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More	&	More	FLOPS	&	Bytes	
Computational scientists always seem to need more and more 
computing power and storage.  What is the outcome of access to 
increasing amounts of flops & bytes? 
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More	&	More	FLOPS	&	Bytes	

Increasing	Accuracy	of	Predictions	
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•  Bond Energies 
•  Critical for describing many 

chemical phenomena 
•  Difficult to determine 

experimentally 
•  Accuracy of Predictions 
•  Increased dramatically from 

1970-2000  
•  How? 
•  New theoretical approaches 
•  New computational techniques 
•  More computing power 

Expt’l 



•  In 1990 
§  Model systems, e.g., ether–

alkali ion complexes 

More	&	More	FLOPS	&	Bytes	

Increasing	reach	of	Simulations	
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•  In 2000 
§  Model separations agents, 

e.g., 18-crown-6–alkali ion 
complexes 

•  In 2010 
§  Real-world separations 

agents, e.g., Still’s crown 
ether–ion complexes 
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Every	field	of	computa2onal	science	
has	a	similar	story	to	tell!	

The purpose of computing is insight, not numbers. 
Richard W. Hamming, 1962 

The purpose of computing is numbers as well as 
insight. 

with apologies to Dr. Hamming 



Petaflops	&	Petabytes	
Many areas of science and engineering require extraordinary 
computing power to solve the mathematical equations describing 
the phenomena of interest and enormous data handling capability 
to explore the massive data sets now becoming available 
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Petaflops	&	Petabytes	

Who	Needs	Petaflops?	
•  To calculate the energy content 

of Iso-octane 
–  Iterative solution of 275 million 

coupled equations 
–  Exchange of 2.5 petabytes of data 

between processors 
–  Exchange of 15 terabytes of data 

between memory and disks 
–  Execution of 30 quadrillion 

arithmetic operations 

•  Modeling Combustion of Fuels 
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Iso-octane 
(Octane Rating = 100) 

n-heptane 
(Octane Rating = 0) 



Petaflops	&	Petabytes	

Who	Needs	Petabytes?	
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Astronomy has become one of the first digital 
science, replacing photographs with digital images. 
 
The Large Synoptic Survey Telescope (LSST) has a 
3.2 gigapixel camera and will produce 15-20 
terabytes of data per night and more than 100 
petabytes over its first 10 years of operation. 

With the genomic revolution, biology and 
biomedicine are rapidly becoming digital 
sciences. The opportunities for breakthroughs in 
these areas are just beginning to be explored as 
exemplified by the Genome 10K project. 



Petaflops	&	Petabytes	

Similar	Needs	Across	Science	&	Engineering	
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Molecular Science Weather & Climate 

Geosciences Astronomy Health 



Current	Leading-edge	Computers:	
Blue	Waters	
Blue Waters and the National Petascale Computing Facility at the 
University of Illinois at Urbana-Champaign are truly 
extraordinary research resources for the nation. 
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Blue	Waters	

Blue	Waters	Computing	System	
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>1	TB/sec	

~100	GB/sec	

10/40/100	Gb	
Ethernet	Switch	

Spectra	Logic:	300	PBs	

120+	Gb/sec	

WAN	

IB	Switch	



Blue	Waters	
Petascale	Computing	Facility	
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Partners 
 EYP MCF/ 
 Gensler 
 IBM 
 Yahoo! 

•  Modern Data Center 
•  90,000+ ft2 total 
•  30,000 ft2 raised floor 

 20,000 ft2 machine room gallery 

•  Energy Efficiency 
•  LEED certified Gold 
•  Power Utilization Efficiency 

= 1.1–1.2 



Blue	Waters	
Specifications:	Blue	Waters	&	Titan	

Blue	Waters	 Titan	
Vendor(s) Cray/AMD/NVIDIA 
Processors Interlagos/Kepler Interlagos/Kepler 

Peak Performance 13.1 PF 27.1 PF 
 CPU/GPU 7.6 / 5.5 PF 2.6 / 24.5 PF 

Number of Chips (CPU/GPU) 48,352/4,224 18,688/18,688 
Amount of Memory 1.66 PB 0.71 PB 
Disk Storage, Capacity (usable) 
Disk Storage, Bandwidth (sustained) 

26 PB 
1.2 TB/s 

>10 TB 
0.24 TB/s 

Archival Storage, Capacity (usable) 
Archival Storage, Bandwidth (sustained) 

300 PB 
88 GB/s 

125 PB 
18 GB/s 
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Blue	Waters	

Exploring	New	Materials	for	Desalination	
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Nanoporous Molybdenum Disulfide (MoS2) 
N. Aluru, UIUC 



Blue	Waters	

Modeling	the	HIV-1	Capsid	
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J. Perilla, G. Zhao, A. Gronenborn, 
P. Zhang and Klaus Schulten 



Blue	Waters	

Predicting	the	Impact	of	Earthquakes	
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Blue	Waters	

One	of	Many	Earthquake	Scenaios	
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Courtesy of T. Jordan, SCEC 



Spread	of	Contagious	Diseases	
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Video courtsey of N. Ferguson, 
Imperial College, London 

Intervention: next-day treatment 
of 90% of cases with anti-virals, 
school closures, 50% household 
quarantine. 

