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Abstract—Software static analysis is one of many options
for finding bugs in software. Like compilers, static analyzers
take a program as input. This paper covers tools that examine
source codewithout executing itand output bug reports. Static
analysis is a complex and generally undecidable problem. Most
tools resort to approximation to overcome these obstacles and it
sometimes leads to incorrect results. Therefore, tool effectiveness
needs to be evaluated. Several characteristics of the tools should
be examined. First, what types of bugs can they find? Second,
what proportion of bugs do they report? Third, what percentage
of findings is correct? These questions can be answered by one
or more metrics. But to calculate these, we need test cases having
certain characteristics: statistical significance, ground truth, and
relevance. Test cases with all three attributes are out of reach,
but we can use combinations of only two to calculate the metrics.

The results in this paper were collected during Static
Analysis Tool Exposition (SATE) V, where participants ran 14
static analyzers on the test sets we provided and submitted
their reports to us for analysis. Tools had considerably different
support for most bug classes. Some tools discovered significantly
more bugs than others or generated mostly accurate warnings,
while others reported wrong findings more frequently. Using
the metrics, an evaluator can compare candidates and select the
tool that aligns best with his or her objectives. In addition, our
results confirm that the bugs most commonly found by tools
are among the most common and important bugs in software.
We also observed that code complexity is a major hindrance for
static analyzers and detailed which code constructs tools handle
well and which impede their analysis.

Index Terms—software faults; software assurance; static anal-
ysis tools; software vulnerability

DISCLAIMER

Certain commercial entities, equipment, or materials may be
identified in this document in order to describe an experimental
procedure or concept adequately. Such identification is not
intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it
intended to imply that the entities, materials or equipment are
necessarily the best available for the purpose.

I. INTRODUCTION

Today’s large software systems contain many defects1 that
often lead to costly failures and security breaches. Multiple

1In this paper, we use the terms defect, bug, and weakness interchangeably.

techniques and tools, including testing and static analysis,
should be used to reduce the number of defects and improve
software assurance [1]. In this paper, we focus on static
analysis tools that find security defects in source code. Like
compilers, static analysis tools take a program as input. They
then examine the code without executing it and produce bug
reports as output. Many static analysis tools are currently
available, both commercial and open source2.

A. Overview of Static Analysis Tool Exposition

The National Institute of Standards and Technology (NIST)
SAMATE project [2] conducted 5 Static Analysis Tool Exposi-
tions (SATEs) to advance research in static analysis tools [3]–
[7]. The SATE process is as follows: we (the NIST researchers)
provide a set of test cases to the participating tool makers.
The tool makers run their tools on the test cases and return
the tool outputs to us for analysis. We apply several analysis
methods to the tool outputs. This culminates with a workshop
organized as a forum for participants to share their findings
and experiences.

The first SATE was based on production open source
programs as test cases, and we added other types of tests
as available and as we perceived a need. Since 2008, SATE
accumulated massive amounts of data on static analysis [8].

B. Related Work

Many researchers have studied static analysis tools and col-
lected test sets. Diaz and Bermejo [9] performed an assessment
of tools by selecting 9 static analysis tools and executing them
against SAMATEs Software Assurance Reference Dataset
(SARD) [10] test suites 45 and 46.

Kupsch and Miller [11] evaluated the effectiveness of static
analysis tools by comparing their results with the results of
an in-depth manual vulnerability assessment. Of the vulnera-
bilities found by manual assessment, the tools found simple
implementation bugs, but did not find any of the vulnerabilities
requiring a deep understanding of the code or design.

The U.S. National Security Agencys Center for Assured
Software [12] ran 9 tools on about 60 000 synthetic test cases
covering 177 Common Weakness Enumeration (CWE) IDs

2http://samate.nist.gov/index.php/Source Code Security Analyzers.html
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[13] and found that static analysis tools differed significantly in
precision and recall. Also, tools precision and recall ordering
varied for different weaknesses. One of the conclusions in [12]
was that sophisticated use of multiple tools would increase the
rate of finding weaknesses and decrease the false-positive rate.
The Juliet 1.0 test cases, used in SATE IV, are derived, with
minor changes, from the set analyzed in [12].

C. Static Analysis Ttools

While static analysis can be applied to different artifacts,
including requirements or design, our paper is focused on tools
that take a program as input and produce warnings as output.
The warnings include a weakness name, a code location or
trace, and other useful information, such as an explanation
of the weakness and suggested mitigations. Many important
aspects of static analysis tools, including defect tracking, user
interface, and integration into the development environment,
are out of the scope of this paper.

