Thermoelectric Property of Silicon Nanowires Processed by Metal Assisted Directional Chemical Etching

David Rodriguez and Yong X. Gan (Department of Mechanical Engineering, California State Polytechnic University Pomona, 3801 W Temple Avenue, Pomona, CA 91768, USA)

Objectives

Or To prepared silicon single crystal nanofibers using a silver induced self-catalysis chemical etching process

\diamond To test the thermoelectric property of the silicon nanofiber

Background

◊ Thermoelectric (TE) materials offer the opportunity for direct conversion of heat into electrical power from temperature differences.

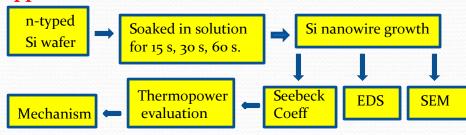
 \diamond Semiconducting materials are often used in TE units because they have high power factors.

Silicon has been extensively studied because of the relatively low cost and high figure of merit.

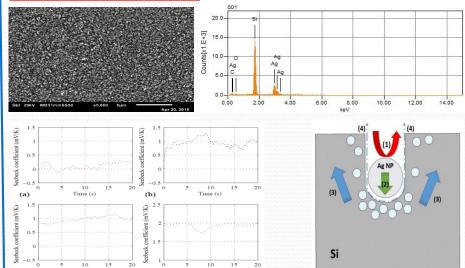
◊ Si is compatible with oxide/metallic connecting electrode materials.

◊ Nanostructured Si in the form of thin film or nanowire (NW) has higher energy conversion efficiency than bulk silicon.

◊ Si NW is often processed by E-beam lithography and chemical vapor deposition (CVD); self-catalysis chemical etching is a new process.


Materials and Instruments

 \diamond <100> n-type Si wafer pieces with the thickness of 500 micron


 \diamond Solution: 0.01 M AgNO3, 0.2 M H2O2 and 4.8 M HF

CHI 440C electrochemical workstation for measuring TE property
 Jeol JSM-6010PLUS/LA SEM with energy dispersive X-ray spectroscopy

<u>Approaches</u>

Results and Discussion

Conclusions

Time (s)

(d)

(c)

SiNWs were successfully synthesized by first depositing Ag NPs onto n-type Si wafer and secondly implementing the MaCE technique.
The Seebeck coefficient of the SiNWs is three times higher than that of the original Si wafer.

◊ The SiNW with thermoelectric performance improvement is promising for the next generational thermoelectric devices.

<u>Acknowledgements</u>

- This work is supported by the National Science Foundation (NSF) under Grant Number CMMI-1333044.
- \diamond The SEM images were made possible through the NSF MRI grant DMR-1429674.