
A Classification of Differential Invariants for
 

Multivariate Post-Quantum Cryptosystems
 

Ray Perlner1 and Daniel Smith-Tone1,2 

1National Institute of Standards and Technology,
 
Gaithersburg, Maryland, USA
 

2Department of Mathematics, University of Louisville,
 
Louisville, Kentucky, USA
 

ray.perlner@nist.gov, daniel.smith@nist.gov 

Abstract. Multivariate Public Key Cryptography(MPKC) has become 
one of a few options for security in the quantum model of computing. 
Though a few multivariate systems have resisted years of effort from the 
cryptanalytic community, many such systems have fallen to a surpris­
ingly small pool of techniques. There have been several recent attempts 
at formalizing more robust security arguments in this venue with vary­
ing degrees of applicability. We present an extension of one such recent 
measure of security against a differential adversary which has the ben­
efit of being immediately applicable in a general setting on unmodified 
multivariate schemes. 
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1 Introduction 

Since Peter Shor’s discovery of quantum algorithms for factoring and computing 
discrete logarithms quickly with quantum computers, there has been a grow­
ing community with the goal of establishing a replacement for RSA or Diffie-
Hellman in the quantum realm. The last two decades have witnessed a great 
deal of progress towards realizing that quantum computing world, indicating 
that Shor’s discovery is a great deal more than a mathematical curiosity; in­
stead, his discovery marks the need for an eventual paradigm shift in our public 
key infrastructure. 

Multivariate Public Key Cryptography(MPKC) has emerged as one of a few 
serious candidates for security in the post-quantum world. This emergence is 
due to several facts. First, the problem of solving a system of quadratic equa­
tions is known to be NP-hard, and seems to be hard even in the average case. 
No great reduction of the complexity of this problem has been found in the 
quantum model of computing, and, indeed, if this problem is discovered to be 
solvable in the quantum model, we can solve all NP problems, which seems 

mailto:daniel.smith@nist.gov
mailto:ray.perlner@nist.gov


2 R. Perlner, D. Smith-Tone 

particularly wishful. Second, multivariate systems are very efficient, often hav­
ing speeds dozens of times faster than RSA, [1–3]. Finally, several theoretical 
advances have resulted in the development of modification techniques which al­
low multiple parameters to be hidden within a system which can be altered to 
achieve different performance or security properties. 

One of the great challenges facing MPKC is the task of establishing rea­
sonable security assurance. Though there have been some recent attempts at 
forming a new model in which to offer provable security for encryption and sig­
natures, see for example [4, 5], it seems apparent that these models are not as 
general as we would like or require modifications of realistic protocols to carry 
their full meaning. The task of quantifying indistinguishability between general 
classes of systems of multivariate equations seems exceptionally difficult in light 
of the fact that even with a great deal of structure in the construction of a multi­
variate cryptosystem, the coefficients can appear to have a uniform distribution. 
Although history has shown that once a way to distinguish a class of systems of 
structured multivariate equations from a collection of randomly generated equa­
tions is discovered, a method of solving this system is often quickly developed, it 
is not clear that the techniques for distinguishing such systems are indicative of 
an underlying theme powerful enough to establish a general method of security 
proof. 

The many cryptanalyses of various big field multivariate cryptosystems have, 
however, pointed out weaknesses in the predominant philosophy for the construc­
tion of such multivariate public key cryptosystems. Several systems, SFLASH, 
Square, for example, which are based on simple modifications of the prototyp­
ical Matsumoto-Imai public key cryptosystem, have been broken by very simi­
lar differential attacks exploiting some symmetry which is inherent to the field 
structure these systems utilize. See [6–9]. Even in the small field milieu, various 
attacks, for example the oil-vinegar attack, see [10], can be viewed as an attack 
on differential structure; specifically, discovering a differential invariant. 

In [11], a measure of security against attacks exploiting differential sym­
metry was advanced. This methodology allows one to construct proofs that a 
cryptosystem is secure against a differential symmetry adversary by classifying 
the differential symmetric structure of the cryptosystem. By identifying all pos­
sible initial general linear differential symmetries possessed by a field map, one 
can determine which linear relations involving the differential of a public key are 
accessible to any adversary, and thus guarantee security against such an attack 
model. Although this result is not as robust as a reduction theoretic proof of 
security, it has the benefit, first, of being far stronger than the traditional model 
of checking the vulnerability of new schemes against old attacks, second, of be­
ing immediately applicable in the design of cryptosystems, and third, of perhaps 
being a more realistic goal than that of reduction theoretic proof. 