Multiple static analysis tools generally do not find the same
weaknesses [14]. This is due to the differences in design
philosophies, specialization, scope, and technical details. Tools
differ in the programming languages that they process and
types of weaknesses that they look for. They also differ in
the type of analysis performed, ranging from simple pattern
matching to sophisticated control and data flow analysis capa-
bilities.

Static analysis is a generally undecidable problem. This may
lead to false-positives, i.e., reporting a weakness for correct
code, and false-negatives, i.e., missing a weakness. Therefore,
tool effectiveness needs to be evaluated.

This paper will describe our methodology, including metrics
and test cases, for evaluating static analysis tools and present
our findings from applying this methodology to a portion of
the SATE V test suite.

II. MEASURING OF THE EFFECTIVENESS OF TOOLS

The science of measuring software quality and security is at
an early stage of development. There is no commonly accepted
formula that can define the state or behavior of software. Black
proposed some concepts that may be a basis for bug metrics
[15]. Despite the lack of foundational knowledge, using the
methodology described in this paper helps better understand
and compare tool effectiveness.

A. Evaluation Metrics

Over the five SATEs, we gradually clarified the questions
that would be useful and the metrics addressing those ques-
tions.

The first question often asked is what types of weaknesses
a tool can find. Different defects require different detection
schemes, and tools implement only a subset of these checkers.
Some weaknesses are even impossible for tools to find, e.g.
design weaknesses, as they require extra context outside of
the tool’s scope. Coverage measures the types of weaknesses
detected by tools.

Since most tools use heuristics to detect weaknesses, they
may miss some defects. Sometimes the complexity of the

target software is such that tools have to make approximations
in order to scale. This high complexity can cause a tool to
miss defects whereas the same weaknesses would have been
found in a simpler construct. It is then essential to measure
the proportion of defects tools report. Recall is the number
of correct findings compared to the total number of defects
present in the code.

Due to the same approximations, tools sometimes also
falsely report bugs. False-positives hinder remediation work
and even detection, as annoyed assessors may turn off noisy
rules. The true-positive rate, called precision, is the proportion
of correct warnings to the total number of warnings produced
by a tool. It gives a sense of the trustworthiness of tool
findings.

A complementary measurement is discrimination. It reflects
whether a tool can detect a weakness when there is one, but
remain silent when a similar code construct is used safely.
For example, a tool reporting all occurrences of calls to a
dangerous function, whether it is used correctly or not, could
still achieve a decent score if solely based on recall and
precision. Discrimination helps differentiate basic tools from
smarter ones that can determine if a code construct is safe
or not, even if it contains potentially hazardous elements.
Discrimination was introduced in [16] section 2.3.2.

Lastly, we want to measure the overlap, i.e. the proportion
of weaknesses found by more than one tool. This metric
helps determine to what extent tool outputs show statistical
independence. A set of tools having a large overlap may be
used to increase confidence that reported weaknesses are true-
positives. On the other hand, independent tools can increase
the total number of defects found, or recall.

Table I summarizes the questions one may ask and the
metrics answering them.

TABLE I
QUESTIONS AND METRICS

Question Metrics
What proportion of defects can
a tool find? Recall and coverage

How noisy is a tool? Precision and discrimination
How similar are unrelated tools? Overlap

B. Design of Test Cases

Over the past SATEs, we distilled three test case characteris-
tics required to calculate these metrics: statistical significance,
ground truth and relevance [8]. The first is obtained through
the size and diversity of the code base. A small test program
will have a limited amount and diversity of defects. If a tool
overlooks a weakness that is unique in such a small test case,
it will rank poorly even if it is usually very efficient at finding
this type of weakness. Therefore, we need test cases large
enough to contain many occurrences of the same defect types
and possibly wide weakness-type diversity.

Ideally, we also need to know where all defects are lo-
cated in our test cases, a.k.a. ground truth. It provides much
higher assurance and makes assessing tool warnings easier:
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by subtraction, we can determine the number of overlooked
weaknesses.

But the test cases must also be representative of real
source code. Ultimately, static analysis tools run on production
software, and our test cases should be close to that used in
industry. Real software tends to be more complex than crafted
test cases so a tool performing well on the latter might perform
poorly on the former. Hence the metrics would be meaningless
in a production context if the test cases lack this relevance.

