

© 2021 Synopsys, Inc.

1

Position paper submitted to NIST in response to Executive Order 14028

Guidelines for software integrity chains and provenance

Software is no longer exclusively created within the proverbial four walls of a vendor. Instead,
globally distributed teams of developers create software components and solutions following
open source development patterns. Managing open source usage is fundamentally different
than managing commercial or contracted software, but even commercial/proprietary or
contracted software will incorporate open source components.

Unless response to Executive Order 14028 addresses the complexity of modern distributed
software development and provides transparency into both the provenance of code and the
associated testing performed at each lifecycle stage, Executive Order 14028 might fail to meet
its longer-term objectives. Meeting that desired outcome requires greater transparency into the
software development processes employed by all stakeholders, including:

− An understanding of where all code comprising an application originated. For
commercial/proprietary and contracted applications, this origin point may be a software
vendor, but with the prevalence of open source software and the reality that significant
portions of commercial/proprietary and contracted software are of open source origin,
how open source software is developed and released must be factored in. Key to this
understanding is a recognition that there is no unique repository for most open source
components, nor is there a single download location for any given open source
component. As an example, the source code for OpenSSL is currently available from
almost 7000 forks on GitHub and from numerous vendors each with varying
implementations;

− An understanding of how update and patch information is communicated to users of
software applications. Where commercial and contracted software suppliers know their
customers and can proactively push update information to those customers, creators of
open source solutions often have no knowledge of who their users are, or how those
users are using the open source solution. The responsibility for obtaining updates or
patches for open source components then falls on the user who is expected to actively
subscribe to update information and perhaps actively tell all their customers to apply the
patch;

− A recognition that procurement of open source components may be as simple as
downloading the component and using it – without the benefit of any security reviews,
audit trails, or other source code management controls;

− A recognition that open source software is accessible in both a pre-release, or source
form, and in a released form, such as with a purchased maintenance agreement, where
pre-released software may have limited security testing if any;

− A recognition that malicious actors do attempt to contribute code changes to legitimate
open source projects and that such malicious code might remain available for download
in a project fork or branch even after the malicious code is removed from the primary
repository;

− A recognition that the current CVE scheme isn’t designed to communicate the presence
of malicious code within a codebase that is available in pre-release form;

− A recognition that the ability to remediate defects, weaknesses, and vulnerabilities in
code is a function of how well the source code is understood by the current development
team. In effect, as development teams evolve, there will be legacy code within any
application and if an exploitable weakness is present in such code, remediation will take
longer and potentially introduce additional weaknesses due to a lack of familiarity with
such legacy code;

© 2021 Synopsys, Inc.

2

Position paper submitted to NIST in response to Executive Order 14028

− A recognition that most open source projects lack comprehensive threat monitoring,
robust security disclosure and triage processes. While commercial organizations offering
open source solutions may employ dedicated security teams, such practices are far from
common within the general open source world;

− A recognition that many organizations specifically and purposely ignore open source
software during static analysis testing to shorten testing cycles by focusing on the code
they created and thus intend to fix. In effect, those organizations view the identification of
defects or weaknesses in open source code as implicitly, and potentially subconsciously,
the responsibility of the open source community;

− A recognition that while code signing principles as a measure of code provenance solves
several problems with commercial/proprietary or contracted software and with compiled
binaries; code signing where the source code is freely available for download from a
public repository presents a different challenge. A significant majority of open source
repositories are based on “git”. git assigns a unique SHA1 identifier for each commit
made, and that SHA1 is computed based on both committer and author information
meaning that a git identifier could be a proxy for code signing provenance, but only if the
source is obtained via a git client and not as a simple download from a repository.
Additionally, while the git community is moving towards SHA256 based commit
identifiers, that work is ongoing with no indication from public git repositories of their
roadmap for implementation of SHA256.

Each of the bullets above highlights how open source software differs from that of
commercial/proprietary or contracted software. With commercial/proprietary and contracted
software, the onus for responsible development and management practices can be placed on
the supplier, but that paradigm is reversed when open source software is used. Proper usage of
open source software obligates the consumer of that software to either implement robust
controls to validate its suitability to a specific purpose, or to contract with an entity that will proxy
that responsibility and become an official suppler for specific open source components. Even
when such a proxy supplier is used, there needs to be a process to ensure that individual
components subject to that proxy relationship are not replaced with versions accessible from a
public open source repository.

Verifiable composition and process integrity through standardized machine-readable SBoM-
based supply chain metadata, including open source software risk scoring, is required.

− Software Bills of Material (SBoMs) must provide enough details to convey provenance,
pedigree, and linkage to describe how software is connected together, along with
attestations about steps in the production chain, including security testing stages.

− Open source software risk scoring should be required, and as an exemplar, it could be
adapted from OpenSSF's CII Best Practices badge project:

o Community Health Analytics Open Source Software (CHAOSS) that focuses
on creating analytics and metrics to help define community health and identify
risk

o The OpenSSF Security Metrics Project, to collect, aggregate, analyze, and
communicate relevant security data about open source projects.

o The OpenSSF Security Reviews to provide a collection of security reviews of
open-source software.

o The OpenSSF Security Scorecards to provide a set of automated pass/fail
checks to provide a quick review of arbitrary OSS.

https://bestpractices.coreinfrastructure.org/
https://chaoss.community/
https://metrics.openssf.org/
https://github.com/ossf/security-reviews
https://github.com/ossf/scorecard