In this article, we introduce a technique which is dual to that of [11] in the 
sense that it assures security against any first-order differential invariant ad­
versary. Specifically, we establish a model for classifying first-order differential 
invariants of a field map and apply the model, providing classifications of such in­
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variants for specific cryptosystems. This characterization, in conjunction with an 
analogous classification in the symmetric setting, provides a model for security 
against any first-order differential adversary, and is the first step towards estab­
lishing general differential security via an existence criterion. We suggest such an 
analysis of differential invariant security as a reasonable criterion and pragmatic 
tool for cryptographers in the development of future multivariate schemes. 

The paper is organized as follows. The next section illustrates the ubiqui­
tous nature of the differential attack by recasting the attack on the balanced 
oil and vinegar scheme in the differential setting. In the following section, we 
focus on differential invariants, presenting the first-order differential invariant 
and discussing the technique for realizing the theoretical differential invariant 
structure of any class of MPKC. The subsequent section restricts the analysis of 
this space to the case in which the hidden field map of the cryptosystem is a C∗ 

monomial. The differential invariant structure is then determined for projected 
systems such as the projected SFLASH analogue, pSFLASH. Finally, we review 
these results and suggest a general model for differential security. 

2 Differential Symmetries and Invariants 

Differential attacks play a crucial role in multivariate public key cryptography. 
Such attacks have not only broken many of the so called “big field” schemes, 
they have directed the further development of the field by inspiring modifiers — 
Plus (+), Minus (-), Projection (p), Perturbation (P), Vinegar (v) — and the 
creation of newer more robust techniques. 

The differential of a field map, f , is defined by Df(a, x) = f(a + x)− f(a)− 
f(x) + f(0). The use of this discrete differential appears to occur in very many 
cryptanalyses of post-quantum multivariate schemes. In fact, we can even con­
sider Patarin’s initial attack, in [12], on Imai and Matsumoto’s C∗ scheme, see 

q θ+1 [13], as the exploitation of a trivial differential symmetry. Suppose f(x) = x
and let y = f(x). Since the differential of f , Df , is a symmetric bilinear func­

θ 2θ θ θ θ θ 2θ θ q +1 ) q +q q q +1 q q qtion, 0 = Df(y, y) = Df(y, x = yx + y x = x (yx + y x). 
θ 2θ θ q q qDividing by x we have Patarin’s linear relation, yx = y x; see [12] for 

details. 

Differential methods provide powerful tools for decomposing a multivariate 
scheme. To illustrate the nearly universal nature of differential attacks, we review 
the attack of Kipnis and Shamir, see [10], on a non-big-field system, the oil and 
vinegar scheme. Though they use differing terminology, the attack exploits a 
symmetry hidden in the differential structure of the scheme. 

Recall that the oil and vinegar scheme is based on a hidden quadratic system 
of equations, f : kn → ko, in two types of variables, x1, ..., xo, the oil variables, 
and xo+1 , ..., xo+v=n, the vinegar variables. We focus on the balanced oil and 
vinegar scheme, in which o = v. Let c1, ..., cv be random constants. The map f 
has the property that f(x1, ..., xv, c1, ..., cv) is affine in x1, ..., xv. The encryption 
map, f is the composition of f with an n-dimensional invertible affine map, L. 
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Let O represent the subspace generated by the first v basis vectors, and let 
V denote the cosummand of O. Notice that the discrete differential given by 
Df(a, x) = f(x + a)− f(x)− f(a) + f(0) has the property that for all a and x 
in O, Df(a, x) = 0. Thus for each coordinate, i, the differential coordinate form 
Dfi can be represented: 

[ ]

0 Dfi1
Dfi = . 

Dfi2Dfi
T 
1 

Let M1 and M2 be two invertible matrices in the span of the Dfi. Then 
M−1 

1 M2 is an O-invariant transformation of the form: 

[ ] 

A B 
. 

0 C 

Now the Dfi are not known, but D(f ◦ L)i = LTDfiL, so the L
TDfiL are 

known. Notice that if M is in the span of the Dfi, then L
TML is in the span of 

L−1M−1the LTDfiL. Also, since (LTM1L)
−1(LTM2L) = M2L, there is a large 1 

space of matrices leaving L−1O invariant, which Kipnis and Shamir are able to 
exploit to effect an attack against the balanced oil and vinegar scheme; see [10] 
for details. Making the oil and vinegar scheme unbalanced, see [14], corrects this 
problem by making any subspace which is invariant under a general product 
M−1 very small, see [15]. 1 M2 

3 First-Order Differential Invariants 

Let f : k → k be an arbitrary fixed function on k, a degree n extension of the 
Galois field Fq. Consider the differential Df(a, x) = f(a+x)−f(a)−f(x)+f(0). 
We can express the differential as an n-tuple of differential coordinate forms in 
the following way: 

T[Df(a, x)]i = a Dfix, 

where Dfi is a symmetric matrix representation of the action on the ith co­
ordinate of the bilinear differential. A first-order differential invariant of f is a 
subspace V ⊆ k with the property that there exists a W ⊆ k of dimension at 
most dim(V ) for which simultaneously AV ⊆ W for all A ∈ Spani(Dfi). 