In summary, the perfect test cases are a set of large
production software, developed according to typical industry
practices and whose defects are all identified. Unfortunately,
such cases do not exist and creating them would consume
immense resources. However, test cases exhibiting any two of
the three characteristics are readily available.

Actual production software is relevant by definition. If large
enough, it also provides statistical significance but not ground-
truth. We could examine publicly reported vulnerabilities in
production software (Common Vulnerabilities and Exposures,
abbreviated as CVE) [17] but these lack in number, so we trade
off statistical significance for ground truth. The last option
consists of generating a large number of small programs con-
taining planted vulnerabilities, so as to have ground truth while
gaining statistical significance. Unfortunately, these synthetic
tests are not representative of real code.

Despite the absence of ”perfect” test cases, these three types
of test cases allow us to measure all aforementioned metrics.
Coverage can be determined by using production software, but
these test cases can lack in variety of vulnerabilities. However,
synthetic test cases contain, by design, an extensive set of
vulnerability types. Recallthe rate of discovered defectscan be
calculated from CVEs, but as they usually lack in number,
synthetic test cases are preferred. Precisionthe proportion of
correct findingscan be established over real software as well as
on synthetic test cases. Discrimination, or ”smartness”, can be
determined by running tools on software containing CVEs and
on a later version of the same program correcting the problem.
If a tool reports a defect only in the vulnerable version,
it discriminated properly. Alternatively, synthetic test cases
come in pairs, one containing a weakness and its counterpart
the remediation. Running the tools on both easily establishes
whether these differentiate good from bad code. Lastly, overlap
can be calculated on all test sets by having several tools
analyze the same test cases and comparing their findings.

Table II summarizes the types of cases one can use to
calculate the metrics shown in Table I. Label Applicable
indicates that the metric can be computed, Limited states that
there are some limitations with the calculation, and N/A (not
applicable) means that metric computation is not possible.

While it seems that synthetic test cases are ideal, one must
keep in mind that they may not be representative of real
production code. Therefore, the derived metrics might not
accurately describe the behavior of tools in real conditions.

Once the tester has determined the metrics of interest, he
or she can deduce the types of test case he or she needs and
build the test set. Most users will run the tools on their own

TABLE II
METRICS TO TEST CASE TYPE MAP

Production
Software

Software w/
CVEs

Synthetic
Cases

Coverage Limited Limited Applicable
Recall N/A Limited Applicable
Precision Applicable N/A Applicable
Discrimination N/A Limited Applicable
Overlap Applicable Applicable Applicable

code base. In this case, CVEs can be replaced by previously
identified bugs. Otherwise, the following aspects should be
considered for choosing a solid ”production” test case:

• Attack surface: the software should be designed to face a
hostile environment (e.g. ,a web server on the Internet).

• Size: the software should be comparable in size to the
target code base.

• CVEs: the software should ideally contain a collection of
diverse known vulnerabilities.

• Language: the software should be written in the same
language as the target code base.

• Compilation: dependencies and other complications can
lead to considerable overhead.

Quality synthetic test suites exist in several languages [10].
Some important aspects to consider are as follows:

• Coverage: the suite should have test cases for most of the
targeted defects.

• Complexity: the suite should have several instances of the
same defect using different code structures.

Once the tester has established the test case set, it is time to
run the tools and to calculate the metrics based on the reports
produced.

III. TOOL EFFECTIVENESS MEASUREMENT

The following results were collected during SATE V [7].
Participating teams ran 14 tools on the test sets that we
provided, and they submitted their results to us for analysis.
The following sections describe our findings using the methods
explained above. For simplicity, we focus mainly on the
synthetic Java test suite and the 4 tools that analyzed it. The
complete results will be published in [7].

This test suite was computer-generated by combining short
code templates written by experts. The templates contain
seeded weaknesses that are vulnerable on at least one ex-
ecution path. Different templates implement different code
complexities, so the same seeded weakness is included in
various code constructs to create different test cases. The full
list of defects contained in the test suite is described in [18].

A. General Considerations

Tools report defects using their own vocabulary. Although
most map to CWE, the latter proves sometimes unsuitable to
evaluate static analyzers. For example, a tool could report a
buffer overflow under CWE 121 (Stack-based Buffer Over-
flow), but its parent CWE 787 (Out-of-bounds Write) would
also be legitimate. We overcome this hierarchy problem by
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Fig. 1. Coverage spectrum per tool for Synthetic Java

grouping CWEs into 24 generic categories better aligned with
static analyzer findings. Fig. 1 lists these groups in its legend.

