used to perform off-line calculations using our power model.
This allowed us to demonstrate that the calculated subsystem
constants, Ci can be used in predicting the rate of current
discharge attributed to an application.

A. Test Setup

The applications were evaluated by running multiple tests
as described below, and the collected data was operated upon
using the Octave scripts described in Section III. Each test ran
for 30 minutes.

The tests run were in the following combinations:
1) Only the logger application.
2) The logger + Music.

Music is an application that comes standard with An
droid Nexus One phones. The Music application was set
to play a 3 minute music file repeatedly for the duration
of the test.

3) The logger + Sound Recorder.
This Sound Recorder application is also one of the stan
dard applications on the device, and uses the microphone
to record ambient sound.

4) The logger + GPSTracker.
GPSTracker is an application from the market which
logs the GPS coordinates into a trace file.

B. Analysis

This analysis compares the manually calculated power con
sumption to the consumption calculated by our power model.

Table V shows a list of applications along with their actual
power usage. This value was calculated as follows:

1) The application was started and set to a state close to
normal use-case.

2) The state was maintained for 30 minutes.
3) The beginning and ending current discharge values were

recorded and subtracted.
In the above procedure, the phone was left on battery mode,
so that the discharge values were available. The mAh value
obtained was subtracted from the baseline, in order to account
for system noise.

Application Actual Avg. mAh/m
Logger 0.32 mAh/m
Music 1.17333 mAh/m

Sound Recorder 2.0267 mAh/m
GPSTracker 0.32 mAh/m

TABLE V
ACTUAL AVG. RATE OF POWER DISCHARGE FOR EACH APPLICATION

We then used the logger application to monitor the chosen
application using the tests listed in Section VII-A. We have the
subsystem constant values, Ci from a previously run regression

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

m
A

h
/m

Time (Minutes)

Actual Current Discharge vs. Calculated Power Consumption

Actual
Calculated

Fig. 7. Regression based results for each application

Application Calculated Avg. mAh/m Error
Logger 0.3082 mAh/m 3.69 %
Music 1.1882 mAh/m 1.27 %

Sound Recorder 2.0416 mAh/m 0.74 %
GPSTracker 0.3318 mAh/m 3.68%

TABLE VI

REGRESSION BASED RESULTS FOR EACH APPLICATION

the data plot from raw current charge data.

VIII. USE CASES

A. Energy performance ratings

Since we are able to characterize power consumption for
individual subsystems as well as applications, we can use
the calculated energy consumption rates as a benchmark for
rating applications. Applications can be classified in the market
depending upon their amount of power consumption. Even
more interesting is that we can assign power consumption
ranges to different types of applications. Thereby, we can give
an ‘Energy Star’-like rating which is relative to the average
power consumption of an application in its own class of
applications.

B. Power usage based automatic policy enforcement

The results and analysis from our model can be fed into
a policy enforcement subsystem which limits the use of
individual components based on a set policy. Traditional Linux
systems have existing tools in order to limit processes based
on CPU and memory consumption [16], [17]. On smartphones,
energy can be used as the metric for such rationing. Pering
et al. demonstrated using their tool, CoolSpots [11], that
automatic policy enforcement based on expected power con
sumtion is effective. Their study was focused only on wireless
interfaces of mobile devices.

analysis. We collect the subsystem usage data, U j
i for the given

C. Malware detection application j. We can therefore calculate the power consumed
by the chosen application for every time interval. If we record the calculated power consumption statistics

This calculation is basically a product of the constants
vector of length i and the subsystem usage matrix of size
n ∗ i, for n recorded time intervals. Equation 3 discussed in
Section III-C explains the basic calculation that is represented
by this matrix multiplication. Since we are running this for
30 mins, on a 1 min sampling interval, we have 30 readings.
By computing the matrix multiplication, we can determine a
power consumption vector P of size n, which is the power
consumed for every time interval. These values are averaged
and tabulated in Table VI. Further, the error calculated is
the deviation from the manually calculated power usage from
Table V.

We can further analyse the per-interval results calculated
using the matrix multiplication. Figure 7 shows the actual
readings for current discharge plotted against those calculated
using our power model. The readings for Sound Recorder in
Tables V and VI present the averaged values of the readings
which were plotted. It can be observed that the actual current
discharge readings were quite bursty. This is primarily due
to the fact that the battery driver in Nexus One records
current discharge in multiples of 1.6 mAh only. The baseline
noise of 0.32 mAh has been subtracted from all the points
of the ‘actual’ curve plot. In contrast, the ‘calculated’ plot
purely depends on the subsystem usage measurements U and
the subsystem constants C. When the power consumption P
is predicted or calculated using our regression model, the
resulting per-minute consumption is almost like a curve-fit of

for each application as well as the entire system with enough
data from multiple users, we will be able to perform granular
anomaly detection. There is existing preliminary research for
creating such a tool. Andromaly [18] is a behavior-based
intrusion detection framework. The researchers attempted to
identify power usage patterns for different classes of appli
cations, such as games and tools, and report abnormalities if
an application failed to behave like others in its class. Buen
nemeyer et al. proposed a technique to correlate Snort alerts
with abnormality alerts from their battery-sensing Intrusion
Detection System in order to justify the use of energy patterns
as a method to identify abnormalities [19].