No Intervention 
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Future	Leading-edge	Computers:	
Summit	&	Aurora	
Although computing technology continues to advance, the best 
strategy for architecting exascale computers is unclear—the U.S. 
Department of Energy has decided that two different architectures 
will be explored. 
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Future	Leading-edge	Supercomputers	

Oak	Ridge’s	Summit	&	Argonne’s	Aurora	Systems	

Summit	(2018)	 Aurora	(2018)	

Processor IBM Power9/NVIDIA Volta Intel Knights Hill 
Peak Performance >150 PF 180 PF 
Cores/Processor Up to 24 >72 
Number of Nodes ~3,400 >50,000 
Memory >1.7 PB >7 PB 
Interconnect BS Bandwidth ? >500 TB/s 
File System Capacity ~120 PB >150 PB 
File System Bandwidth ~1 TB/s >1 TB/s 
Peak Power ~ 10 MW 13 MW 
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Future	Leading-edge	Supercomputers	
Intel’s	Many	Integrated	Core	(MIC)	Processors	
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72	Cores	



Future	Leading-edge	Supercomputers	

Knights	Landing	Processor	Architecture	
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Future	Leading-edge	Supercomputers	

Knights	Hill	Processor	
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Future	Leading-edge	Supercomputers	

International	Efforts	
•  China 

–  Dramatic push in supercomputing 
•  Now has 1/3-rd of the supercomputers on Top500 

–  Building domestic HPC ecosystem (hardware, software, systems) 
–  Continuing series of #1 systems being built by China 

•  2011: Tianhe-1A (4.7 PFs); 2013: Tianhe-2 (55 PFs); 2016: Sunway (125 
PFs); ... 

•  Japan 
–  Flagship 2020 Project: Post-K computer development 
–  RIKEN AICS with Fujuitsu + ARM (with HPC extensions) 
–  Target: 50-100x K computer 
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Future	Leading-edge	Supercomputers	

International	Efforts	
•  Europe 

–  PRACE 
•  25 members, 2 observers 
•  Major efforts in Spain, France, Germany, Italy 
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Supercomputing	Applications	
The true value of any computing technology is measured by the 
applications that it enables. As we saw in comparing Blue Waters 
& Titan, enabling applications to take full advantage of new 
computing technologies is a challenging task. 
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Supercomputing	Applications	

NWChem:	An	Exemplary	SC	Application	
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Molecular	Vibrations	

Molecular	Energetics	

Molecular	Structure	
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…
	•••	

Applied	Mathematics	
(BLAS,	Diagonalization,	…)	

Computer	Science	
(Global	Arrays,	ParIO,	MAlloc,	…)	

Deep collaboration 
between 

computational 
chemists, applied 

mathematicians, and 
computer scientists  



Supercomputing	Applications	
Performance:	Another	Cautionary	Tale	
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Method	 Time(s)*	 GFLOP	Count	 PF/s	

CCSD	

(T)	 5024	 5,948,249,197	 1.18	

CCSD(T)	

NWChem can achieve impressive performance on petascale computers 
for the most flop-intensive calculations. For example, for CCSD(T) 
calculations, which is the current “gold” standard in electronic 
structure theory, this is the (T) algorithm: 

*  On 20,000 XE6 nodes (Blue Waters) 

V. M. Anisimov, G. H. Bauer, K. Chadalavada, R. M. Olson, J. Glenski, W. T. C. 
Kramer, E. Aprà, and K. Kowalski, J. Chem. Theory Comput. 10, 4307-4316 (2014). 

 guanine− cytosine 
deoxydinucleotide 

monophosphate + Na+ 

However, this is only part of the story. One needs the CCSD amplitudes for 
the (T) algorithm. The CCSD algorithm is far more complex with a much 
higher communication/compute ratio than the (T) algorithm: 



Supercomputing	Applications	
Performance:	Another	Cautionary	Tale	II	
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Method	 Time(s)*	 GFLOP	Count	 PF/s	

CCSD 14,406 195,796,351 0.01 
(T) 5024 5,948,249,197 1.18 
CCSD(T) 19,430 6,144,045,548 0.32 
*  On 20,000 XE6 nodes (Blue Waters) 

V. M. Anisimov, G. H. Bauer, K. Chadalavada, R. M. Olson, J. Glenski, W. T. C. 
Kramer, E. Aprà, and K. Kowalski, J. Chem. Theory Comput. 10, 4307-4316 (2014). 

So, the CCSD algorithm consumes ¾-th of the time. Further, the algorithm 
uses a substantial amount of memory, duplicating arrays to minimize 
communication costs, which limits the number of cores/node that can be 
used—just 1 of 16 cores on a Blue Waters node that has 64 GBs of memory 
on the node. 

 guanine− cytosine 
deoxydinucleotide 

monophosphate + Na+ 



Supercomputing	Applications	
Performance	of	NWChem	on	Blue	Waters	II	
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Supercomputing	Applications	
NWChemEx	ECP	Project	

•  Redesign NWChem to create a more modular and library-oriented framework 
•  Incorporate new mathematical algorithms to reduce complexity and improve scalability 
•  Incorporate new computer science approaches and technologies to reduce/more 

effectively use memory, separate the details of the hardware from the software 
•  Identify, assess, and implement new developments in computational chemistry 
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R. Bair 
TL, Data Science 

W. de Jong 
TL, External Collaborations 



Thoughts	on	What	Needs	to	be	Done	
As computing technology continues to advance—and change—
how do we ensure that computational science and engineering 
continues to be able to take advantage of these advances? 
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From	Here	to	the	Future	
What	is	Needed	to	Continue	to	Advance	
•  Better Understanding of Software-Hardware Interface 

–  Current benchmarks do not represent full range of applications 
–  Current benchmarks provide little information on programmability 

•  New Algorithms 
–  To fully exploit increasing concurrency 
–  That are adapted to: 

•  Decreased memory per flop 
•  Decreased interconnect bandwidth per flop 
•  Decreased I/O bandwidth per flop 

•  New Programming Models 
–  Need better programming languages, domain specific languages 

•  Better Education and Training 
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Thank	You!	


