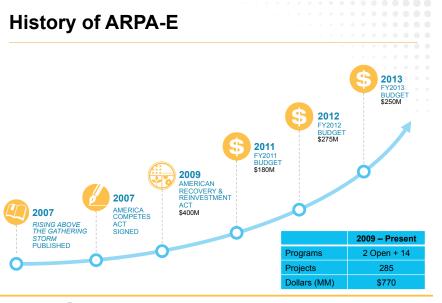
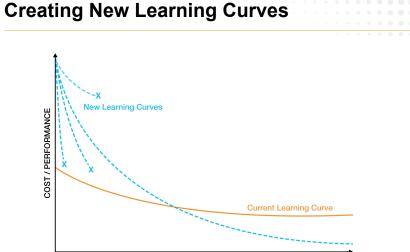
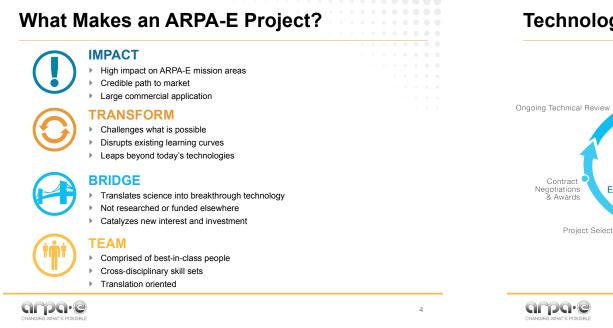

The Advanced Research Projects Agency-Energy (ARPA-E)

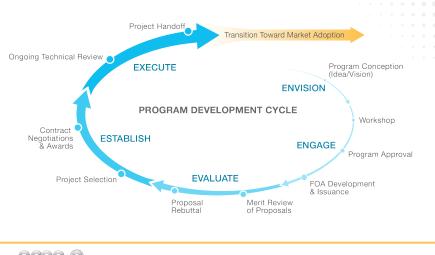
Dr. Eric Rohlfing, Acting Deputy Director for Technology

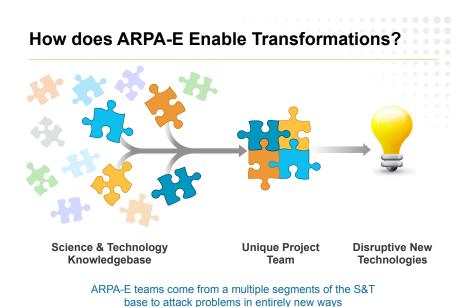

FICR Meeting 2013 June 4, 2013


The ARPA-E Mission

CHANGING WHAT'S POSSIBLE


CHANGING WHAT'S POSSIBLE


TIME / SCALE


arpa·e

2

Technology Acceleration Model

Measuring ARPA-E's Success

MOVING TECHNOLOGY TOWARD MARKET

- Partnerships with Other Government Agencies
- New Company Formation
- Established Company Partnerships
- New Communities

BREAKTHROUGH ACHIEVEMENTS

- Technology breakthroughs
- Patents
- Publications

OPERATIONAL EXCELLENCE

- Expedited program development and project selection
- Aggressive performance metrics

6

OPEN 2012: 66 Projects, 24 States, 11 Areas

BEEST

ELECTRIC VEHICLE BATTERIES

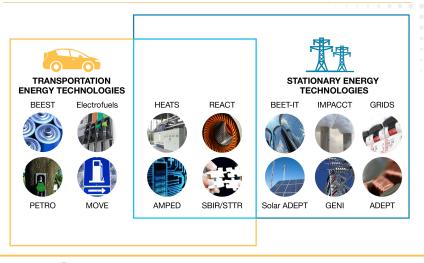
Mission

Develop a variety of electric vehicle battery technologies that can compete in both cost and performance with traditional gasoline-powered cars.

Program Director	Dr. Dane Boysen	
Year	2010	
Projects	6	
Total Investment	\$35.5 Million	

8

- Cost-competitive with traditional cars
- 30% of today's cost at 2-5x energy storage
- 300-500% longer battery life + range


Highlights

Goals

٠

- PolyPlus
 - \$9 million Vehicle Technologies grant
- Contracted with Hitachi for fabrication line (Navy as first market)
- Sion
 CERDEC grant from Army for lithium sulfur battery for
 UAV's/Air Force
- Funding from Simon Foundation and \$20M from BASF

Focused Programs

arpa·e

GRIDS GRID-SCALE RENEWABLE ENERGY STORAGE Mission Goals • Balance intermittent renewable sources Develop technologies that can connected to the grid store renewable energy for use at Efficiently store and send electricity anywhere in any location on the grid at an • aggressive investment cost less the U.S. at a lowest possible cost than \$100 per kilowatt hour, Strong, efficient, stable and robust electric grid creating a stronger and more robust electric grid. Highlights ٠ General Compression: Program Dr. Mark \$54.5M follow-on funding from private investors for CAES Director Johnson technology deployment ABB/SuperPower/Brookhaven NL Year 2010 \$4.2M follow-on funding from US Army Research Laboratory for SMES development and testing in DOD Projects 12 microgrids Bosch/Lawrence Berkeley NL Total \$33.2 Million Attained highest power density ever in hydrogen-bromine Investment flow battery system

HEATS THERMAL ENERGY STORAGE

Mission

Develop revolutionary, costeffective ways to store thermal energy by innovating electricity delivery, creating synthetic fuel from sunlight, and improving the range of electric vehicles (EVs).

