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Abstract--A ttack graphs compute potential attack paths from a 
system configuration and known vulnerabilities of a system. 
Evidence graphs model intrusion evidence and dependencies 
among them for forensic analysis. In this paper , we show how to 
map evidence graphs to attack graphs. This mapping is useful for 
application of attack graphs and evidence graphs for forensic 
analysis. In addition to helping to refine attack graphs by 
comparing attack paths in both attack graphs and evidence graphs, 
important probabilistic information contained in evidence graphs 
can be used to compute or refine potential attack success 
probabilities contained in repositories like CVSS. Conversely, 
attack graphs can be used to add missing evidence or remove 
irrelevant evidence to build a complete evidence graph. In 
particular, when attackers use anti-forensics tools to destroy or 
distort evidence, attack graphs can help investigators recover the 
attack scenarios and explain the lack of evidence for missing steps. 
We illustrated the mapping using a database attack as a case study. 

Keywords-attack graphs; evidence graphs; attack success 
probabilities; evidence probabilities; mapping algorithm 

I. INTRODUCTION 
Currently, attack graphs and evidence graphs are used in 

security analysis. Attack graphs are used to analyze security 
vulnerabilities in enterprise networks. An attack graph 
represent system states as nodes by using a collection of 
security-related predicates, such as vulnerability on a particular 
host in a network, and edges as an exploit that takes the system 
from one state to another [4]. In the attack graphs model, 
composition of exploits is considered as an attack. Evidence 
graphs model intrusion evidence in a network, where host 
computers that interest forensic investigation (i.e. potential 
evidence) are represented as nodes, and dependencies between 
such evidence are represented as edges [1]. 

Many papers address how to construct evidence graphs 
from collected evidence after an intrusion attack or attack 
graphs from software vulnerabilities of specific networks. 
Based on these papers, many researches discuss how to use or 
refine the two graphs. However, to the best of our knowledge, 
none of them provides a formal mapping between attack graphs 
and evidence graphs, which is our contribution in this paper. In 
particular, we take both kinds of graphs from the same-
networked environment and enrich them with quantitative 
metrics to model the mapping. We show its utility by a 
database attack case study. 

In general, the probability of the potential attack on a 
specific node in an attack graph decorated with quantitative 
measures is calculated based on scores from NVD [9] and the 
corresponding network configurations, which may not 
accurately reflect the specific QHWZRUN¶V� DWWDFN� SUREDELOLW\�� ,I� 
attack path deviates from an actual attack scenario, it may 
mislead investigators. [1] shows how to create evidence graphs 
from evidence, which can help refine such an attack graph. In 
addition, when evidence is not enough to construct an evidence 
graph to assist forensics analysis, an attack graph that combines 

expert knowledge database can help to recover the attack 
scenario. In this way, our mapping can be used to combine 
both graphs in helping forensic investigators. 

The rest of the paper is organized as follows. Section II 
describes related works. Section III provides basic definitions. 
Section IV provides the mapping algorithm. Section V is our 
case study, showing how to map the constructed evidence 
graph to attack graph. Lastly, we finish the paper with a 
conclusion in section VI. 

II. RELATED WORK 
Many forensics tools are used to analyze data in networked 

systems. Some are image tools that extract data from physical 
memory or disk sectors for live or dead analysis [19]. While 
live analysis has the risk of changing data, dead analysis 
requires terminating all system processes [20], where neither in 
itself is complete. Network forensics tools obtain data from 
capture files of network traffic. In addition, Intrusion detection 
systems (IDS) data are also used for forensics analysis, which 
consists of anomaly detectors [21] with false positives and 
pattern-based detectors that may not be able to capture attacks 
with unknown patterns. 

While forensics tools cannot solely solve network forensics 
analysis, attack graphs help with this issue. Sheyner et al. 
defined attack graphs and used them to model multi-stage, 
multi-host attack paths in a network [17]. Ammann et al. 
proposed to use the monotonicity assumption to simply the task 
of modeling attacker actions [7]. Other works, such as a TVA 
tool [22], use an exploit dependency graph to represent the pre 
and post-conditions of vulnerable states. Ingols et al. proposed 
to create a network model using firewall rules and network 
vulnerability scans, and showed the effect of countermeasures 
on the system [18]. MulVAL [3,15] generates attack graphs 
from system configurations and bug-reports. This tool reduces 
attack graph complexity and shows which system 
configurations may facilitate attackers to escalate their 
privileges. Combing attack graphs, the attempts of measuring 
network security risk have been proposed. NVD by NIST 
standardizes vulnerability metrics that assign success 
probabilities to exposed individual vulnerabilities [5,15], 
which have been used in attack graphs to compute success 
probabilities of attacks that exploit a series of vulnerabilities [4, 
10, 25]. 

Evidence graphs correlate attack evidence by using network 
configuration, time stamps and expert systems with fuzzy rules 
to reconstruct potential attack scenarios from large amount of 
noisy data [1,13]. Decorated by evidence probability as 
quantitative values, a probabilistic evidence graph attaches 
quantitative measures to an evidence graph. 

