CDEFFS

ANSI/NIST Committee to Define an Extended Fingerprint Feature Set

Austin Hicklin

April 2006

Charter

In the ANSI/NIST ITL 1-2000 Standard Workshop II (Dec. 2005), the committee was chartered to:

- Identify, define and provide guidance on additional fingerprint features beyond minutiae (not limited to level-3 detail)
- Develop draft Addendum to ANSI/NIST ITL-2006
- Cooperate with SWGFAST and AFIS vendors
- Report back by December 2006

Committee

Includes 28 people from 14 organizations — Open to new members

- Behnam Bavarian (Motorola)
- John Burt (NEC)
- Jeri Eaton (King County WA)
- Brian Finegold (BAE)
- Jean-Christophe Fondeur (Sagem Morpho)
- Mike Garris (NIST)
- Ed German
- Mike Gilchrist (FBI-CJIS)
- Paul Griffin (Identix)
- Masanori Hara (NEC)
- Austin Hicklin (Mitretek)
- Tom Hopper (FBI-CJIS)
- Anil Jain (Michigan State)
- Artour Karaguiozian (Motorola)

- Peter Komarinski (IAI)
- Debbie Leben (US Secret Service)
- Bill Long (TBS)
- Brian Martin (Identix)
- Mike McCabe (NIST)
- Glen McNeil (Sagem Morpho)
- Steve Meagher (FBI-Lab)
- Geppy Parziale (TBS)
- Scott Swann (FBI-CJIS)
- Anne Wang (Cogent)
- Phillip Wasserman (NIST)
- Kasey Wertheim (Lockheed Martin (DOD))
- Brian Wong (IBG)
- Stephen Wood (NIST)

SWGFAST Concern

"AFIS technology, since its onset, has utilized a very limited amount of fingerprint detail. Latent print experts must rely on far more information in effecting individualizations/exclusions than just ending ridges and bifurcations, i.e., the Type 9 minutiae record. SWGFAST is attempting to educate and provide to the vendor community the additional features and how they are utilized by these experts."

(from Nov. 2005 memo to NIST)

Extended Features Under Consideration

Overview

Extended Features Under Consideration

Level 1 Features

- a. Ridge flow
- b. Cores and deltas
- Finer level of classification

Level 2 Features

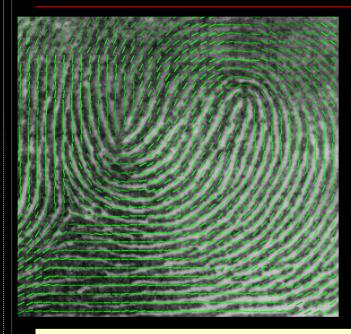
- a. Ridge path elements
- b. Open field of ridges
- c. Greater definition of minutiae
- d. Scars
- Creases
- f. Incipient ridges
- a. Dots

Level 3 Features

- a. Pores
- b. Ridge edge shapes/width

3d Features

Ridge height / valley depth


Issues

- For each type of feature, the issues are
 - Concurrence on
 - precisely what is meant
 - definition in ANSI/NIST fields
 - Repeatability / reliability / stability
 - Practicality of
 - automatic detection
 - human detection
 - Use/value
 - 1. Human comparisons
 - 2. Human-encoded AFIS searches
 - 3. Fully automated encoding and matching?

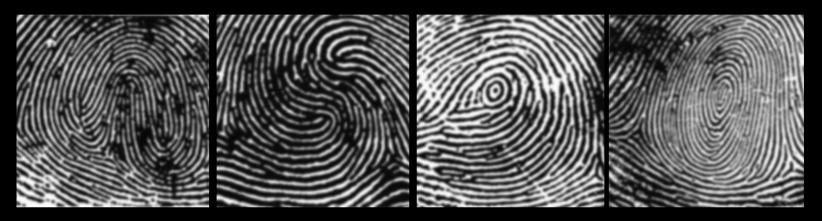
Possible Uses

- Areas of improvement for feature extraction and matching algorithms (both for latent and non-latent fingerprints)
- Interoperability of fingerprint feature definitions
- Quantification of the features actually used in latent comparison
 - Human examiners would be able to detail more precisely the nonminutiae features used for comparison (for courtroom, Daubert use, etc.)
 - Improved feature set for use in modeling uniqueness of fingerprints
- Basis for special-purpose latent end-stage matcher
 - A matcher that might require human markup of both fingerprints being compared, but would quantify similarity