Program Director	Dr. James Klausner
Year	2011
Projects	15
Total Investment	\$37.6 Million

arpa·e

Enable non-intermittent solar power plants and

- peak-power nuclear power plants
- Create transportable fuels from sunlight
- Modular thermal energy storage for EVs •

Highlights

Goals

•

- UT Austin
 - Developing sugar derivatives-graphene foam composites with heat of fusion 2-3 x of state of the art and thermal conductivity > $10 - 20 \times 00$ state of the art
 - Halotechnics Developing low cost molten glass as heat transfer and
 - thermal storage for CSP MIT
 - Developing energy storage device which captures energy from the sun, is transportable like fuels, rechargeable like a battery and emissions-free

Electrofuels VERSATILE TRANSPORTATION FUEL

SOLUTIONS

Mission

Develop microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods.

Program Director	Dr. Ramon Gonzalez
Year	2010
Projects	13
Total Investment	\$48.3 Million

arpa·e

Goals

•

- Develop and integrate organisms for autotrophic/ non-photosynthetic biological systems
- Increase liquid fuel energy density beyond • ethanol

Hiahliahts

- **OPX Biotechnologies (Boulder, CO)**
- Demonstration of fatty acid production from engineered microbes fed H2 and CO2
- Raised \$64M with venture investors
- Named to 2012 Global Cleantech 100 list
- University of California Los Angeles
 - Demonstration and publication in Science magazine of an integrated system for In situ formate production and microbial conversion to alcohols

PETRO HIGHER PRODUCTIVITY CROPS FOR BIOFUELS

Mission

arpa·e

Develop non-food crops that directly produce transportation fuels to be cost-competitive with petroleum and not impactful on U.S. food supply.

Program Director	Dr. Jonathan Burbaum
Year	2011
Projects	10
Total Investment	\$37.3 Million

.

- To reduce biofuel production costs
- To increase energy yields per acre of land
- To recycle atmospheric CO₂

Highlights

- Develop pine trees that will accumulate 20% of their biomass as high energy terpene molecules
- Develop tobacco that produces oil directly, together with high planting density agriculture
- Introduce multiple metabolic pathways into oilseed crops to significantly improve photosynthesis

IMPACCT CARBON CAPTURE TECHNOLOGY

Mission

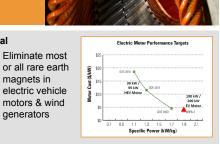
Develop new materials and processes to lower the cost of removing carbon dioxide (CO₂) from existing coal-fired power plants, thus enabling continued use of coal with reduced emissions

Program Director	Dr. Karma Sawyer	
Year	2010	
Projects	15	
Total Investment	\$39.9 Million	

- Capture 90% of CO₂ from coal-fired power plants at no more than a 35% increase in the cost of electricity
- Focus on technologies that could be retrofitted to existing power plants
- Accelerate implementation of carbon capture technology

Highlights

- Texas A&M University
 - Designed new class of materials, Single Molecule Traps, tailor-made to capture CO2
 - Created spinout named framergyTM to commercialize the technology
- University of Colorado Boulder
 - Developing new type of membrane based on gels and composite polymer designs
 - Engaged with Total and 3M as industrial partners to commercialize the membranes


REACT ALTERNATIVES TO CRITICAL MATERIALS IN MAGNETS

Identify low-cost, abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently.

Program Director	Dr. Mark Johnson			
Year	2011			
Projects	14			
Total Investment	\$27.7 Million			

arpa·e

Mission

Highlights

Goal

•

- · Several new chemistries, not containing critical materials, show promise on a laboratory scale as a replacement for permanent magnets containing critical materials
 - Cost-competitive large-scale off-shore wind generators will be enabled by using high current carrying superconductor wiring

New Funding Opportunities

Robust Affordable Next Generation EV-storage

RANGE

Release Date: 2/19/2013

REMOTE

Reducing Emissions Using Methanotrophic Organisms for Transportation Energy

Release Date: 3/15/2013

arpa·e

17

RANGE NEXT-GENERATION ENERGY STORAGE SYSTEMS FOR FLECTRIC VEHICLES

Mission

Improve EV range and reduce vehicle costs by re-envisioning the total EV battery system, rather than working to increase the energy density of individual battery cells.

Program Director	Dr. Ping Liu
Year	2013
Projects	TBD
Available Funding	\$20 Million

Goals

•

•

- Develop robust battery chemistries and architectures that would improve vehicle driving range and overall battery robustness
- Focus on multifunctional energy storage designs that use these robust storage systems to simultaneously serve other functions on a vehicle, thus further reducing an energy storage system's effective weight and overall electric vehicle weight

Highlights

Coming soon

Mission

Develop innovative technologies for cost-effective processing and recycling of Aluminum, Magnesium and Titanium for lightweight vehicle materials.

Program Director	Dr. James Klausner
Year	2013
Projects	TBD
Available Funding	\$20 Million

• Advance technologies to develop metals have high strength-to-weight ratios, making them ideal for creating lighter vehicles that save fuel and reduce carbon emissions

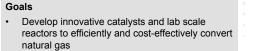
- Utilize domestically available ores
- Reduce energy inputs and emissions from processing to make light metals cost competitive with current materials, such as steel
- . Develop technologies for rapid and efficient light metal sorting to enable domestic recycling

Highlights

Goals

Coming soon

arpa·e



R	E١	N (DT	Έ			
			CON	IVER	SION	OF	GAS
LIQ	UIDS						

Develop transformational biological technologies to convert gas to liquids for transportation fuels.

Program Director	Dr. Ramon Gonzalez
Year	2013
Projects	TBD
Available Funding	\$20 Million

- Lower the cost of gas to liquids conversion
- Enable the use of low-cost, domestically sourced natural gas for transportation, which could reduce vehicle emissions compared to conventional gasoline engines

Highlights Coming soon

arpa.e

www.arpa-e.energy.gov

arpa·e

Mission