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Project Objective:  To create a well-characterized and highly 
accurate reference measurement system at near industrial 
scale to serve as a test bed for carbon dioxide emissions 
measurements.

• Scale-Model Smokestack Simulator

• National Fire Research Laboratory

• Goal:  Measure CO2 emissions with ±1% uncertainty

• Reconcile the carbon mass balance at the source
– Predicted Emissions vs Direct Emissions



Hydrocarbon 
Fuels

GHG:  CO2

Hydrocarbon
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GHG:  CO2

The National Fire Research Laboratory (NFRL) is analogous 
to a stationary source, only smaller. 

Graphics courtesy of:  N. Pearson, “The Carbon Numbers Game”, Bloomberg Markets, v42, Jan 2011 



NFRL is a unique facility that provides large-scale fire 
and structural measurements to fire and building 
researchers. 

• Support fire model validation studies
• Enable fire investigations
• Support post disaster and failure 

studies
• Enable advances in fire 

measurements, standards, and 
codes

• Heat released
• Flame spread
• Fire Spread
• Smoke movement and toxicity
• Early detection and abatement



• Heat Release Rate (HRR) is a 
measure of the potential for a fire to 
spread to other objects and beyond the 
room of origin

• It is derived from oxygen consumption 
calorimetry

The rate of heat released by a burning material is the primary 
measurement of the NFRL.
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Fire research and the emissions industry share a 
common problem:  accurate characterization of flow 
and concentration in an industrial scale flue gas.

Source:  North American Carbon Storage Atlas Partnership, 
http://gis.netl.doe.gov/NACAP/
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Flow and Concentration



Routine emissions measurements are conducted in the 
exhaust duct at the roof of the facility.
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Independent flow RATAs to determine average stack gas 
velocity agreed to within 4%.
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• Followed EPA test methods 1*, 
2 and 2G

• Series 1:  NIST
– 1 chord at a time*
– Scoping measurements*
– UV(M,N) = ±2.6%

• Series 2: Stack Testing 
Company (STC)
– 2 chords simultaneously
– UV(M,N) = ±1.4%

• Annubar provides reference 
measurement between series 
1 and 2



The flow profiles were confirmed with separate experimental 
trials.
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Better instrumentation and better calibrations result in lower 
uncertainty.

NIST – Series 1 STC – Series 2

Measurement 
Component, xi 

Value 

Relative 
Standard 

Uncertainty, 
u(xi)/xi 

Non Dimensional 
Sensitivity 

Coefficient, si 

Percent 
Contribution, 

% 

Probe Coefficient, Cp 0.818 0.0048 1.0 86.7 

Probe Yaw, yφ  (Deg) 2.49 0.0201 0.002 0 

Probe Differential 
Pressure, Δp (Pa) 

110.38 0.0008 0.5 0.5 

Gas Temperature, T (K) 296 0.0037 0.5 12.8 

Duct Static Pressure, Ps 
(Pa) 

100722 0.0001 -0.5 0 

Gas Molecular Weight, 
Mwet (kg/kmol) 

28.297 0.0001 -0.5 0 

Near Axial Velocity, vz 
(m/sec) 11.28 

0.0052 

(0.0104) 

Standard Uncertainty 

(Expanded Uncertainty) 

 

Measurement 
Component, xi 

Value 
Standard 

Uncertainty, 
u(xi) 

Relative 
Standard 

Uncertainty, 
u(xi)/xi 

Non 
Dimensional 
Sensitivity 

Coefficient, si 

Percent 
Contribution, 

% 

Probe Coefficient, 
Cp 

0.785 0.012 0.0150b,c 1.0 88.5 

Probe Yaw, yφ  

(Deg) 
2.0 0.5b 0.2500 0.002 0 

Probe Differential 
Pressure, Δp (Pa) 

403.6 3.1b 0.0077 0.5 5.8 

Gas Temperature, 
T (K) 

287.3 1.5b 0.0052 0.5 2.7 

Duct Static 
Pressure, Ps (Pa) 

99193 170a,b 0.0017 -0.5 0.3 

Gas Molecular 
Weight, Mwet 
(kg/kmol) 

28.73 0.15c 0.0052 -0.5 2.7 

Gas Velocity, 
axial, vz (m/sec) 20.41 

0.33 

(0.65) 

0.0159 

(0.0319) 

Standard Uncertainty 

(Expanded Uncertainty) 

 



The CFD simulation predicted the qualitative features of the 
flow and was therefore used to estimate the error due to 
measurement discretization.
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Flow and Concentration



• Mass In = Mass Out
– Input:  metered flow of natural gas 

(traceable to primary flow standard 
and gas composition standards), i.e. 
metered flow of C atoms

– Assume 100% conversion of C atoms 
to CO2

– Measurement:  CO2 mass flow rate

Goal:  Use the NFRL to demonstrate best practices for CO2
emissions measurements with ±1% uncertainty.

eCOeeCO AXum ,22 ~ ρ



The distribution of the data from separate experimental trials 
was within ±7%. 
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• Many of the point velocity 
traverse experiments were run 
with the natural gas fire.

