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Stack Flow Measurement

RATA Tests are often based on
“S” Pitot Tubes
Advantages:

* Cheap
« Simple design
* Doesn’t plug

Disadvantages:

« Questionable accuracy
* Problems with swirl




Stack Flow Measurement

3-D Pitot Tubes
Advantages:

« Can measure swirl vectors (yaw)

» Can measure radial vectors (pitch)
Problems:

* Requires calibration

EPA adds wind tunnel
calibration requirements
which are often based
on L-pitot static tubes ~ Standard




Pitot Static Tubes

How accurate is an L- pitot
static tube which is a
common reference for

@ S-pitot and 3D pitots?




Alternate Calibration Methodology

. For Point-Velocity Devices

(Pltot -Tubes, Anemometers, Hot-Wire Devices)

Using NIST Traceable Mass Flow Measurement
| Standards




Pitot-static In A Flow Stream
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Pitot-Static Tube Physics
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Not All Static Pitot Tubes are the same
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Point-Velocity Calibration

V= Kgactor (output)
/ 4 N\

From Lab Measured



Traditional Method
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Traditional Calibration Methodology Pitfalls

FESI

Skewed Blunt
Flat Parabolic

g
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Rotation
Angle

Flow conditioner

Probe blockage can affect
flow rate and profile

Changing profile is a
function of velocity

STEP 1.

A. Set flow and record velocity with
Pitot-Static Tube that has a
known Pressure Coefficient (Cp).

B. Avoid Tilt & Rotation Errors.

STEP 2.

A. Maintain identical flow rate.

B. Remove the Pitot-Static Tube.

C. Position the Point Velocity Device
in the exact same location.

D. Make sure the blockage of Point
Velocity Device does not alter the
fluid velocity by reducing the flow
area or increasing the pressure
drop causing a lower fan output.

E. Make sure velocity range does not
cause an adverse localized
velocity gradient.

F. Avoid Tilt & Rotation Errors.



One Slight Problem

Reference Standard is maybe
only as good as the MUT
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Alternate Point-Velocity Calibration ZEES]

NIST Fluid Metrology
Group
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NIST Dual Test-Section Wind Tunnel <EESI
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Primary Standard. Differential LDV  ¢FESi

Flow with particles
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Oil Seeding @EES]




Lasers & Seeding ZFESI

Oil Seeding Water Seeding
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Spinning disk
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NIST Wind Tunnel Capabilities

Two test sections:

High speed: to 75 m/s (246 ft/sec) 1.2 m high

Low speed: to 45 m/s (147 ft/sec) 2.1 m high
Uncertainties — 0.25% increasing to 2% at low speeds

NASA’s Requirements:
7.6 to 122 m/sec (25 to 400 FPS)



Alternate Point-Velocity Calibration Methodology

Velocity profile remains flat from
low velocities to high velocities
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Test Configuration
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The Hardware Eﬁ?ﬁ?l




The Hardware
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Step-by-step Alternate Methodology

1. Determine the mass flowrate (m) from an upstream NIST
traceable flow standard.

2. Determine the gas density (p) at the calibration location from
temperature and pressure measurements.

3. Divide the mass flowrate by the gas density and the throat
area (A:nr0qt) Of the sub-sonic venturi to determine the bulk
(average) velocity in the calibration location.

m

VAverage —

p Athroat

4. Correct the average velocity by the projected area of the
Pitot-static tube. Note, this does not include the Pitot-
static’'s stem area.

Athroat

VAve—corrected — VAverage ) ( A A )
throat — 41Pitot



Step-by-step Alternate Methodology

5.Using an uncalibrated Pitot-static tube, perform a
pitot traverse at the calibrating velocity ranges, while
monitoring the flow standard. Apply the equation
below to determine individual velocities at each
traverse location. If slight variations occur in the
flowrate during the pitot traverse, the velocities can
be normalized by multiplying by the average mass
flow rate during the testing, and by dividing the mass
flowrate during the individual traverse point as shown
below.

