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In graphene, as in most metals, electron-electron interactions renormalize the properties of electrons but

leave them behaving like noninteracting quasiparticles. Many measurements probe the renormalized

properties of electrons right at the Fermi energy. Uniquely for graphene, the accessibility of the electrons

at the surface offers the opportunity to use scanned probe techniques to examine the effect of interactions

at energies away from the Fermi energy, over a broad range of densities, and on a local scale. Using

scanning tunneling spectroscopy, we show that electron interactions leave the graphene energy dispersion

linear as a function of excitation energy for energies within�200 meV of the Fermi energy. However, the

measured dispersion velocity depends on density and increases strongly as the density approaches zero

near the charge neutrality point, revealing a squeezing of the Dirac cone due to interactions.

DOI: 10.1103/PhysRevLett.109.116802 PACS numbers: 73.22.Pr, 68.37.Ef, 73.20.At

In the absence of interactions the low energy excitations
in graphene are described by massless Dirac quasiparticles
with a linear energy-momentum dispersion E ¼ @vk,
where the constant of proportionality is the carrier group
velocity v. When many-body interactions are included, the
energy dispersion can change [1–12]. In general, this
change depends on the parameters ½n; k; rs�, where n is
the carrier density, k is the momentum relative to the
Brillouin zone corner, and rs is the interaction parameter
or coupling constant describing the relative strength of the
Coulomb interactions and is given by the ratio of potential
to kinetic energies [13]. In graphene, both the kinetic and
potential energies scale as the square root of the density, so
that rs is independent of density. Therefore, in graphene,
the dependence of the dispersion renormalization on rs and
n can be separated. For monolayer graphene rs is given by
rs ¼ e2=4�"0"m@v, where e is the electron charge, @ is
Planck’s constant divided by 2�, "0 is the permittivity of
free space, and "m is the effective dielectric constant of the
medium in which the graphene sheet is embedded.

Previously, measurements of the graphene dispersion re-
normalization have either examined solely the density de-
pendence [11] or the dependence on energy [6,9,10] but not
both over wide ranges of density and energy due to limita-
tions in experimental techniques. Transport measurements,
which are sensitive to the behavior of electrons at the Fermi
energy (EF), have shown the dispersion velocity at EF in-
creases at low density [11]. Angle-resolved photoemission
spectroscopy has examined the energy dependence of the

dispersion and found deviations from linearity at high ener-
gies below approximately�0:4 eV [9].Angle-resolved pho-
toemission spectroscopy measurements are complicated by
the appearance of plasmonic and phonon structures which
can distort the spectrum at the Dirac point [6], and they have
not been able to examine the density dependence indetail due
to the lack of large area gated graphene devices. Scanning
tunneling spectroscopymeasurements of back-gated devices
allows the graphene dispersion to be examined as a function
of energy away from the Fermi energy [8,14], so that the
renormalization can be determined separately as a function
of excitation energy and density.
For excitations at the Fermi level, i.e., at k ¼ kF,

many-body theory predicts that the renormalized spectrum
of graphene can be characterized by a velocity v� given
by [1–3]
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The Fermi velocity enhancement described in Eq. (1) was
calculated within the random phase approximation, where
v is the bare dispersion velocity in the absence of inter-
actions and nC is a density corresponding to the ultraviolet
cutoff energy, which is � 3 eV [2,11]. The 2nd and 3rd
terms in Eq. (1) result from intraband and interband con-
tributions, respectively. The expression in Eq. (1) describes
the reshaping of the Dirac cone at energies equal to the
Fermi energy EF. Velocity enhancements obtained from
Shubnikov–de Haas oscillations in transport measurements
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have considered only the interband contribution in Eq. (1)
and found the need for an additional density-dependent
parameter to get agreement with experiment [11]. The
question on how the dispersion velocity depends on energy
over a broad range of densities remains open.