D. Prediction of power consumption

We can perform power-use predictions using the data ana
lyzed in this model. Since we would have a record of various
power profiles describing the power consumption patterns over
time for a given type of task or application for a given
environmental state, we can make predictions on the expected
time of the phone’s battery life. Research conducted by Trung
et al. suggests that users were able to save energy consumption
by just being aware of the amount of energy a task on the
phone consumes [20]. Their tool predicts expected energy
consumption for individual tasks on the device, based on
surveying the usage patterns of multiple users.

By automating this process, we can also create a real-time
hard deadline type of framework, where a user can check the

lifetime before starting a task, for example: playing Angry
Birds in the train when returning home from work. Ravi
et al. presented a system to project the current state of the
smartphone in order to predict the expected uptime and warn
the user if the expected next battery-charging opportunity
wasn’t within this timeline [21].

IX. CONCLUSION

Our study indicates that our measuring and power modelling
approach is both accurate and has a small power footprint.
This allows our approach to avoid interference with the actual
measuring process. From our performance analysis of our
logging facilities, we conclude that due to the use of native
hooks and simplicity of the model, the power consumption of
the logger is as low as 0.32 mAh/m. The computation of the
subsystem constants (Ci) using OLS is instantaneous on an
external computer and we argue that this regression is simple
enough to be performed on the phone in real-time. We expect
the calculations to be efficient enough to be used frequently
in order to keep the subsystem constants current and adapt
according to environmental changes. We also conclude that
the regression model is fairly accurate and we are able to
attribute power usage to individual applications with an error
rate of under 4%, as presented in Table VI.

The individual subsystem results presented in Section V
have their use even outside our power model. Knowing that
the variation in power consumption is a function of pixel
strength of the display and the exact behaviour of the Wi-
Fi subsystem under various modes can help developers make
better decisions for power efficiency.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Nelson Nazzicari from
the Center of Secure Information Systems at GMU for his
formal explanation of the least squares regression technique
with respect to our dataset.

REFERENCES

[1] T.	 Mogg and B. B. Corporation, “Free mobile apps drain battery
faster,” 2012, [accessed 3-April-2012]. [Online]. Available: http:
//www.bbc.co.uk/news/technology-17431109

[2] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app? fine grained energy accounting on smartphones with eprof,” in
Proceedings of the sixth conference on Computer systems, ser. EuroSys
’12. New York, NY, USA: ACM, 2012.

[3]	 ——, “Bootstrapping energy debugging on smartphones: a first look
at energy bugs in mobile devices,” in Proceedings of the 10th
ACM Workshop on Hot Topics in Networks, ser. HotNets ’11. New
York, NY, USA: ACM, 2011, pp. 5:1–5:6. [Online]. Available:
http://doi.acm.org/10.1145/2070562.2070567

[4] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling the
energy usage of mobile applications,” in Proceedings of the Second IEEE
Workshop on Mobile Computer Systems and Applications, ser. WMCSA
’99. Washington, DC, USA: IEEE Computer Society, 1999, pp. 2–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=520551.837522

[5] A. Pathak, Y.	 C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine
grained power modeling for smartphones using system call tracing,” in
Proceedings of the sixth conference on Computer systems, ser. EuroSys
’11. New York, NY, USA: ACM, 2011, pp. 153–168. [Online].
Available: http://doi.acm.org/10.1145/1966445.1966460

[6]	 L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang, “Accurate online power estimation and automatic
battery behavior based power model generation for smartphones,” in
Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, ser. CODES/ISSS
’10. New York, NY, USA: ACM, 2010, pp. 105–114. [Online].
Available: http://doi.acm.org/10.1145/1878961.1878982

[7]	 A. Shye, B. Scholbrock, and G. Memik, “Into the wild: Studying
real user activity patterns to guide power optimizations for mobile
architectures.”