— hy—i (Maverage
Vi= N - Kinitiai ( . )

Pi mi



Step-by-step Alternate Methodology

6. Determine a Profile Factor (PF) that relates the average
velocity in the throat of the sub-sonic venturi to the velocity in
the center. Notice how the initial Pitot-static flow coefficient

(Kinitiq;) drops out of the equation.

hw—center (maverag e ) \/ hw—center (maverag e )

- | .
initial Pcenter Mcenter Pcenter Mcenter

PF=
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Step-by-step Alternate Methodology

/. Profile Factors (PF) can Dbe calculated for
different velocities, and curve fit to different
Throat Reynolds Numbers.

PF = f(Rethroat)

8. The Point Velocity Device can be inserted Iinto
the center of the sub-sonic venturi, and its flow
coefficient can be determined by the following

equation.
PF m

K= -
N-(Athroat—APitot) VP hy




Experimental Results !Zﬁi?l

* Three Pitot-static tubes were tested using the

Alternative Methodology.

* The Pitot-static tubes were positioned in the center of

the nozzle, and tested from 10 to 115 m/sec.

 The percent deviation between the experimentally
determined flow coefficients (K) and theory was

determined where:

o
14 P, P\ 7Y
K = H— — —1
“heory {<y - 1) (Pt_a) _<P1) }

N[ =




Experimental K-factors vs. Theory

Summary of the Percent Deviation
between Experimentally determined
Flow Coefficients and Theroetical Flow
Coefficients

Pitot-static Perent Percent
Tube Average Standard
No. Deviation* | Deviation*
#60 -0.5 0.84
H#61 -0.2 0.58
#62 -0.5 0.62
Averages: -0.4 0.7

* Over the entire velocity range tested




K-factor vs. Pitot Tube Reynolds Number
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K-Factor vs. Velocity

Three Hemispherical Pitot Tubes
K-Factor vs. Centerline Velocity
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Uncertainty !Zﬁ?l

The following equation was used to determine the Pitot-static
Tube’s flow coefficient (K) uncertainty.

0= o) ) e e )]

Where:
m=mass flow rate from the Critical Flow Venturi, pounds-
mass/sec
V, = Velocity profile factor in the sub-sonic venturi
P, = Static pressure in the sub-sonic venturi, psia
T;= Absolute sub-sonic venturi temperature, °R

h,, = Differential pressure produced by the Pitot-static tube,
“H,O




Uncertainty Zﬁﬁ?l

Applying the appropriate sensitivity coefficients the equation
above yields.

U (i) U(Vys 1uP))? [Uu))? vk )]
[ [ e [

Applying the test uncertainties the equation above yields.

0 oz s 0+ f-oa] o o]+ f-10] - oaa

The expanded uncertainty of the Pitot-static flow
coefficient (K) at two-sigma is 1.24%



SEHIIS !Z@?I

* Individual averages of all three experimentally determined
flow coefficients were within the estimated uncertainty of
0.62% at one sigma of the theoretically calculated flow
coefficient.

 Flow coefficient deviations were likely a result of
Imperfections in the Pitot-static tube’s surfaces and
geometry, and the turbulence levels during testing.

e Better uncertainty could be achieved using more accurate
DP transducers which contributed greatly to the uncertainty
budget.

« +0.5% DP transducers would have produced a 0.9 %
uncertainty at two sigma.



Similar Testing (Added a Throat Extension) ESI
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Checking For Leaks ZEE?I




Checking For Leaks E@-ﬁ

Eureka A Leak !



Don’t Forget about Blockage
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Stack Flow Measurement JZﬁE?I
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Stack Flow Measurement JZ‘EE?I

Flare Gas




Stack Flow Measurement Eﬁi?l




Stack Flow Measurement JZ@?I




Stack Flow Measurement JZ@?I




Questions? @EES]

CEESI
54043 WCR 37
Nunn, CO 80648

Eric Harman
eharman@ceesi.com |
970-897-2711 work .
303-638-1384 cell {2
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