Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NIST Awards $7.4 Million in Grants for Additive Manufacturing Research

The National Institute of Standards and Technology (NIST) today announced the award of two grants totaling $7.4 million to fund research projects aimed at improving measurement and standards for the rapidly developing field of additive manufacturing. Benefits of additive manufacturing include producing goods quickly and on-demand, with greater customization and complexity and less material waste.

NIST is awarding $5 million to the National Additive Manufacturing Innovation Institute (NAMII) in Youngstown, Ohio, which is operated by the National Center for Defense Manufacturing and Machining, for a three-phase collaborative research effort involving 27 companies, universities and national laboratories. Northern Illinois University in DeKalb, Ill., will receive $2.4 million to develop tools for process control and qualifying parts made with layer-by-layer additive-manufacturing processes.

"Improving additive manufacturing is an important part of the administration's efforts to help U.S. manufacturers by supporting new opportunities to innovate," said Under Secretary of Commerce for Standards and Technology and NIST Director Patrick Gallagher. "The public-private research partnerships led by NAMII and Northern Illinois University are tackling important measurement science-related barriers that must be overcome before this cutting-edge technology can be more widely used, helping America remain innovative and globally competitive."

Additive manufacturing, also known as 3D printing, is a group of new technologies that build up objects, usually by laying down many thin layers on top of each other. In contrast, traditional machining creates objects by cutting material away. A diverse array of manufacturing industries—from aircraft to medical devices and from electronics to customized consumer goods—are already using or exploring applications of these new technologies.

Additive manufacturing processes face a variety of hurdles that limit their utility for high-value products and applications. Technical challenges include inadequate data on the properties of materials used, limited process control, lack of standardized tests for qualifying machine performance and limited modeling and design tools. The new projects aim to address those challenges.

Specifically, the grants announced today will support NAMII's three-part research plan that seeks to ensure that quality parts are produced and certified for use in products made by a variety of industries and their supply chains. Northern Illinois University and its collaborators plan to develop a suite of integrated tools for process control and additive manufacturing part qualification. Descriptions of the two projects can be found online. (link removed; no longer active)

The competitively awarded grants, which are for two years, were made through NIST's Measurement Science for Advanced Manufacturing (MSAM) Cooperative Agreement Program.

Released September 19, 2013, Updated February 2, 2023