
   
      

    
    

              
               
      

                
    

           
      

           
            

            
             

            
            

           
       

              
            

            
            

            
            

              
         

            

            
            

           
             

            
             

     

            

         
          

             
          

High-Con�dence, Scalable Secure Development 
Submi�er: Eric Brewer, on behalf of Google, LLC 

Topic: (2) So�ware development best practices 
Speaker: Christoph Kern, Principal So�ware Engineer, xtof@google.com 

Many common classes of security defects result from simple mistakes: Code is wri�en in languages 
and on top of APIs and frameworks that are inherently prone to developer mistakes, which in turn 
lead to security vulnerabilities. For example: 

● When writing code in a memory-unsafe language such as C or C++, it is very di�cult to avoid 
mistakes resulting in exploitable memory-corruption bugs. 

● Application code that relies on SQL query APIs is prone to SQL injection. 
● Web applications are prone to cross-site scripting (XSS). 

Aside from developer education, which has limits, the typical approach to mitigating these 
vulnerabilities has been largely reactive: We apply tools and techniques such as fuzzing, static 
analysis and penetration testing a�er the fact, in the hope of discovering vulnerabilities before 
release. Although these tools and techniques are clearly bene�cial, �xing defects later in the 
development cycle is limited in e�ectiveness, as evidenced by the consistent presence of these 
vulnerability classes near the top of lists such as SANS Top 25 and OWASP Top 10. 

Secure languages and application frameworks1 can be used to impose a structure on so�ware 
that enables high-con�dence reasoning about its security, at scale.2 

Without such structure, this reasoning is di�cult and error-prone. For example, the CERT C Coding 
standard requires, "MEM30-C. Do not access freed memory". But ensuring that this requirement is 
actually ful�lled for real-world C code is challenging, and o�en requires di�cult reasoning about 
heap memory structure. Similarly, it is di�cult to ensure correct validation and escaping for all data 
that �ows into a web application's HTML markup, since data o�en passes through several 
components on its way from inputs to outputs, such as through a storage schema. 

In contrast, Rust has emerged as a practical alternative to C and C++ as a systems-development 
language, embodying a secure-by-construction stance on memory safety. Rust's type system 
imposes an ownership discipline that ensures, for example, that freed memory cannot be accessed. 

As another example, in Google we have developed secure abstractions around the Web pla�orm3,4 

and SQL query APIs,5 which e�ectively prevent application developers from writing code that is even 
potentially at risk of XSS and SQL injection vulnerabilities, respectively. Our application framework 
ensures through its APIs' type signatures that no improperly escaped data can reach an injection 
sink. Similar to Rust, clearly labeled security-critical code blocks are exempt from safety checks 
(analogous to Rust's "unsafe" blocks). In our code base, such sections are used very infrequently, and 
are subject to mandatory (work�ow-enforced) domain-expe� review. 

1 Nokleberg, C., & Hawkes, B. (2020). Best Practice: Application Frameworks. ACM Queue, 18(6). 
2 Adkins, H., et al. (2020). Building Secure and Reliable Systems. O'Reilly. Chapter 6, "Design for Understandability". 
3 Kern, C. (2014). Securing the tangled web. Communications of the ACM, 57(9), 38-47. 
4 Kotowicz, K., & West, M. (2021). Trusted Types. W3C Editor's Dra�. 
h�ps://w3c.github.io/webappsec-trusted-types/dist/spec/. 
5 Adkins, H., et al. (2020). Building Secure and Reliable Systems. O'Reilly. Chapter 12, "Writing Code". 

mailto:xtof@google.com
https://www.sans.org/top25-software-errors/
https://owasp.org/www-project-top-ten/
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152153
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://sre.google/books/building-secure-reliable-systems/
https://w3c.github.io/webappsec-trusted-types/dist/spec/
https://research.google/pubs/pub42934/
https://sre.google/books/building-secure-reliable-systems/
https://queue.acm.org/detail.cfm?id=3447806&doi=10.1145%2F3442632.3447806