[8]	 H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan,
and D. Estrin, “Diversity in smartphone usage,” in Proceedings of the 8th
international conference on Mobile systems, applications, and services,
ser. MobiSys ’10. New York, NY, USA: ACM, 2010, pp. 179–194.
[Online]. Available: http://doi.acm.org/10.1145/1814433.1814453

[9]	 M. Dong and L. Zhong, “Self-constructive high-rate system energy
modeling for battery-powered mobile systems,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services,
ser. MobiSys ’11. New York, NY, USA: ACM, 2011, pp. 335–348.
[Online]. Available: http://doi.acm.org/10.1145/1999995.2000027

[10]	 S. Iyer, L. Luo, R. Mayo, and P. Ranganathan, “Energy-adaptive
display system designs for future mobile environments,” in Proceedings
of the 1st international conference on Mobile systems, applications and
services, ser. MobiSys ’03. New York, NY, USA: ACM, 2003, pp. 245–
258. [Online]. Available: http://doi.acm.org/10.1145/1066116.1189045

[11]	 T. Pering, Y. Agarwal, R. Gupta, and R. Want, “Coolspots: reducing
the power consumption of wireless mobile devices with multiple
radio interfaces,” in Proceedings of the 4th international conference
on Mobile systems, applications and services, ser. MobiSys ’06.
New York, NY, USA: ACM, 2006, pp. 220–232. [Online]. Available:
http://doi.acm.org/10.1145/1134680.1134704

[12]	 G. Castignani, N. Montavont, and A. Lampropulos, “Energy considera
tions for a wireless multi-homed environment,” in Proceedings of the
17th international conference on Energy-aware communications, ser.
EUNICE’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 181–192.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2040416.2040443

[13]	 R. Myers, Classical and Modern Regression With Applications, ser.
Duxbury classic series. Duxbury/Thompson Learning, 1990. [Online].
Available: http://books.google.com/books?id=LOHHKQAACAAJ

[14]	 J. W. Eaton, “Gnu octave,” 1994, [accessed 3-April-2012]. [Online].
Available: http://www.gnu.org/software/octave/

[15]	 G. D. Israel, “Determining sample size,” Program Evaluation and
Organizational Development, IFAS, University of Florida, 1992.
[Online]. Available: http://edis.ifas.ufl.edu/pd006

[16]	 A. Marletta, “cpulimit,” 2006, [accessed 3-April-2012]. [Online].
Available: http://cpulimit.sourceforge.net/

[17]	 P. Menage, R. Seth, P. Jackson, and C. Lameter, “Linux control
groups,” 2008, [accessed 3-April-2012]. [Online]. Available: http:
//www.mjmwired.net/kernel/Documentation/cgroups.txt

[18]	 A. Shabtai and Y. Elovici, “Applying behavioral detection on android-
based devices,” in Mobile Wireless Middleware, Operating Systems,
and Applications - Third International Conference, Mobilware 2010,
Chicago, IL, USA, June 30 - July 2, 2010. Revised Selected Papers, ser.
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, Y. Cai, T. Magedanz, M. Li,
J. Xia, and C. Giannelli, Eds., vol. 48. Springer, 2010, pp. 235–249.

[19]	 T. K. Buennemeyer, T. M. Nelson, L. M. Clagett, J. P. Dunning, R. C.
Marchany, and J. G. Tront, “Mobile device profiling and intrusion
detection using smart batteries,” Hawaii International Conference on
System Sciences, vol. 0, p. 296, 2008.

[20]	 K. N. Truong, J. A. Kientz, T. Sohn, A. Rosenzweig, A. Fonville,
and T. Smith, “The design and evaluation of a task-centered
battery interface,” in Proceedings of the 12th ACM international
conference on Ubiquitous computing, ser. Ubicomp ’10. New
York, NY, USA: ACM, 2010, pp. 341–350. [Online]. Available:
http://doi.acm.org/10.1145/1864349.1864400

[21]	 N. Ravi, J. Scott, L. Han, and L. Iftode, “Context-aware battery
management for mobile phones,” in Proceedings of the 2008 Sixth
Annual IEEE International Conference on Pervasive Computing
and Communications, ser. PERCOM ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 224–233. [Online]. Available:
http://dx.doi.org/10.1109/PERCOM.2008.108

http://dx.doi.org/10.1109/PERCOM.2008.108
http://doi.acm.org/10.1145/1864349.1864400
www.mjmwired.net/kernel/Documentation/cgroups.txt
http:http://cpulimit.sourceforge.net
http://edis.ifas.ufl.edu/pd006
http://www.gnu.org/software/octave
http://books.google.com/books?id=LOHHKQAACAAJ
http://dl.acm.org/citation.cfm?id=2040416.2040443
http://doi.acm.org/10.1145/1134680.1134704
http://doi.acm.org/10.1145/1066116.1189045
http://doi.acm.org/10.1145/1999995.2000027
http://doi.acm.org/10.1145/1814433.1814453
http://doi.acm.org/10.1145/1878961.1878982
http://doi.acm.org/10.1145/1966445.1966460
http://dl.acm.org/citation.cfm?id=520551.837522
http://doi.acm.org/10.1145/2070562.2070567
www.bbc.co.uk/news/technology-17431109