In this Letter, we present the first experimental measure-
ments of the Landau level (LL) spectroscopy of graphene on
hexagonal boron nitride (hBN) spacer layers. The lower
disorder in graphene with hBN spacer layers allows a
significant improvement in LL lifetimes, with the appear-
ance of many LLs over a wide energy range. This enhanced
spectrum, compared to previous resultswithout hBN [8,14],
allows us to separate the energy and density contributions to
the renormalization of the graphene band structure. We
show how to quantitatively examine the Landau level tun-
neling spectrum taking into account probe tip and graphene
quantum capacitances and to extract interaction driven
velocity renormalization with good accuracy. We find that
interactions do not significantly distort the Dirac cones at
low energies. Instead, they preserve the linear dispersion
while parametrically renormalizing the dispersion velocity
at a given fixed density. The measured renormalized veloc-
ity is satisfactorily described by the random phase approxi-
mation theory incorporating the interaction strength rs and
the ultraviolet cutoff density nC [2,12] described by Eq. (1)
without the need of additional parameters.

The experiments were performed in a custom designed
cryogenic scanning tunneling microscope system operat-
ing at 4 K with applied magnetic fields from 0 to 8 T [15].
The graphene devices were fabricated by the method de-
tailed in Dean et al. [16]. A heavily doped silicon substrate
was used as a back gate to control the carrier density n in
the sample by applying back gate voltage VG. In our
experiments, a bias voltage VB is applied to the graphene,
and the tunneling current I is measured from the tip to
obtain tunneling spectra dI=dV as a function of VB, VG,
and applied magnetic field B. Topography measurements
of graphene on hBN [Fig. 1(a)] are characterized by a
moiré pattern formed by the relative rotation of the gra-
phene sheet with respect to the underlying hBN crystal as
observed in previous studies [17,18]. The topographic
modulation in Fig. 1(a) is consistent with the thin BN
spacer layer (5 nm) used in these studies [16].

Upon applying a magnetic field, the tunneling spectra
develops sharp peaks as a function of VB as shown in
Fig. 1(b), indicating the formation of the LLs [14,19–21].
The reduced disorder in graphene on hBN is evident by the
high fidelity of the LL formation compared to previous
measurements on SiO2 [8,14]. The LL index N can be
identified from the peak distance in bias VB compared to

the expected LL energy spectra proportional to jNj1=2. The
widths of the LLs, determined by the lifetime of the Dirac
quasiparticles, approaches those measured in the low-
disorder graphene grown epitaxially on SiC [19,21].
Figure 1(c) shows the map of the N ¼ �1 LL peak

position, which reflects the spatial variation of disorder
potential. Within the area of interest, two local potential
extrema are indicated asA andB. At low density,A becomes
an electron puddle (blue) while B a hole puddle (yellow).
The tunneling spectra in Fig. 1(b) reflect the graphene

LL density of states at a gate voltage of VG ¼ �30 V,
which induces additional holes to lower the Fermi level by
� 200 meV with respect to the Dirac point. Repeating the
same tunneling spectra measurements while varying the
back gate voltage, thus controlling the relative positions of
the Fermi level and the Dirac point, we can obtain a
complete data set, which we refer to as a ‘‘gate map.’’
The resulting tunneling spectra, represented in a two-
dimensional plot of VB and VG, are shown in Figs. 2(a)
and 2(b), for 2 and 5 T, respectively. The LL spectra
variation as a function of energy and density can be inves-
tigated by tracing peaks of the tunneling spectra (bright
curve traces) in these gate maps. At a lower magnetic field
[Fig. 2(a)], the smooth curvature of the LLs with gate
voltage approximately corresponds to the energy variation
of the charge neutrality point (Dirac point), which varies as

ED / n1=2. In larger fields [Fig. 2(b)], LL formation leads
to the familiar stair case pattern in the gate maps, previ-
ously seen in graphene on SiO2 [8,14], or GaAs two-
dimensional electron gases [22]. Every LL becomes pinned
at the Fermi level until it fills with carriers, and upon filling
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FIG. 1 (color online). Local probing of graphene on hBN.
(a) STM topographic image of graphene on hBN. The moiré
pattern with a unit cell length of 4.5 nm corresponds to a rotation
of 3.1� of the graphene lattice relative to the hBN crystal.
(b) Differential conductance spectra of graphene on hBN at
VG ¼ �30 V. (c) Spatial variation of the N ¼ �1 LL peak
position measured in the same area as (a), reflecting the local
disorder potential variation. The positions A and B (white dots)
denote electron and hole puddle locations where measurements
are reported in Figs. 2–4.
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the next unfilled LL makes a quick transition to become
pinned at EF.
To accurately analyze the energy dispersion, we