B. Defects Found by Tools

The data we collected reveal varying coverage spectra
for different tools. Fig. 1 shows the shape of these spectra
for visual comparison3. Each bar represents one of the 24
weakness categories. We consider the test cases belonging to
each category to determine their coverage by a tool. If the tool
reports at least one true-positive for a test case with a given
CWE, we consider that CWE covered. The overall score for a
category is the proportion of CWEs of that category covered
by a tool. For example, a tool reports true-positives on 2 CWEs
in a category made of 5 CWEs, so the coverage is 40 %.

Although some categories, like comparison defects, are uni-
formly detected, the support for most other weakness classes
differs considerably. For example, tool D’s spectrum is sparse,
meaning it can detect only a few types of defects, while tool
A’s is much denser.

Does this mean that tool A is better than the others? Not
necessarily. Some vulnerability types, like credential manage-
ment, are found by tools B and C but not by tool A. If other
tools support all the weaknesses you are interested in, they
might be solid candidates as well. Now that we know which
defects a tool is able to report, we have to determine how well
it can find them.

3For detailed numbers, refer to [7].

Fig. 2 shows the proportion of weaknesses each tool re-
ported. Tool A discovered significantly more weaknesses than
the others. Note that the horizontal axis ends at 70 %.

C. Tool Noisiness

Tools can indeed report a lot of informationnot all of it
useful. Users want to minimize human review as much as
possible, so tool noisiness is an important aspect of tool
testing.

Fig. 3 shows which proportion of tool warnings are actually
useful. Tools B, C and D have precision of about 90 %,
meaning almost all reports they produce should be carefully
considered. Tool A slightly lags behind in that regard.

Real software usually contains a number of similar sites4 of
which only a small fraction is vulnerable. To achieve good
precision on such code, a tool must be able to differentiate
defective from safe sites. When using CVEs or synthetic
test cases to test tools, there is nearly an equal number of
vulnerable and fixed sites. Therefore a tool reporting all sites
would still achieve a precision of 50 %, as it would be right
half of the time. The problem can be mitigated by introducing
the discrimination rate, which accounts for true-positives only
if the tool did not incorrectly report the same defect at the
safe site (false-positive).

In our case, Fig. 4 shows that the discrimination rate does
not differ significantly from precision, simply because all
these tools are fairly sophisticated and do not generate many
uncalled-for warnings.

D. Combination of Tool Metrics

Recall and precision can be combined in a measure called
F- Score [16]. The metric can be calculated with different
biases whether one wants to favor recall (finding more defects)
or precision (reporting more useful information). We use the
harmonic mean giving equal weight to both.

This combination leaves us with three measures: F-Score,
coverage and discrimination. Fig. 5 shows that according to
these criteria, tools B, C and D behave similarly. Tool A is
in a separate class, sporting a higher F-Score and coverage
while missing out on discrimination. Tool A would be a good
candidate to find as many defects as possible while tools B,
C and D could help findings fewer bugs but in a shorter time.

These metrics regard only more technical aspects of tools.
Other fundamentals like user interface, integration and support
should also be considered.

E. Legitimacy of Results on Synthetic Test Cases

All these metrics can be calculated using synthetic test
cases, but can we generalize these results to production
software? The answer is not simple. Fig. 6 presents the
precision measured on two production test cases (Openfire5

and JSPwiki6) against the precision obtained on the synthetic
test suite. First, we observe that tools perform better on

4A site is an abstract location where a bug can happen, e.g. a buffer access.
5http://www.igniterealtime.org/projects/openfire
6https://jspwiki.apache.org
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Fig. 2. Recall per tool for Synthetic Java

Fig. 3. Precision per tool for Synthetic Java

Fig. 4. Discrimination per tool for Synthetic Java

Openfire than on JSPwiki, emphasizing their sensitivity to the
code base they analyze. Second, the precision they yield from
synthetic test cases is overall higher than their precision on
production software. Using solely synthetic test cases to assess
a tool might therefore give an incomplete view of a tool’s
capabilities.