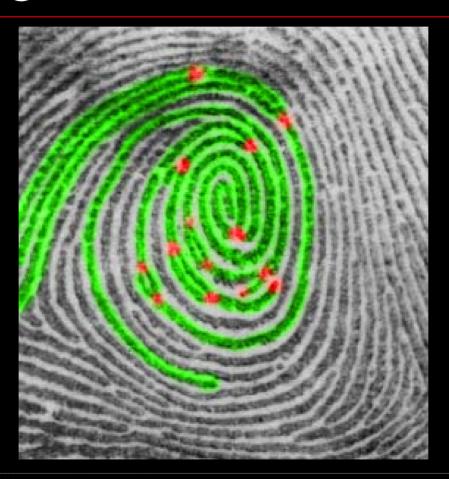
1a: Ridge flow

- Adjacent friction ridges in a directional arrangement
- Basically pattern classification of a limited area
 - Role of traditional pattern classification is diminishing as AFIS moves from rolls to flats
- Used in some AFISs for screening
 - to exclude candidates, but not for identification
- Used by some matchers by itself
- Most encoders use a similar process
- The M1 Finger Pattern proposed standard could be used as a model for definition

1b: Cores and Deltas



- Cores and deltas are underutilized in AFIS technology
- Core and delta position, shape, and relationships are all of use
- Using minutiae and ridge flow direction in areas of high curvature would address some of the issue
- Location of cores is useful / necessary in determining the centering of a fingerprint

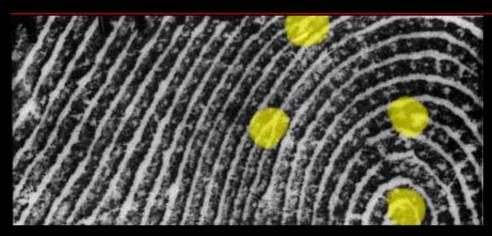

- Minutiae within these areas should be more extensively used
- Otherwise, definition will need concurrence, and detection will need research

1c: Finer level of classification

- The old Henry Classification was extremely beneficial to latent print searching
- AFIS processing uses a simplified model, due to
 - the limited benefit a finer level of classification provided
 - The difficulty of accurate automatic pattern classification to this level
- The definition of these (via Henry or NCIC) is well defined, but for human classification
- Automatic detection at this level is an unsolved problem, and generally requires rolls

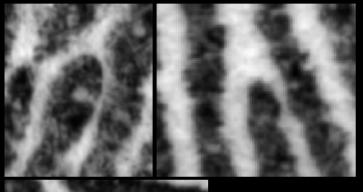
2a: Ridge Path (1 of 2)

2a: Ridge Path (2 of 2)


- A single ridge can be distinctive if all these factors are accounted for:
 - Continuity
 - Minutiae relationships
 - Curvature
 - Relationships of non-minutiae features

Definition and detection both need research

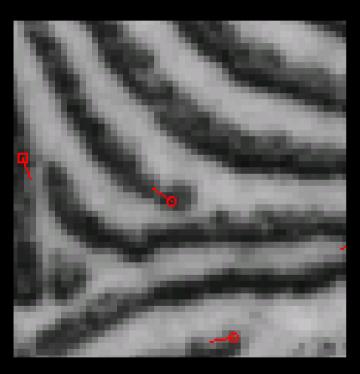
2b: Open Field of Ridges (1 of 2)


2b: Open Field of Ridges (2 of 2)

- A matcher has to know if the absence of marked minutiae is definitive: does a space without marked minutiae mean:
 - There are definitely no minutiae there OR
 - There may be minutiae there
- The absence of such information in IAFIS makes the system sensitive to prints with concavities or holes
- > Readily definable and automatically detectable
- > This can be bundled with the pattern definition (1a) should it?