• Direct:  Emissions
– Flue gas measurements of 

flow and concentration

• Predicted:  Fuel
– Flow and composition 

measurements of natural 
gas supply



The natural gas burner system provides a precision source of 
CO2; duct/stack diameter measurements are a significant 
source of uncertainty for flue gas measurements (CEMS).

Measurement 
Component, xi 

Value 

Relative 
Standard 

Uncertainty, 
u(xi)/xi 

Non Dimensional 
Sensitivity 

Coefficient, si 

Percent 
Contribution, 

% 

Gas Volume Flow Rate, 

ngV  (m3/sec) 0.02983 0.0019 1.0 22.9 

Gas Pressure, Png (Pa) 197719 0.0016 1.0 16.3 

Gas Temperature, Tng (K) 290.65 0.0017 -1.0 19.0 

Gas Compressibility, Zng 
(-) 

0.9958 0.0005 -1.0 1.6 

Gas Carbon Fraction, Xc,ng 
(mol/mol) 

1.042 0.0020 1.0 26.2 

CO2 Molecular Weight, 

2COM  (g/mol) 44.0095 0.0000 1.0 0 

Ideal Gas Constant, R 
(J/mol/K) 

8.3144 0.0002 -1.0 0 

Burner Conversion 
Efficiency, bη  (-) 1.0000 0.0015 1.0 14.0 

Predicted CO2 
Emissions, pCOm ,2

  (g/sec) 112.4 
0.0040 

(0.0080) 

 

(Expanded) 

 

Measurement 
Component, xi 

Value 

Relative 
Standard 

Uncertainty, 
u(xi)/xi 

Non Dimensional 
Sensitivity 

Coefficient, si 

Percent 
Contribution, 

% 

Exhaust Gas Mean Flow 
Velocity, Vexh (m/sec) 

20.91 0.0056 1.0 9.9 

Exhaust Duct Diameter, d 
(m) 

1.504 0.0079 2.0 77.6 

Exhaust Gas Mean 
Density, exhρ   (kg/m3) 

1.047 0.0034 1.0 3.6 

CO2 Net Volume Fraction 
– dry basis,  drynetCOX ,,2

 

(m3/m3) 
0.001819 0.0053 1.0 8.9 

Exhaust Gas H2O Volume 
Fraction,  exhOHX ,2

 (m3/m3) 0.007947 0.0031 0.05 0 

Exhaust Gas Molecular 
Weight, Mexh (kg/kmol) 

28.7734 0.0001 -1.0 0 

CO2 Molecular Weight, 

2COM  (kg/kmol) 44.0095 0.0000 1.0 0 

Direct CO2 Emissions, 

dCOm ,2
  (g/sec) 107.3 

0.0179 

(0.0358) 

 

(Expanded) 

 

Predicted (Fuel) Direct (Flue)



CO2 emissions derived from O2 concentration measurements 
agreed well with direct CO2 measurements.
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-0.032 ± 0.059

• If a CO2 analyzer is not 
present, procedures to use O2
concentration measurements 
exist

• Based on emission factors for 
natural gas 

• Larger uncertainty in emission 
factors 

• 40 CFR Pt75 – Appendix F –
Conversion Procedures



Fuel Factors computed from the proportions of O2 and CO2
agree with the default value, confirming the quality of the gas 
concentration measurements.
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• Predicted: fuel (natural gas) 
composition measurements

• Direct: flue gas concentration 
measurements 

• EPA Method 3b – Gas 
Analysis for the Determination 
of Emission Rate Correction 
Factor or Excess Air



National Fire Research Laboratory



• The NFRL has similar measurement systems and functions to a stationary 
source.  It is a near-industrial scale analog of a stationary source – a CO2
emissions measurement test bed.

• The NFRL has been used to simulate some of the practices of the source 
emissions measurement industry.  The goal is to demonstrate best practices for 
achieving ±1% uncertainty CO2 emissions measurements.

• Preliminary results demonstrate that the NFRL has the capability to evaluate CO2
emissions measurements with mass balance experiments.
– Fuel derived emissions measurements
– Direct emissions measurements

Summary



Thank You!

Questions



• R. Bryant, O. Sanni, E. Moore, M. Bundy, and A. Johnson, An Uncertainty 
Analysis of Mean Flow Velocity Measurements Used to Quantify Emissions from 
Stationary Sources, Journal of the Air and Waste Management Association, v64 
(6), pp 646-656, (2014)

• R. Bryant, M. Bundy, and R. Zong, Evaluating Measurements of Carbon Dioxide 
Emissions Using a Precision Source – a Natural Gas Burner, Journal of the Air 
and Waste Management Association, To Appear, (Accepted 24 March 2015)
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