

In Support of Secure Software Education and Training
Position Statement in Response to White House Executive Order of May 12, 2021

Barton P. Miller Elisa R. Heymann
Vilas Distinguished Achievement Professor Senior Scientist

Sohi Professor in Computer Sciences University of Wisconsin-Madison
University of Wisconsin-Madison elisa@cs.wisc.edu

bart@cs.wisc.edu

This position statement addresses the area of the Secure Software Development Lifecycle. In particular,
we address the issue of enhancing the security of the software supply chain by education and training1.

The security of our cyberinfrastructure is only as strong as the software that we develop and deploy. As
both providers and consumers of software in our supply chain, we need to ensure that the software
meets the highest standard of secure design, coding, and testing practices. A key to meeting these
standards is having ubiquitous software security courses in our colleges and universities and training
available to our professional practitioners. The key to having such widespread teaching and training is to
have open and free resources to enable such activities. As such, we advocate programs to support the
development of curriculum materials available for online and in-person modes of teaching. In addition,
we advocate certification standards to allow software professionals and new graduates to demonstrate
their proficiencies in these areas.

The skills to design, develop, and test secure software are not widely held in the software development
community. Most software curriculums concentrate on teaching the theoretical and practical skills
needs to develop functional and efficient software. Where computer security is taught in the university,
it usually a course that covers a broad set of topics, not a systematic introduction to security in the
software development lifecycle. The software development community needs the resources to master
the security issues at each stage of the software development lifecycle.

Our approach to this topic comes from more than 15 years of experience performing person in-depth
software reviews to find critical vulnerabilities. This experience in vulnerability assessment has spanned
the areas of scientific infrastructure to commodity software like web browsers to critical transportation
infrastructure like maritime shipping. In these assessment efforts, we have found many serious
vulnerabilities in the software. From those assessment efforts, we identified common design and
programming practices that allowed such vulnerabilities to be present.

We then started by developing informal training materials to share with the developers of the software
that we had assessed. This effort was necessary as there was little instructional material on software
security readily available. As our materials started to grow in scope, we developed a pedagogy that
introduced security from the first steps of a design, through the coding, and into testing and
assessment. The curriculum was intended for software developers, managers, and cybersecurity
professionals.

While the number of software practitioners is growing at a startling rate, there are relatively few
practitioners with such software security skills. As software in systems and devices is controlling an

1 Executive Order paragraph 4(e)(ix)

mailto:bart@cs.wisc.edu
mailto:elisa@cs.wisc.edu

increasing amount of our lives, the needs for these software security skills is becoming more urgent. It is
not an exaggeration to say that is has reached a point of criticality.

In response to this situation, we believe that the software community will benefit from resources that
satisfy several criteria:

1. These materials should be based on a solid conceptual framework and not just a bag of tricks. The
goal is to teach a thought process that extends beyond a particular programming language or
currently understood set of threats.

2. The curriculum must be comprehensive, starting at the design stage, before a single line of code is
written, and then carrying through the coding stage and finally the testing and assessment stages.
Security must be present at each step of the software development lifecycle.

3. The materials should be modular, so that a professional programmer can quickly train on their most
immediately needed skills and instructors in computer science classes can use these resources to
introduce security to their topic. For example, an instructor in a database course could use the
module on SQL Injection Attacks.

4. The training materials should be designed in such a way as to be accessible to the broadest
community possible. While some modules may assume advanced software skills, there should be
much available that benefits even the beginning programmer. In addition, any video materials
should be captioned, preferably in multiple languages.

5. Free and open access to these materials will reduce barriers to acceptance. To support small
companies and universities, cost should not be a cause for not having such materials available.

6. Continuous development of the teaching materials is essential to keeping them up to date with the
rapid changes in the software world and in cybersecurity practices and threats.

7. An evaluation and certification process will allow students and trainees to demonstrate their
mastery of all or parts of this curriculum. Both students and existing employees will be motivated to
acquire such certification to enhance their career trajectories. Software producers will be able to
advertise that they have trained teams in software security and acquirers of software will had an
additional tool to evaluate the providers of their software.

We recommend a team that spans government, academia, and industry to advise such an effort. To
execute the keys tasks in developing these materials, we recommend an academia-focused team.
Sustained funding for such an effort is essential to keep it relevant.

We offer our current text, video, and hands-on exercise materials as a starting point for this effort2.
These materials form the foundation for our recently developed undergraduate class, Introduction to
Software Security (CS542)3

2 https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/
3 https://pages.cs.wisc.edu/~bart/cs542.html

https://pages.cs.wisc.edu/~bart/cs542.html
https://research.cs.wisc.edu/mist/SoftwareSecurityCourse