2c: Greater definition of minutiae

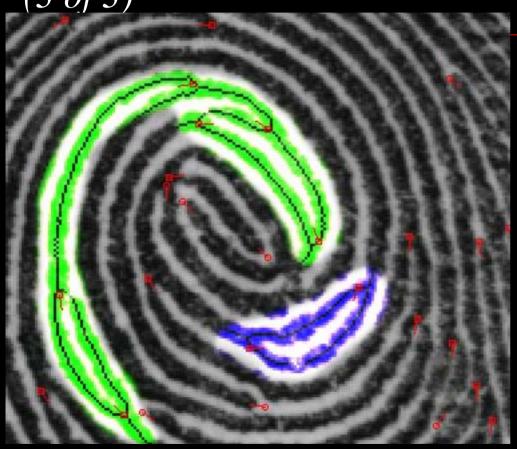
(1 of 3)


- Shape, size, and configuration of minutiae are distinctive
 - Could use a finer level of description of the ridge ending shape and configuration of the actual bifurcation
 - Use minutiae in addition to endings and bifurcations:
 - Crossovers
 - Trifurcations
 - (etc)

> Definition:

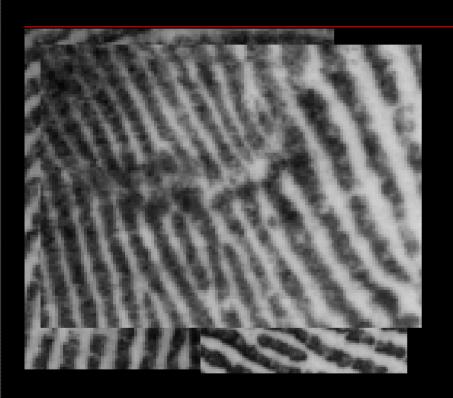
- Additional types of features reasonable
- Shape of minutiae needs research
- > An interoperable definition would be worthwhile
- Detection needs research

2c: Greater definition of minutiae


(2 of 3)

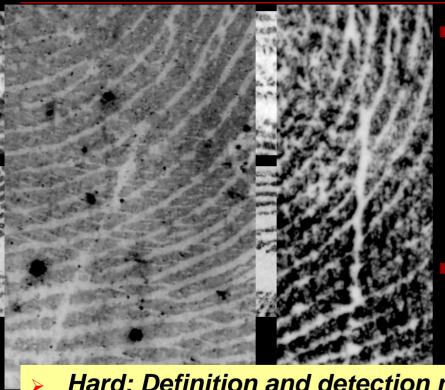
- Ridge endings can be defined in terms of
 - the fork of the tracing of the valley,
 - the end of the tracing of the ridge, and/or
 - the end of the ridge (e.g. the end of the binarized image) –
- Bifurcations can be regarded as the same definition with black-white reversal.
- Theta can be described in terms of different distances from the minutia location(s).

2c: Greater definition of minutiae


(3 of 3)

- Minutiae on same ridge need to be flagged
- Much richer interrelationships than simply ridge counts between neighbors
- Binarization and tracing already provide detection basis

Overlaps with ridge path (2a)

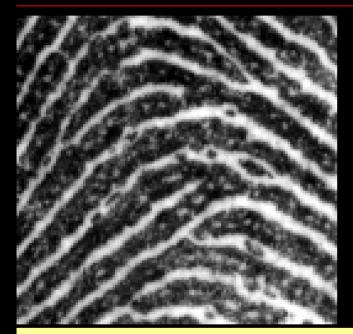

2d: Scars

- Presence, location, size, and configuration of scars can be very discriminating IF present in both images
- Linear ridge discontinuities could readily be defined and detected

- Hard: Definition and detection both need research
- Concerns about consistency
- Matching using scars needs to be fault-tolerant to account for the potential absence of the scar

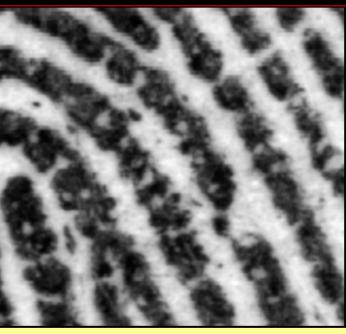
2e: Creases and Cracks

Creases

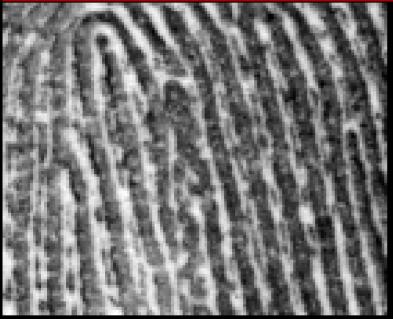

- between major fields of friction ridge skin (Flexure creases) are permanent and provide distinctive configurations of features (but vary between captures)
- within friction ridged area creases can be permanent or nonpermanent.
- Flexure creases provide "feathering" which provides both location and direction to each aspect of the crease.
- Hard: Definition and detection need research
- Concerns about consistency