III. BASIC CONCEPTS 
This section describes the basic concepts used in the rest of 

the paper, which are attack graphs and evidence graphs with 
quantitative metrics. 
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1. Attack G raphs together are prerequisites to launch exploit 4. The cumulative 
probabilities are given in the figure (Assume p(c) =1 here). For There are many definitions on attack graphs, of which we 
P(e4)=P(c1)×P(c2)×p(e4) because P(c1)=P(e1) and use 2X¶V�ORJical attack graph definition [3]. 
P(c2)=P(e2)+P(e3)±P(e2)×P(e3), P(e4)=P(e1)×(P(e2)+P(e3)±P(e2)Definition 1(Attack graph): A=(Nr,Np,Nd,E,L,G) is a logical ×P(e3))×p(e4).attack graph, where Nr, Np and Nd are three sets of disjoint 

nodes (namely derivation, primitive and derived fact nodes 
), L is ar×Nd(N)Nd)×Nrp((Nؿrespectively) in the graph, E 

LV� DQ� DWWDFNHU¶V� dNؿmapping from a node to its label, and G 
final goal [3]. 

An example is shown in Figure 1(Appendix has a bigger 
figure). Primitive fact nodes in boxes include network 
configuration and vulnerability information on hosts. A 
derivation node in an oval represents a successful application 
of an interaction rule, where all facts are its preconditions that 
are satisfied by its child, a derived node in diamond. That is, 
the derived nodes are the result of applying interaction rules 
iteratively on the input facts. The edges in a logical attack 
graph can only go from a fact node to a derivation node or 
from a derivation node to a derived fact node. The labeling 
function maps a fact node to the fact it represents, and a 
derivation node to the rule used for the derivation. 

Figure 1: An Example Attack Graph 

Definition 2 (Probabilistic Attack G raph)[10]: Given an 
acyclic attack graph A=(Nr,Np,Nd,E,L,G,P), and two functions 
p:EÆ[0,1] and p:NdÆ[0,1] assigning probabilities of success 
of an individual exploit (e) and exploiting a condition (c) 
respectively, the cumulative functions for exploits and sets of 
conditions P:eÆ[0,1] and P:cÆ[0,1] are defined as follows. 
1. P(c)= p(c) LI�WKH�FRQGLWLRQ��F��ZDVQ¶W�H[SORLWHG�EHIRUH� 

Figure2: Example Probabilistic Attack Graph 

2. Evidence G raphs 

Definition 3(Evidence G raph)[1]: An evidence graph is a 
tuple E=(N,E,N-Attr,E-Attr,L,T), where N is a set of nodes 

N) is a set of directed ×(Nؿ representing host computers, E 
edges consisting of a particular data item of activity between 
the source and target machines, N-Attr is a set of labels that 
indicate the attributes of nodes, and E-Attr is a set of labels that 
indicate the attributes of edges. L:NÆ2N-Attr or T:EÆ2E-Attr are 
an assignment of a set of attribute-values pairs to a node or an 
edge respectively. The following host labels are used in an 
evidence graph. 

(1) Host ID: Identification of a suspicious host. 
(2) States: States of the host nodes are one or many of the 
DWWULEXWH� YDOXHV� ³VRXUFH´�� ³WDUJHW´�� ³VWHSSLQJ� VWRQH´� DQG� 
³$IILOLDWHG´�� :KLOH� RWKHU� DWWULEute value nomenclature is 
VWDQGDUG�� ³$IILOLDWHG´� KRVWV� DUH� WKRVH� WKDW� KDYH� VXVSLFLRXV� 
interactions with an attacker, victim or stepping-stone. For 
example, if a victim host that was compromised in an attack is 
used as a relay to transfer stolen files is an affiliated host. 
(3) Time stamps: Tactivate and Tlatest time stamps record the 
initial and latest state of a machine. 
(4) Value: The value between 0 and 1 indicates the importance 
of a specific host in a network.
 
Following edge labels are used in an evidence graph.
 
(1) General attr ibutes: Commonly used attributes of evidence, 
including the initiator host of event, the target host of the event, 

Otherwise, and )eP( ْ.)c)=p( cP( 2. 
S is the state of a j.S×iSڲك�where e }iS�3�H� S�H��Ȇ^3�F��F 3. 

is ْ . The operatordhost after an attack that corresponds to N 
EאeP(e)=P(e)ْrecursively 

2Sْ.1Sْí2Sْ+1Sْ)=2S1(Sْ
E.2ك,S1empty sets S 

defined for any and as 
for any disjoint and non- the event description and time stamp(s) of the event. 

(2) Weight (w): A value between [0, 1] is used to represent the 
impact of evidence on the attack. For example, port-scan 
evidence gets less weight than buffer overflow evidence. 
(3) Relevancy(r): Measure of impact on attack success. 
False/ irrelevant true positive = 0, Unable to verify = 0.5 and 
Relevant true positive =1 

For example, IE6-aurora attack for a Linux machine has 
relevancy 0, because Linux does not support IE explorer that is 
the prerequisite of a successful IE6-aurora attack. 
(4) Host Importance (h): This is a decimal value that 
categorizes the importance of a host for an attack plan. 