simulate the single particle properties in the gate maps
[Fig. 2(c)] by calculating the tunneling conductance spec-
tral map using a capacitor model [23] that includes the
graphene-back-gate capacitance (CG), graphene-probe ca-
pacitance (CP), the graphene quantum capacitance, and a
constant velocity v. The simulation in Fig. 2(c) shows that
the LL staircase transitions do not occur at fixed VG but at
different values as VB changes, appearing as a line with an
angle in the gate map. This angle is due to the local gating
of the graphene by the bias potential between the probe tip
and graphene and is determined by the ratio of the back
gate and probe capacitances, CG=CP. The constant density
(or constant chemical potential) axis is therefore along the
LL transitions given by this capacitance ratio, as indicated
by the tilted red line in Fig. 2(b). For a better comparison,
we simulate the LL spectra in the VG and VB maps by
considering a fixed v and a smoothly varying CG=CP ratio
determined from the experimental gate maps [24], as
shown in Fig. 2(c). The simulation result matches well
the experimental LL transitions and indicates that the
simulation captures the single particle physics. Departure
from single particle behavior due to many-body effects is
seen by a comparing the simulation with the experiment at
low densities. Deviations from the constant-velocity simu-
lation are illustrated by overlapping the simulation from
Fig. 2(c) onto Fig. 2(b) (yellow overlay) in the regions of
high density and near the charge neutrality point. Very
good agreement is seen in matching the LL energy peak
positions at high density. However, the simulated LL peak
positions underestimate the experimental positions and
significantly deviate at low density indicating that the
dispersion velocity is larger close to the charge neutrality
point. For example, the simulated peak position of LL2 lies
in the minimum of the spectrum between the peaks of LL1

and LL2 at zero gate voltage [see the white arrow
in Fig. 2(b)].
To accurately determine the interaction driven velocity

enhancements, we define a constant density (or chemical
potential) axis in the (VB, VG) space using the transitions of
the LLs, which is determined from the CG=CP ratio [24].
Therefore the LL energy EN can be obtained at a fixed
density for theNth LL (LLN) by measuring the LL spectral
peak positions in the plateau regions along lines of
constant density [the tilted red line in Fig. 2(b)] thereby
converting dI=dVðVB; VGÞ to dI=dVðE; nÞ. A comparison
of the dI=dV spectra at constant VG vs constant density n
[Fig. 3(a)] shows that the spectrum at constant gate voltage
overestimates the energy scale by as much as 5% leading to
a corresponding error in an estimate of the dispersion
velocity. The importance of examining the correct LLN

peak energies at constant density is compounded by the
fact that the energy scale error at constant gate voltage

0

-1

1

FIG. 2 (color online). Gate mapping tunneling spectroscopy of
the Landau level density of states of graphene on hBN. Each map
is built of individual dI=dV vs VB spectra taken at multiple fixed
VG. The color scale is the dI=dV magnitude. (a) dI=dV gate map
at B ¼ 2 T obtained in the hole puddle labeled B in Fig. 1(c).
(b) dI=dV gate map spectra at B ¼ 5 T. The tilted red line
indicates an axis of constant density (chemical potential) follow-
ing the transitions of the LLs as discussed in the text, while the
vertical blue line indicates constant VG. The yellow overlays are
portions of the simulation in (c). (c) Simulation of the dI=dV
gate map spectra at B ¼ 5 T with a constant dispersion velocity
of 1:1� 106 m=s and the probe-sample capacitance determined
from the slope of the LL transitions in (b) [24]. Portions of the
simulation are overlaid in (b) (yellow lines) showing agreement
at high densities and deviations at low densities from using a
constant velocity. The white arrow points to the simulated LL2

position which lies in between the experimental LL1 and LL2

peaks at low density.
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varies with density, since the CG=CP ratio varies. This will
result in errors as large 30% in determining rs parameters
from the velocity incorrectly determined at constant gate
voltage. Below, we determine the many-body corrections
to the renormalized velocity by correctly analyzing the LL
spectra at constant density with a correct energy scale [24].