2f: Incipient ridges

- Friction ridges not fully developed which may appear shorter, thinner in appearance, or more intermittent than fully developed friction ridges.
 - Rarely bifurcates
 - Rarely/never has pores
 - May appear at times as a series of dots
 - Shallower than ordinary ridges
- Often distinctive in propensity, presence, and location – to human examiners
- Definition and detection need research in determining how/whether to differentiate from standard ridges, or dots
- Concerns about consistency


2g: Dots

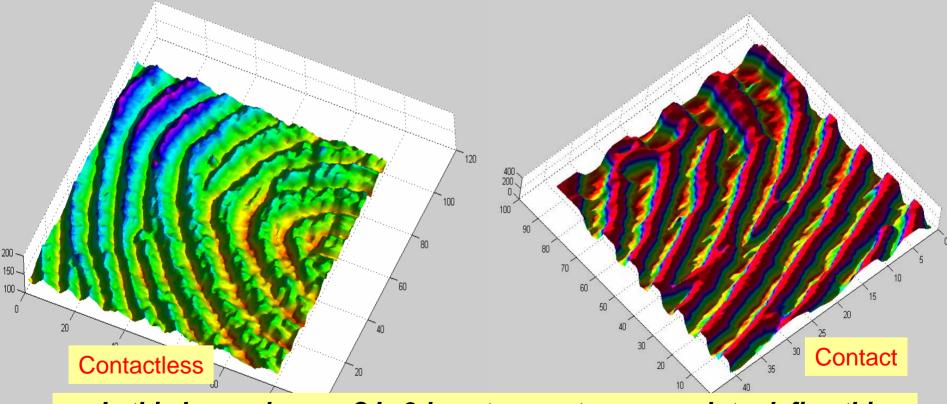
- Dots, short ridges, and short enclosures are not generally used in IAFIS
- These are particularly distinctive


- Readily definable and detectable
- Concerns about consistency

3a: Pores

- Pores are distinctive in several ways:
 - Size
 - Shape/form
 - Position on the ridge
 - Number or frequency
- Not always visible, especially in inked prints
- Resolution
 - Requires 1000ppi+ for full clarity
 - Can be useful as supporting evidence at 500ppi
- > Definition and detection are practical given enough resolution
- Concerns about consistency
- See Roddy & Stosz 1999 IEEE paper "Fingerprint features statistical analysis" for discussion

3b: Edge shapes


- Morphological features (width, major deviation, etc.) defining the contour or shape of the ridge edge
- Major deviations
 - indentations
 - protrusions
 - discontinuities
 - usable at 500 ppi (though obviously better at 1000+ppi)
- Edge features can be defined using Chatterjee's edge feature classification
- Concerns about consistency
- Major deviations and discontinuities:
 - > Definition and detection are probably both practical
- Other features:
 - > Definitions can be based on Chatterjee
 - Detection would require more research

3c: Ridge/Valley width

- Measurements from
 - Edge-to-edge of a ridge
 - Edge-to-edge of a valley
 - Center-to-center of adjacent ridges
- Special case of edge shapes (3b)
- Possible to define and detect:
 - Actual width of ridges and valleys at regular intervals
 - Major deviations in width
 - Discontinuities
- May be practical to define and detect, even at 500ppi
- Concerns about consistency

4a: Ridge Height /Valley Depth

- Is this beyond scope? Is 3d capture mature enough to define this yet? We should assume that this will need to be defined at some point.
- Concerns about consistency

Next Steps

- Determining which features should be defined in the addendum
- Evaluation of consistency of presence/definition
- End products:
 - ANSI/NIST Addendum: Extended Fingerprint Features
 - White paper on lessons learned
 - Data sets with marked up examples (similar to NIST SD27)