�Definitionڲ 2 captures the probability p(e) of an exploit e 
S, which can be computed from an existing×SڲكWR� belonging 

metrics, such as CVSS metric vector etc. [4, 5]. The likelihood 
of satisfying the pre-conditions (c) of an exploit is p(c), which 
is always 1 if it is network configuration and less than 1 only 
when the condition is obtained from prior attacks that have a 
less than 1 attack success probability. P(e) is the cumulative 
attack probability computed using a vulnerability that allows 
accessing a host. 

Figure 2 shows a probabilistic attack graph satisfying 
Definition 2. In this graph, exploit 1 on host 1 results in a state 
validating post-condition c1. Either exploit 2 or exploit 3 on 
host 2 results in a state satisfying post-condition c2. c1 and c2 

2 

In order to evaluate how much investigators are confident 
DERXW� D� KRVW¶V� DWWDFN-related states, we use the following 
definition for a probabilistic evidence graph. 



  
  

       
  

       
          

              
    

    
      

         
      

      
        

           
     

 
        

          
      

        
   

        
      

        
       
     

       
         

        
          

          
      

         
   

         
    
          

          
         

           
        

     
 

       
  

 
           

   

          
      

         
       

         
       
         

         
       

      
     

          
           
          
         

      
        

      
           
        

      
        

        
        

     
        
        

         
       

      
           

         
        

           
        

        
        

       
        
        

      
           
        

           
          

         
      

       
       

       
      

         
           

         
          

         
       

       

Definition 4 (Probabilistic Evidence Graph): In an 3. Building G raphs 
acyclic graph E=(N,E,N-Attr,E-Attr,L,T), 

[0,1] is defined as follows. אprobability assignment function p 
1. p(e) = cxw(e)xr(e)xh(e), where ³e´ is a particular edge 

evidence the 
As stated, we use MulVAL [15] to build our attack graph. We 
normalize all evidence using the five components (1) id, (2) 
source, (3) destination, (4) content and (5) time stamp in order 
to build our evidence graphs. Time order is taken as evidence and ³w´, ³r´ and ³h´ are the weight, relevancy and host 

importance respectively [1]�� ³F´� LV� D coefficient that 
indicates the categories of evidence, which are primary 
evidence, secondary evidence and hypothesis testing from 
expert knowledge. They are assigned as 1, 0.8 and 0.5 
respectively in this paper as examples. 

eh.in)], where eout are all edges that (out) .eh p[( =p(h) 2. 
initiate from host h with a particular attack-related state, 

(primary or secondary) dependencies to connect all hosts as 
nodes and evidence as edges to create an evidence graph. IDS 
alerts, suspicious activity log information closer to attack time 
and any information that directly reveals attack activities are 
considered as primary evidence. Secondary evidence may 
include various general-purpose sensor data [1], which include 

and ein are all edges whose target computer is h with the 
and )2ŀH1)-p(e2)+p(e1)=p(e2e1p(e 

false positives triggered by benign activities and irrelevant 

same state. We use 
attacks that are not part of the foreground attack scene of 

p(e1ŀH2)=p(e1) ×p(e2). 
The probability of a single edge p(e) represents the overall 

importance of a piece of intrusion evidence, that is calculated 
by multiplying the edge attributes weight, relevancy and host 
importance. These three values can be obtained from NVD [14] 

interest, or the tainted data from memory or hard disk images. 

as well as LQYHVWLJDWRUV¶�MXGJPHQW�RQ�WKH�Sarticular attack. 
Evidence graphs have two kinds of data, primary and 

secondary. Primary evidence is explicit and direct, and 
secondary evidence is implicit or circumstantial. We assign a 
primary evidence edge a higher value, and a secondary 
evidence edge a lower value. Additionally, sometimes, e.g. 
when attackers used anti-forensics tools or techniques to 
destroy evidence, expert knowledge is used to add an evidence 
edge, to which we attach a smaller probability than secondary 

Because secondary evidence is not as explicit and tangible as 
primary evidence, it is used only when primary evidence is 
insufficient to prove an attack activity. 

Hypothesis testing is used in evidence graph construction. 
Sometimes, IDS may not be triggered by attacks, perhaps due 

evidence, resulting in our choice of 0.8, 0.6 and 0.5 that are for 
the three weights. p(h) in Definition 3 is the probability of all 

to either not setting up the IDS properly or the attack activities 
do not seem malicious. In addition, the evidence might be so 
tainted that the investigators may make a wrong diagnosis. 
Also, attackers may actively destroy all evidence for the anti-
forensic purpose. As a solution, [11] proposes to use a valid 
attack graph with a combination of expert knowledge database 
and anti-forensic database to implement the evidence graph. 
However, the hypothesis testing based on this must not 
contradict existing evidence that represents the attack truth, 
unless investigators are certain the existing evidence left by 
attackers is for obfuscation purposes [2]. 

evidence whose source or target host is h, since investigators 
may find several pieces of evidence between two host 
computers. 