In graphene, the linear dispersion yields the LL spectra:

EN ¼ ED þ sgnðNÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e@v2NB

p
. The LL spectroscopy pre-

sented in Fig. 2 thus allows us to probe the dispersion
velocity at fixed density and magnetic field by inspecting
EN for different N [Fig. 3(a)]. Figure 3(b) shows EN-ED vsffiffiffiffiffiffiffiffi
NB

p
for different density values. Here ED is obtained from

EN¼0 at a given density. A remarkable feature in Fig. 3(b)
is that the LL dispersion is highly linear [see the inset in

Fig. 3(b)] at a fixed density but changes slope as the density
decreases. The energy dispersion is thus described by the
Dirac cone in this energy range, but the cone is squeezed at
low density, as schematically illustrated in Fig. 4(a).
The velocity extracted from the LL dispersion fits is

shown in Fig. 4(b) as a function of density for the electron
and hole puddle locations, A and B. We observe a signifi-
cant increase in velocity near the charge neutrality point.
We fit the renormalized velocity using Eq. (1). The solid
line in Fig. 4(b) shows a two-parameter fit, to the combined
data of puddles A and B, with a bare velocity v ¼ ð0:957�
0:003Þ � 106 m=s and an interaction parameter rs ¼
0:69� 0:03 [25]. The bare velocity is in agreement with
previous measurements by a large number of different
experiments [19,21,26–29]. The fit parameter rs is equiva-
lent to a measurement of the effective dielectric constant of
"BN=SiO2

¼ 5:3� 0:3 [25], using "m ¼ ð"BN=SiO2
þ 1Þ=2.

In summary, we present measurements of the LL density
of states of graphene on hBN as a function of spatial

1 2 3

3 meV

LL LL LL

FIG. 3 (color online). Landau level dispersion. (a) dI=dV
spectra (red line) at constant density obtained along the red
line in Fig. 2(b). A fit of LL peaks N ¼ 1 to N ¼ 6 is shown
in green using a series of Lorentzians. (Inset) A comparison of
the dI=dV spectra at constant gate voltage (VG ¼ 12 V) (blue
line) and constant density (red line), obtained along the lines
indicated in Fig. 2(b). The spectra at constant gate voltage
overestimates the energy scale by 5% at this density.
(b) Determination of the graphene dispersion velocity from the
LL peak energy positions (obtained along lines of constant
density in the gate maps) for the electron puddle A at B ¼
2 T. The peak positions are plotted as a function of the square
root of the Landau orbital index N and magnetic field B. A linear
fit (solid lines) is used to determine the dispersion velocity.
(Inset) Residuals from the linear fit showing very good linearity
in the LL dispersion.

FIG. 4 (color online). Renormalized graphene dispersion.
(a) Schematic of the Dirac cone variation as a function of
density. The data presented in this Letter show that the graphene
energy-momentum dispersion remains linear at low energy in the
presence of electron interactions, while the Dirac cone angle,
which is inversely proportional to the velocity, decreases (gets
squeezed) at low density. (b) Renormalized velocity determined
from the linear fitting of LL peak positions as described in
Fig. 3(b) as a function of density for the electron (red symbols)
and hole (blue symbols) puddle locations A and B at B ¼ 2 T.
The solid line shows a fit to the combined data from puddle A
and B using Eq. (1) with v ¼ ð0:957� 0:003Þ � 106 m=s and
rs ¼ ð0:69� 0:03Þ [25].
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position, density, and magnetic field. Tunneling spectros-
copy at energies away from EF allow us to separately
analyze the graphene dispersion dependence on excitation
energy and density. The dispersion of the LLs as a function
of orbital index shows that the linear graphene energy-
momentum dispersion is retained at low energies even as
the charge neutrality point is approached. However, electron
interactions cause an increase of the dispersion velocity,
effectively squeezing the Dirac cone, with decreasing den-
sity in agreement with recent theoretical predictions [12].
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