We note that any simultaneous invariant of all Spani(Dfi) satisfies the above 
definition, as well the situation for balanced oil and vinegar, in which the in­
variant was found in the product of an element and an inverse of an element 
in Spani(Dfi). A first-order differential invariant is thus a more general con­
struct than a simultaneous invariant among all differential coordinate forms. We 
present a proof theoretic technique for classifying the first-order differential in­
variants of such a multivariate map f : k → k which can specify parameters 
admitting such invariant structure. 

Suppose f has a first-order differential invariant V . Let V ⊥ represent the set 
of all elements x in k such that the dot product < x, Ay >= 0 for all y ∈ V and 
for all A ∈ Spani(Dfi). We should note that in positive characteristic there is a 
great deal of freedom in membership in V ⊥; there is no reason that V ∩V ⊥ should 
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be empty in general or even that V ⊕ V ⊥ be contained in k. Let M : k → V 
⊥be an arbitrary linear map. Choosing an arbitrary linear map M⊥ : k → V 

we have the following (non-linear) symmetric relation, a dual expression of the 
differential invariance: 

[Df(M⊥a, Mx)]i = a T (M⊥)TDfiMx = 0, 

for all i. Thus Df(M⊥a, Mx) is identically zero for all a, x ∈ k. 
Consequently, the existence of a first-order differential invariant for a map 

f implies the existence of a nonlinear symmetry on f , that is, a symmetry in­
duced by linear maps such that the system of equations expressing the symmetric 
relation are nonlinear in the coefficients of the maps. Note that the converse im­
plication is false, so that having a first-order differential invariant is a stronger 
property than having this manner of nonlinear differential symmetry. By explic­
itly constructing the polynomial map f(a, x) = Df(M⊥a, Mx) ≡ 0 over k2, we 
can derive relations permitting the existence of this nonlinear symmetry, and 
hence the first-order differential invariant. 

4 Invariants in the Prototypical Case 

As an illustration of this technique we examine the case when f : k → k is a C∗ 

monomial map. Specifically, we let f(x) = xq θ+1 where (θ, [k : Fq]) = 1. This 
case in particular applies to the famously broken, see [9], SFLASH signature 
scheme, which was constructed by composing f with two affine transformations: 
P = T ◦ f ◦ U , where T is singular and U is of full rank. 

Theorem 1 Let f : k → k be a C∗ monomial map. Then f has no nontrivial 

first-order differential invariant. 

Proof. Suppose by way of contradiction that f has a first-order differential in­
⊥variant {0} < V < k. Define V = {x| < x, Ay >= 0, ∀y ∈ V and ∀A ∈ 

Spani(Dfi)}. Then f satisfies the relation Df(M⊥a, Mx) = 0 for all a, x ∈ k. 

Df(M⊥a, Mx) = f(M⊥ a + Mx)− f(M⊥ a)− f(Mx) + f(0) 

n−1 n−1 n−1 n−1
    

i i i i
⊥ q q ⊥ q q= f( mi a + mix )− f( mi a )− f( mix ) + f(0) 

i=0 i=0 i=0 i=0 

n−1 n−1 n−1 n−1
    

i i θ i θ i θ
⊥ q q )q +1 − ( ⊥ q )q +1 − ( q )q +1 = ( mi a + mix mi a mix

i=0 i=0 i=0 i=0 

n−1 n−1
  

θ θ i j
⊥ )q ⊥ q q q= (mj(mi−θ + mi mj−θ)a x . 

i=0 j=0 

(1) 

i jq qSince the collection of monomials {a x } are algebraically independent, the 
fact that the above function is identically zero implies that, 

θ θ
⊥ ⊥ q

mj(m )q + mi m = 0,i−θ j−θ 



 

 

 

� � 
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for all 0 ≤ i, j ≤ n − 1. This fact implies that all 2 × 2 minors of the following 
matrix are zero: 

⊥ ⊥m0 m m1 · · · mn−1 m0 n−1 
θ θ θ . q q q⊥ ⊥ m (m )q 

θ 

m · · · m (m )q 
θ 

−θ −θ 1−θ n−1−θ n−1−θ

Thus, the rank of this matrix is one, and we have that the second row is a 
θ

∗ ∗ )qmultiple of the first, say m = r(m , as well as the fact that each column i i−θ
⊥is a multiple of the first, implying, for example, m = sm0.0 

iθ 

∗ θ ∗ 
q −1 
q −1Consequently, for all 0 ≤ i ≤ n − 1, m = r (m )q 

iθ 

. Moreover, we can iθ 0 
iθ iθ q −1 q −1iθ iθ q qθ ⊥ θ q iθ q −1 q −1specify that miθ = r m and m = r s m , which implies that 0 iθ 0 

⊥ q i mi = s mi for all 0 ≤ i ≤ n − 1. Thus 

n−1 
i 

M⊥ ⊥ qx = mi x

i=0 

n−1 
i i q q= mis x

(2) 
i=0 

n−1 

= mi(sx)
q i 

i=0 

= M(sx). 