Figure 3 is a probabilistic evidence graph, where there are 
two pieces of evidence IURP�³���������������´�WR workstation 
with probabilities p(e1) and p(e2) respectively. The evidence of 
an attack going from the workstation to the database server has 
a probability p(e4). e4 is second evidence that is represented as 
a dotted line, which has a coefficient 0.8. With these values, for 
example, the probability assigned to the probability of the 

a stepping stone 
)2p(e)1p(e ). 4p(e x0.8 x))2p(e)1)-(p(e4p(e x)+0.82p(e)1p(e 

is = 
is 

IV. MAPPING EVIDENCE GRAPHS TO ATTACK GRAPHS 

We propose to map attack paths in an evidence graph to 
their corresponding paths in the attack graph. Both attack 
graphs and evidence graphs are directed acyclic graphs with 
the final victim hosts as sink nodes [16]. We reverse the edge 
direction in both graphs and take one of the final victim hosts 
as a source node to do the mapping (for simplicity, in the 
following mapping algorithm, the evidence graph and attack 
graph refer to direction-reversed graph and attack graph 
respectively). Because both graphs reflect the same network 
configuration and the evidence graph generally has fewer hosts 
including victim hosts, the evidence graph has a simpler 
structure than the attack graph (ideally, the evidence graph is a 
subset of the attack graph). As such, we take this final victim 
host in the evidence graph as its source host, from which we 
map the evidence graph to the attack graph. In the mapping, 
Breath First Search (BFS) [16] is iteratively used to find 
adjacent nodes, and the unique host ID combining evidence or 
vulnerability information is used for the node mapping between 
two graphs. During the process, exploitation information from 
the attack graph is compared against evidence from the 
evidence graph, and the probability values on the 
corresponding edge and nodes in both graphs are compared. 

In the mapping algorithm we color nodes to mark if a node 
has been discovered on either side. All nodes are initially 
colored white. A node is colored gray when it is discovered but 
its children have not been fully examined, then black after all 
children are examined. After mapping, the edges between all 
black nodes construct attack paths in the attack graph. 

ZRUNVWDWLRQ¶V� EHLQJ� p(h2) 

the conjunctive probability of two pieces of attack evidence 
IURP�³���������������´�WR�ZRUNVWDWLRQ. 

Figure 3: Example Probabilistic Evidence Graph 
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Algorithm 1: M apping evidence graph to attack graph 
Input: Direction-reversed evidence graph E = (N , E , N-Attr , E-
Attr , L , T) with NVictim as the node with victim state; 
Direction-reversed attack graph: A =(N r,Np, Nd, E ,L ,G ,P), where 
Np includes vulnerability information, Nd indicates the particular state 
on a host after a vulnerability is exploited 
Output: Marked attack path in both E and A 
Algorithm:

.ĸe1 ĸa; Q Q 
A]ሾא� } and u Victim@�í�^1V[Eאeach node u For 2. 

Line 1 initializes two empty queues. Qe holds gray nodes 
for evidence graph, and Qa holds the last mapped nodes in the 
attack graph. Lines 2-4 paint every host node in evidence 
graph and derived node in attack graph white, and set the 
parent of each of those nodes to be NIL. The reason why we 
use derived nodes in attack graph is that they correspond to 
host nodes in evidence graph. Line 5 paints the victim node in 
the attack graph gray, since we consider it to be discovered first 
when the procedure begins. Line 6 pushes the victim node to 

3. Do color[u@�ĸ�:+,7( the queue because it has been discovered. The while loop in 
4�������������ʌ>u@�ĸ�1,/ lines 7±16 iterates as long as there remain gray nodes in the 
5.  color[NVictim@�ĸ�*5$<�������� queue Qe. Those gray nodes are discovered nodes that have not 6. ENQUEUE (Qe, NVictim) yet had their adjacency lists fully examined. In this while loop, )�eQ(eWhil 7. 

line 8 takes out the first gray node in the queue, and lines 9-12 8. 
9. 
10.

Do u ĸ�'(48(8(�Qe) 
Adj[u] in E= (N, E, N-Attr, E-Attr, L, T) א each v For 

 ĸEvidence[] Do
11. If color[v] == WHITE 
12.  Then color>Y@�ĸ�*5$<������������������������������������������ 

examine all its white color neighbor nodes, and paint them as 
gray color. Because there may be many, the array evidence[] is 
initialized to hold evidence for a mapping later. Once an 
adjacent node v is found, line 13 pushes it to the queue and 13. ENQUEUE(Qe, v); ʌ>Y@�ĸ�u 

14. Evidence[]. add(E-Attr) 
15.     Pe ĸ�P(e); Pp ĸ�P(u); Pc ĸ�P(v) 

assigns its parent as u. The evidence (E-Attr) between u, v and 
probabilities of u, v and e (e as collection of all evidence E-Attr 

16.  Mapping(u, v, evidence[],Pe, Pp,Pc) between u and v) are saved in lines 14-15, where Pe is the 
17.  color[u@�ĸ�%/$&. probability of the evidence e, Pp is the target host probability, 

and Pc is source host probability (p=parent, c=child). The Mapping (u, v, evidence[],Pe,Pp, Pc )
 .aQ(eWhil 18 ==(

19. 
mapping function is called in line 16 with the above saved 

false ĸFound  ;ĸtQ 
V[A]א�each derived node d Do For 

parameters, which are discovered parent node u, child node v, 
20. evidence[] between u and v and their corresponding 
21. If d.Id == u.id A ND color[d] == white 

Adj[Adj[d]] א each primitive fact v n For eTh 
probabilities for conjunctive evidence and two nodes u, v.  
Lastly, when node u¶V�DOO�QHLJKERU�QRGHV have been examined, 22. 