                 
          

           
          

           
            

        

           
          

             
            

         
            

             
              

               
            

   

         
            

           
        

 

            
             

           

         
           

            
            

             
      

            
           

              
     

              
   

               
    

                   
            
    

We have found this approach to be practical at the scale of our very large code base; e�ective at 
reducing the residual incidence of vulnerabilities to near-zero; and highly cost-e�ective6. Recurring 
sta�ng costs amount to approximately a dozen full-time security engineers, who maintain core 
libraries and framework components and who consult on and review security-critical code 
segments. This e�ectively prevents introduction of XSS during ongoing development of the entire 
JavaScript and TypeScript codebase in our main source repository;7 a team of only a dozen can 
oversee the work of more than ten thousand developers. 

In both examples, the structure imposed by the language/framework ensures that application 
developers can't accidentally introduce common types of vulnerabilities. Thus, simply knowing that 
code compiles provides high con�dence that application code is not a�ected by these classes of 
bugs. As such, this approach is in our experience key to scalable so�ware security. 

Veri�ed Core Components. Relying on secure-by-design languages and frameworks can scalably 
ensure that otherwise common types of vulnerabilities are absent from a codebase. However, this 
prope�y relies on correctness prope�ies of the underlying language or framework, as well as code 
inside security-critical code segments. Since correctness at this level is so crucial to the security of 
everything built on top, it is especially impo�ant to focus validation in these areas. Because the cost 
of validation is amo�ized across all applications built on these foundations, even major validation 
e�o�s can be cost-e�ective. 

Pa�icularly strong assurance can be achieved through veri�cation via machine-checked reasoning 
in a formal logic. Though traditionally di�cult and expensive, this process is quickly becoming 
cheaper, easier, and more scalable, and is pa�icularly cost-e�ective when applied speci�cally to 
security-critical trusted components such as CPUs, SoCs, operating systems,8 type systems9 and 
crypto primitives.10 

Beyond formal veri�cation of core components, we also expect bene�ts from improving the usability 
of rigorous veri�cation methods to make them more widely accessible to developers, for example by 
bridging the gap between formal veri�cation and commonly used pa�erns in so�ware testing.11 

In summary, we recommend that secure development practices incorporate criteria around 
pla�orms, languages and frameworks that are designed to ensure security prope�ies of all 
applications built thereon. This permits validation and veri�cation e�o�s to focus on these core 
components, and at the same time provides scalable so�ware security for the resulting applications. 

6 Wang, P., Bange�, J., & Kern, C. (2021, May). If It’s Not Secure, It Should Not Compile: Preventing DOM-Based XSS in 
Large-Scale Web Development with API Hardening. In 2021 IEEE/ACM 43rd International Conference on So�ware 
Engineering (ICSE) (pp. 1360-1372). IEEE. 
7 Potvin, R., & Levenberg, J. (2016). Why Google stores billions of lines of code in a single repository. Communications 
of the ACM, 59(7), 78-87. 
8 Klein, G. et al. (2014). Comprehensive formal veri�cation of an OS microkernel. ACM Transactions on Computer 
Systems (TOCS), 32(1), 1-70. 
9 Jung, R., et al. (2017). RustBelt: Securing the foundations of the Rust programming language. Proceedings of the 
ACM on Programming Languages, 2(POPL), 1-34. 
10 Erbsen, A., et al. (2019, May). Simple high-level code for cryptographic arithmetic-with proofs, without 
compromises. In 2019 IEEE Symposium on Security and Privacy (SP) (pp. 1202-1219). IEEE. 
11 Reid, A. et al. (2020). Towards making formal methods normal: meeting developers where they are. HATRA 2020: 
Human Aspects of Types and Reasoning Assistants. 

https://research.google/pubs/pub49713/
https://research.google/pubs/pub45424/
https://research.google/pubs/pub49950/
https://research.google/pubs/pub49950/
https://testing.11
https://primitives.10