Hence, the fact that Df(M(sa), Mx) = 0 for all a, x ∈ k implies that 
Df(M a, Mx) = 0 for all a, x ∈ k. This result implies that dim(Mk) ≤ 1, 
that is, the dimension of the image of M in k is one, by the following argument. 

( )

θ θ θ θ q −1 q −1 q −1 q −1If Df(a, x) = 0, then ax x + a = 0, and a = −x implies 
q−1 q−1that a = −x since (qθ − 1, qn − 1) = q − 1. This equation is satisfied 

exactly when there exists α ∈ Fq such that a = αx. 
Since this nonlinear differential symmetry exists for any map g : k → k, there 

exists no nontrivial differential invariant of f . 

We can therefore conclude that C∗ has no first-order differential invariant 
weaknesses, even though it is fraught with linear differential symmetric weak­
nesses. The significance of this result is that we can prove that the cryptosystem 
in question is secure against all first-order differential invariant adversaries, even 
those employing attacks yet undiscovered. 

5 Invariant Properties under Projection 

After SFLASH was broken, it was suggested in [16] that the affine map U be 
made singular. We continue, establishing security bounds for this suggestion, one 
of the last unbroken C∗ variants, pC∗− , or pSFLASH. We recall that in [11] it was 
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established that pSFLASH with appropriately chosen parameters has no general 
linear differential symmetries and is thus immune to any type of differential 
attack relying on the accumulation of linear equations involving the differential 
of the public key. While it has been established in [17] that the projection in 
pSFLASH can be removed, the structure when the projection modifier is removed 
is no longer that of a C∗ function; rather, it is an HF E− scheme. Thus pSFLASH 
is no more secure than HF E−, which remains unbroken. For the security details 
of HF E−, please see [18]. 

Theorem 2 Let f : k → k be a C∗ monomial, and let π : k → k be a linear 
projection onto a codimension r subspace. Then every nontrivial first-order dif­

ferential invariant V satisfies dim(V ) ≤ dim(V ∩ ker(π)) + 1. Consequently, if 
r = 1, there is no nontrivial first-order differential invariant structure beyond 
the obvious ker(π). 

Proof. Let V be a first-order differential invariant of f ◦ π, and let M : k → V 
be an arbitrary linear map. Then π ◦M is a first-order differential invariant of 

⊥ 

f , and there exist maps M = π ◦M and M such that: 

⊥ 

D(f ◦ π)(M⊥a, Mx) = Df(πM⊥a, πMx) = Df(M a, Mx) = 0, 

⊥ 

for all a, x ∈ k. We note that there are exactly as many possible maps M as 
⊥ 

maps π ◦M⊥; indeed, the proof of Theorem 1 shows us that M x = π ◦M⊥(sx) 
for some s. As in the proof of Theorem 1, dim(Mk) ≤ 1, and since π is of 
codimension r, dim(Mk) ≤ dim(Mk ∩ ker(π)) + 1. We note that since any 
map g : k → k has this property, f ◦ π has no nontrivial first-order differential 
invariant structure beyond ker(π). 

We can conclude from the above theorem that pSFLASH is secure against 
any first-order differential invariant adversary. 

6 Conclusion 

Multivariate public key cryptography has several desirable traits as a potential 
candidate for post-quantum security. Unfortunately, a standard metric by which 
we can judge the security of a multivariate scheme has yet to be determined. 
One consequence of this current status of the field is the similar cryptanalyses 
of several promising ideas. 

We suggest the classification of first-order differential invariants as a second 
benchmark for the determination of differential security for multivariate public 
key cryptosystems. We note that while the lack of the symmetric and invariant 
differential security argument does not imply that a cryptosystem is insecure 
against a differential adversary, the presence of such an assurance guarantees 
the resistance against any future first-order differential attack. 

The case of pSFLASH is particularly interesting because while retaining the 
prototypical C∗ underlying structure which plagued other variants, the modifica­
tions implemented in the scheme seem to perform their intended tasks perfectly. 
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Most significantly, the projection modifier has provably removed the linear sym­
metric differential structure, as shown in [11], while retaining the flawless dif­
ferential invariant structure. On the other hand, the reduction provided by the 
algorithm in [17] to remove the projection modifier succeeds in transforming 
pSFLASH into an HF E− scheme. Although the transformation removes the 
C∗ properties of the core map, it may well prove to be the case that the extra 
structure the resultant particular HF E− scheme retains may reveal a weak­
ness. Any new attack on this system will be very exciting, as it will indicate a 
fundamentally new cryptanalytic technique. 
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