23.  Do If (evidence[]. Contains(v)) 
24.  Then FRORU>G@�ĸ�%/$&. 
25������������������������������������������������������)RXQGĸ�true 
26. Compare P(d) with Pp 

it is marked as black in Line 17, which will not be examined 
any more. If all connected nodes are marked black, the 
algorithm terminates, and an attack path could be constructed 

27. ENQUEUE(Qp , d) 
28.  Break 
29. Else &RORU>G@�ĸ�*5$< 
30. ENQUEUE(Qt ,d) 
31. E lse Add a node n with u.Id to Graph A 
32.  Color[n] ĸ�EODFN; New[n] ĸ�7UXH 
33.  Q�9XO�ĸ�(YLGHQFH>@

�3�Q@�ĸ3S<������������������������������3>Q�9XO@�ĸ�3H��4Dĸ� 
35.  ENQUEUE(Qa,n) 
36.  Foundĸ�WUXH 
37.  If (Not Found) 
38.  Then ENQUEUE(Qa, DEQUEUE(Qt)) 

  .�a(QeWhil 39(
40. Do Pĸ�'(48(8(�Qa) 

Adj[Adj[m]] א For each n 41. 
42.  Do If n is a derived node 
43. Then Id =n.ID 
44.  If n is a primary fact node 
45.  Then Vul=n.Content 
46.  If Id==v.Id AND evidence[].contains(Vul) 
47.  Then FRORU>Q@�ĸ�%/$&. 
48������������������������������������)RXQG�ĸ�WUXH 

n)a,; ENQUEUE(Q 4Dĸ� p; ������������������������������������ʌ>Q@�ĸ�49 
50. Compare p(Vul) with Pe 
51. Compare P(m) with Pp 
52. Compare P(n) with Pc 
53.  break 
54. E lse If Id==v.Id 
55. Then FRORU>Q@�ĸ�*5$<; ENQUEUE(Qt , n) 

)   .Qa== If 56)(
57.  Then Add a node a with u.Id to Graph A 
58.   Color[a] ĸ�EODFN; New[a] ĸ�7UXH 
59��������������������������D�9XO�ĸ�(YLGHQFH>@; 3>D�9XO@�ĸ�3H 

a)a,; ENQUEUE(Q4Dĸ� p;ʌ>D@�ĸ� 60.  
61. Return 

by linking those black nodes. 
The mapping function traverses all nodes in the attack 

graph, trying to find the derived nodes that correspond to nodes 
u and v from the evidence graph and compare the 
corresponding evidence, vulnerability and probabilities 
information. 

Lines 18--38 find the corresponding host in the attack graph 
that corresponds to victim node in the evidence graph. We do 
so by searching all derived nodes that has host ID information 
in the attack graph. The reason why we did not only focus on 
victim nodes in attack graph is that the attach path in attack 
graph might be longer than the corresponding path in the 
evidence graph. Line 18 checks if Qa, the queue that holds last 
mapped derived node, is empty or not. If it is empty, we have 
not started any mapping, and we search for the first node that 
corresponds to source node in evidence graph. Lines 21--28 
checks every derived node that has same ID as u --victim node 
from evidence graph and same vulnerability information as

evidenceא attached to u (The vulnerability is primitive fact v 
Adj[Adj[d]]). Once such a derived node is found, it is colored 
black and pushed into Qa, which will be used as the parent 
node to search child derived nodes in next mapping steps. Once 
the searching on the child derived nodes have been successful, 
the black node will be de-queued (in line 40) so that new parent 
nodes will be en-queued to Qa for an iterative search. Lines 
29²30 use gray color to mark all derived nodes that have 
same ID as node u from evidence graph but have no matching 
vulnerability information as the evidence attached to u. These 
derived nodes are pushed into queue Qt temporarily, which is 
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initialized in line 19. Once all searching finishes, if there are 
only gray color nodes (i.e. no matching black node is found), 
they will be de-queued from Qt and en-queued into Qa as 
pDUHQWV�IRU�QH[W�VWHS¶V�VHDUFK. This is on lines 37²38 (Because 
of multi-vulnerability in a particular host, there might be 
several derived nodes with same host ID in attack graph). We 
call these gray nodes half matched because the host ID is 
matched to node in evidence graph but there is no 
corresponding matched vulnerability to the evidence. In this 
case, we use all gray nodes with the same host ID for the next 
step in the search. Consequently, the attack paths in the attack 
graph may include gray nodes and black nodes. Lines 31²36 
add a new node to the evidence graph if there is no matched or 
half match node. This happens when the attack graph does not 
include a host computer with vulnerability exploitable for this 
attack. For later attack graph refining purpose, corresponding 
evidence and probabilities from the evidence graph are added 
to the newly added node in the attack graph. 

Lines 39²60 are similar to line 18²38, which seek a 
derived node n in the attack graph that corresponds to X¶V child 
node v in the evidence graph. The only difference between 
39²60 and 18²38 is that, before searching for the child 
derived node n in 39²60, the algorithm have found Q¶V 
mapped parent/ancestor node in the attack graph, which has 
been saved in Qa(Line 39). 