Fig. 5. Combination of Tool Metrics

Fig. 6. Precision per tool on production software vs. synthetic cases for Java

IV. ON BUGS

A. Code Complexity

In addition to testing tools for a wide variety of weaknesses,
the synthetic test suite allows us to test the tool’s handling
of different kinds of complexities encountered in code. The
synthetic test cases have complexities in control and data
flow constructs. A control flow structure is added by inserting
statements or variables into the source code, whereas a data
flow structure will incorporate multiple data types, function
calls, data structures, and memory attributes. Both make the
software more complex from a tool’s point of view.

Statement complexity is introduced by using control flow
statements like if, switch, while, for or goto in the code,
whereas a flow controlled by a global variable value adds
Variable complexity.

Path complexity is concerned with how the data are passed
between functions in the same source file or in different files.
We consider a copy of data, the use of two pointers to the
same value, accessing the same data with two methods and
a reference to data, as Data complexity. Structure complexity
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is introduced when a variable is accessed through an array,
a pointer, a structure, a vector, a list, a hash map or a class.
Memory complexity involves passing the data as an argument
to a virtual function called via a reference or a pointer,
or passing the data to a class constructor or destructor by
declaring the class object either on the stack or on the heap.

Fig. 7 presents the recall per code complexity type. Note
that the horizontal axis ends at 20 %.

On average, tools find about 20 % of weaknesses in the
basic test cases (no complexity added). When a control flow
construct (i.e., Statement or Variable) is inserted into the
code, the ratio decreases by one fifth to about 16 % of
findings. A complicated data flow construct (i.e. Path, Data,
Structure or Memory) cuts the chance of success in half to
9 % of findings. As shown in Fig. 7, adding statements
does not degrade tool effectiveness significantly. Tools handle
Statement complexity relatively well, but have more difficulty
with Memory complexity. Our main observation here is that
the simpler the control and data flow structure of the software
is, the more effective the tools will be at finding weaknesses.
Generally, design and coding clarity helps improve software
assurance [19].

B. Bugs that are Easy vs. Hard to Find

Tools do not detect all types of weaknesses with the same
efficiency. Among other things, this depends on tools’ goals
and the type of analysis performed. Fig. 8 shows overlap of
tools’ findings.

For the synthetic C test suite, almost half of all weaknesses
were not detected by any of the 8 tools we evaluated. Only 16
weaknesses out of the total 61 387 (0.03 %) were detected by
7 tools. For the Java test suite, only 0.55 % (141 of 25 477) of
the weaknesses were detected by all 4 tools used in our study,
while 60 % of the weaknesses were not detected by any tool.
This is consistent with observations from earlier SATEs [14].

Considering the above results, and in order to better under-
stand the behavior of tools for different languages, we ranked
weakness groupsas listed in Fig. 1s legendby tool recall. Our
ranking shows buffer operation, input validation and memory
release are the groups of weaknesses that have the highest
detection rate by the tools in C/C++. Tools produce the fewest
findings for encapsulation or confidentiality bugs. For the Java
test suite, input validation, web, and path-related groups are
found the most by the tools, while encapsulation and loop
and recursion groups have the lowest detection rate. Precise
numbers will be presented in [7]. The top ranked categories
are similar to the most common weaknesses found in software,
e.g. , [20]. It is reasonable that tool makers put their resources
in the detection of the most common and important defects.

V. CONCLUSION

In this paper, we presented methods and metrics for eval-
uating static analyzers’ effectiveness. We explained different
aspects of importance when assessing tools and how to design
or select tests to measure these characteristics. Armed with
such metrics, an evaluator can compare tools and select the

Fig. 7. Recall per complexity for Synthetic C

Fig. 8. Findings’ overlap by tools

most suitable for his or her needs. We focused solely on
the technical dimension. Other dimensions, like usability and
integration, should also be considered.

Overall, our results show that tools report substantially
different defects. Also, no tool prevails in all regards, so tool
users should consider trade offs when choosing tools for their
objectives.

We shared observations on bugs we encountered in code
during SATE V. The ability of tools to find defects varies
with code complexity. Bugs embedded in simple programs
were reported by more tools than those located in convoluted
software, advancing the case for writing simpler code.

We are still falling short on test cases. We need large
software with known vulnerabilities. Intelligence Advanced
Research Projects Activity (IARPA) made progress in that
respect with the STONESOUP project7, by seeding faults in
production software. We will take advantage of this new test
set to further improve our methodology and our understanding
of tools.
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