V. CASE STUDY 
A. Experiment Network 

We implemented a small-scale multi-state attack in an 
experimental network as shown in Figure 4 to construct two 
graphs and experiment with the mapping. The external firewall 
controls network access from the Internet to the enterprise 
network, where the Apache Tomcat webserver hosts a webpage, 
wKLFK� DOORZV� ,QWHUQHW� XVHUV¶� YLVLW� WKURXJK� SRUW� ������ 7KH� 

this machine. Our external attacker uses social engineering to 
trick the workstation user to click on a malicious web link, 
which enables the attack machine to control the workstation 
that has direct access to the database. 
B. The Attack Graph 

We use MulVAL [15] to generate the attack graph in 
Figure 5. The 25 steps of the attack scenario are explained in 
Appendix 2. 

Figure 5: Experiment Probabilistic Attack graph 

Table 1 holds all probabilities of single exploits in the network 
obtained from CVSS [5] and human factors in a network. 
Number 2 is a human factor, which varies from user to user. 
We assign it 0.8, because it is easy to trick an employee to click 
on a well-disguised link [4]. Using Table 1 and Definition 2, 
we calculated the probabilities of exploits that are in derivation 
nodes and the cumulative probabilities of attack success in 
derived nodes. These values are shown in Figure 5. 

TABLE 1: EXAMPLE NETWORK VULNERABILITY/ACCESS PROBABILITY 

internal firewall controls the access to the MySQL database 
server, where the databases can be accessed by the webserver 
and workstations through a default port 3306. 

Number Configuration/Vulnerability Probability 

1 Direct Network Access 1 
2 Social Engineering 0.8 
3 CVE-2009-1918 1 
4 CWE89 0.75 
5 Access to database from workstation 1 

C . Evidence Graph 

TABLE 2:ROLE CONFIGURATION IN THE ATTACKS 

Attacker 129.174.128.148 
Step Stone Workstation 
Step Stone/Affiliated Web server 
Victim Database server 

Our forensic analysis uses the attacker roles stated in Table 

Figure 4: Experiment Network 

In this network, the webserver is configured to record all 
incoming IP addresses with timestamps. The database server is 
configured to record all query information, and the IDS is used 
to catch network traffic from the Internet. 

'''

Our attack objective is to gain access to database tables as 2, corresponding to the following scenario. 
an Internet user. Our attack plan is to launch a SQL injection (1) An un-sanitized string was entered into the password text 
attack that exploits a java servlet code that does not sanitize input field of the web server Webpage��ZKLFK�LV�³�DQ\WKLQJ¶�RU� 
input values: theStatement.executeQuery("select * from profiles where µ�¶ ¶� ´�� � 7KLV� FDXVHd a SQL injection attack to a database 

" " " This exploitname= Alice ' AND password= assWord+ );.+p QDPHG�³SURILOHV´�LQ�GDWDEDVH�VHUYHU� 
corresponds to CWE89 in NVD [12]. The workstation that runs 
Windows XP SP3 operating system with IE6 with the 
vulnerability (CVE-2009-1918 [9]) enables executing any code on 

(2) Internet Explorer "Aurora" Memory Corruption was 
launched from attacker machine to the Windows workstation 
with IE6 browser. This was done by tricking a windows 
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workstation user to click on a link sent from the attacker 
machine. 

(3) After the workstation has been hijacked, a tool like 
TightVNC [8] is uploaded to the workstation, which could 
remotely control the workstation to access the database. 

Evidence was divided into two categories. Because the 
suspicious SQL injection query ³select * from profiles where 
name='Alice' AND password='alice' or '1' = '1' ´has obvious injection 
feature that is µ�¶ ¶�¶[23], we categorized it to primary evidence. 
By using its time stamp, ³120416 15:32:51´, we investigated other 
machines connected to this database, which are webserver and 
workstations. According to the above time stamp, suspicious 
log information was found on the webserver, which was 
³129.174.92.32 - - [16/Apr/2012:15:32:51 -0400] " POST /lab/Test 
H TTP/1.1 " 200 980´(129.174.92.32 is workstation¶V IP). 
2EYLRXVO\��WKH�,3�DGGUHVV�³�������������´ that does not belong 
to this network is the attacker. Now, an attack path can be 
constructed. 

Because of the small size of our experiment, it was easy to 
find evidence in the workstation by investigating browser 
history DQG�³ORFDO�VHWWLQJ�WHPS´�IROGHU�WR�VHDUFK�IRU suspicious 
links or executable file (The executable file is TightVNC [8] in 
our case) sent or uploaded by the attacker. However, in a real 
scenario, there must be many workstations connected to a 
database server. Under this situation, an expert knowledge 
database such as the one in >��@� RU� LQYHVWLJDWRUV¶� HPSLULFDO� 
experiment should be used to reduce the investigation scope. 

Because the compromised workstation has direct access to 
the database server, it is difficult to ascertain if the access 
record is that of an attacker. Consequently, this attack step 
from the workstation to the database server was added by using 
expert knowledge, which completed another attack path 
³attacker ĺ workstation ĺGDWDEDVH�VHUYHU´�in the evidence graph. 

:H�QRUPDOL]HG�WKH�DERYH�HYLGHQFH�LQWR�D�IRUP�³(1) id, (2) 
source, (3) destination, (4) content (5) time stamp´�DQG�XVHG�D� 
Java program to reason the evidence dependency in a time 
order, which was converted into an evidence graph in Figure 6 
by using Graphviz[6]. The solid edge represents primary 
evidence. The dotted line from ³workstation´ to ³dbServer´ 
was added by using expert knowledge. 

Figure 6: Experiment Network Evidence Graph 

D . Mapping Evidence Graph to Attack Graph 

We mapped our evidence graph to attack graph using 
Algorithm 1. Our result shows that the attack paths in the 
attack graph are almost the same as those in evidence graph, 
except that the attack graph shows that the attack from the 
compromised workstation to the database server uses SQL 

injection (Node 25), while evidence graph shows a direct access. 
According to this information, we re-checked the attack graph 
and found that node 25 should be attached to node 4 instead of 
node 2. Having fixed this by changing Prolog rules, the attack 
graph was changed to have the same attack paths as evidence 
graph in Figure 6, but with changed probabilities. Now, the 
probability of attack from the webserver to database server is 
0.75 using the SQL injection vulnerability, and the probability 
of an attack from workstation to the database server is 0.8, 
because the prior social Engineering attack success is 0.8. The 
cumulative probability on the database server is 0.8+0.75-
0.8×0.75 = 0.95, which is closer to the real world scenario than 
the one before we made the corresponding change. 

By reading mapped graphs, the corresponding forensics or 
network defense tools should be taken in the network so that 
they can serve a better forensics analysis. In our network, two 
places should be enhanced. They are webserver and the access 
from workstations to database server, because the analysis 
showed that they provided the attack paths to the database, 
which was not configured for forensics analysis. 

We also did an anti-forensics experiment on this network, 
where the workstation was fully compromised using root 
privileges that allowed us to totally remove the evidence that 
LQGLFDWHV� ZRUNVWDWLRQ¶V� EHLQJ� FRPSURPLVHG� E\� our attacker. 
With anti-forensics tools�� WKH� DWWDFN�SDWK� ³attacker ĺ workstation 
ĺGDWDEDVH´ would be missing in the evidence graph. In this case, 
the attack graph implemented with anti-forensics activity nodes, 
which we proposed in [11], has to be used to recover the attack 
scenario, helping in reconstructing the complete evidence 
graph. 

VI. CONCLUSION 
Based on the formal definition of probabilistic attack 

graphs and evidence graphs, we showed how to map the 
evidence graph to the attack graph. This mapping helps in 
adjusting the attack graph and find what is missing in the 
evidence graph, which would assist in forensic investigations 
and reconfigure the network to defeat attacks. Furthermore, by 
using this mapping algorithm, investigators could find out if 
attackers have used anti-forensics. Therefore, corresponding 
measures, such as the method proposed in [11], would be used 
to recover an attack scenario in order to have a complete 
forensic analysis. 
R E F E R E N C ES 
>�@�� :�� :DQJ� DQG� 7�� 'DQLHOV�� ³%XLOGLQJ� HYLGHQFH� JUDSKV� IRU� QHWZRUN� 
IRUHQVLFV� DQDO\VLV´�� 3URFHHGLQJV� RI� WKH� 7ZHQW\-First Annual Computer 
Security Applications Conference, pp. 254±266, 2005. 
>�@�� %�� '�� &DUULHU� DQG� (�� +�� 6SDRUG�� ³$Q� (YHQW-Based Digital Forensic 
,QYHVWLJDWLRQ� )UDPHZRUN´�� ,Q� 3URFHHGLQJV� RI� WKH� �WK� 'LJLWDO� )RUHQVLF� 
Research Workshop, 2004. 
>�@�� 2X�� ;��� %R\HU�� :�)��� 0F4XHHQ�� 0�$��� ³$� VFDODEOH� DSSURDFK� WR� DWWDFN� 
graph gHQHUDWLRQ´�� ,Q� ��WK� $&0� &RQIHUHQFH� RQ� &RPSXWHU� DQG� 
Communications Security(CCS), pp. 336±345 (2006). 
>�@�$��6LQJKDO�;��2X�³6HFXULW\�5LVN�$QDO\VLV�RI�(QWHUSULVH�1HWZRUNV�8VLQJ� 
3UREDELOLVWLF�$WWDFN�*UDSKV´��1,67�,QWHU$JHQF\�5HSRUW��6HSWHPEHU������ 
[5] CVSS--A Complete Guide to the Common Vulnerability Scoring System 
Version 2.0, http://www.first.org/cvss/cvss-guide 
[6] Graphviz-Graph Visualization Software, http://www.graphviz.org/ 
>�@�3��$PPDQQ��'��:LMHVHNHUD��6��.DXVKLN���³6FDODEOH��JUDSK-based network 
YXOQHUDELOLW\�DQDO\VLV´��,Q�3URFHHGLQJV�RI��WK�$&0��&RQIHUHQFH�RQ�&RPSXWHU� 
and Communications Security, Washington, DC, November 2002 

6
 

mailto:�@�3��$PPDQQ��'��:LMHVHNHUD��6��.DXVKLN����6FDODEOH��JUDSK-based
http:http://www.graphviz.org
http://www.first.org/cvss/cvss-guide
http:0.8�0.75
http:0.8+0.75
http:980�(129.174.92.32
http:�129.174.92.32


7   
  

    
 

     
             

          
        

 
    

     
   

  
 

 
     
       
           

     

           
          

      

    

 
 

   
            
       
     

 
      

          
       

    
 

 

      

 
  

  

  

  

  

  

       
  
       
  
    
  
  
       
  
   
  
  
  
  
   
  
  
      
  
      
  
  
  
  
  
  

 

[8] TightVNC Software, 
http://www.tightvnc.com/. 
[9] National Vulnerability Database, http://nvd.nist.gov/. 
[10] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-
based probabilistic security metric. In Proceedings of The 22nd Annual IFIP 
WG 11.3 Working Conference on Data and Applications Security 
�'%6(&¶����������� 
[11] C. Liu, A. Singhal�� '�� :LMHVHNHUD�� ³8VLQJ� $WWDFN� *UDSKV� LQ� )RUHQVLF� 
([DPLQDWLRQV´�� ����� 6HYHQWK� ,QWHUQDWLRQDO� &RQIHUHQFH� RQ� $YDLODELOLW\�� 
Reliability and Security, August 2012 
[12] http://nvd.nist.gov/cwe.cfm 
>��@�1��/LDR��6��7LDQ��7��:DQJ��³1HWZRUN�IRUHQVLFV�EDVHG�RQ�IX]]y logic and 
H[SHUW� V\VWHP´�� &RPSXWHU� &RPPXQLFDWLRQ�� YRO�� ���� QR�� ���� SS�� ����±1892, 
2009. 
[14] National Vulnerability Database, http://nvd.nist.gov/. 
[15] MulVAL V1.1, Jan 30, 2012, http://people.cis.ksu.edu/~xou/mulval/. 
[16] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to 
Algorithms, MIT University Press, Cambridge, 2001. 

APPE NDI X 

1. Attack graph in F igure 1 

[17] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M.Wing. Automated 
generation and analysis of attack graphs. In Proceedings of the 2002 IEEE 
Symposium on Security and Privacy, pages 254±265, 2002. 
>��@�.�� ,QJROV��0��&KX��5��/LSSPDQQ�� 6��:HEVWHU� DQG�6��%R\HU�� ³0RGHOLQJ� 
0RGHUQ� 1HWZRUN� $WWDFNV� DQG� &RXQWHUPHDVXUHV� 8VLQJ� $WWDFN� *UDSKV´�� 
Proceedings of ACSAC Conference 2009. 
>��@�6$16� ,QVWLWXWH� ,QIR6HF�5HDGLQJ�5RRP��³DQ�2YHUYLHZ�RI�'LVN� ,PDJLQJ� 
7RRO�LQ�&RPSXWHU�)RUHQVLFV´������� 
>��@� %�� &DUULHU�� ³)LOH� 6\VWHP� )RUHQVLF� $QDO\VLV´�� $GGLVRQ-Wesley 
Professional, March 2005. 
[21] H. Debar, M. Becker, D. Siboni, A neural network component for an 
intrusion detection system, Proceedings of IEEE Symposium on Research in 
Computer Security and Privacy, 1992. 
>��@� 6�� -DMRGLD�� 6�� 1RHO�� %�2�¶%HUU\�� ³7RSRORJLFDO� $QDO\VLV� RI� 1HWZRUN� 
$WWDFN� 9XOQHUDELOLW\´�� ,Q� 0DQDJLQJ� &\EHU� 7KUHDWV�� ,ssues, Approaches and 
Challenges, V. Kumar, J. Srivastava, A. Lazarevic (eds.), Springer, 2005. 
[23] W. G. Halfond, J. Viegas, and A. Orso. A Classification of SQL-Injection 
Attacks and Countermeasures. In Proc. Of the Intern. Symposium on Secure 
Software Engineering (ISSSE 2006), Mar. 2006. 

2. Predicates used in F igure 3 
1 execCode(dbServer,user) 
2 RULE 2 (remote exploit of a server program) 
3 netAccess(dbServer,tcp,3306) 
4 RULE 5 (multi-hop access) 
5 hacl(webServer,dbServer,tcp,3306) 
6 execCode(webServer,apache) 
7 RULE 2 (remote exploit of a server program) 
8 netAccess(webServer,tcp,8080) 
9 RULE 6 (direct network access) 

10 hacl(internet,webServer,tcp,8080) 
11 attackerLocated(internet) 
12 networkServiceInfo(webServer,httpd,tcp,8080,apache) 
13 vulExists(webServer,'CWE89',httpd,remoteExploit,privEscalation) 
14 RULE 5 (multi-hop access) 
15 hacl(workStation,dbServer,tcp,3306) 
16 execCode(workStation,user) 
17 RULE 3 (remote exploit for a client program) 
18 accessMaliciousInput(workStation,secretary,'IE') 
19 RULE 22 (Browsing a malicious website) 
20 hacl(workStation,internet,httpProtocol,httpPort) 
21 inCompetent(secretary) 
22 hasAccount(secretary,workStation,user) 
23 vulExists(workStation,'CVE-2009-1918','IE',remoteClient,privEscalation) 
24 networkServiceInfo(dbServer,mySQL,tcp,3306,user) 
25 vulExists(dbServer,'SQLinjection',mySQL,remoteExploit,privEscalation) 
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