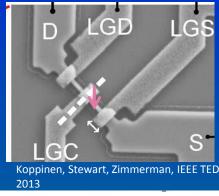
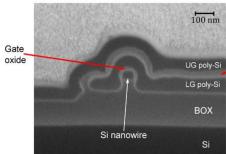
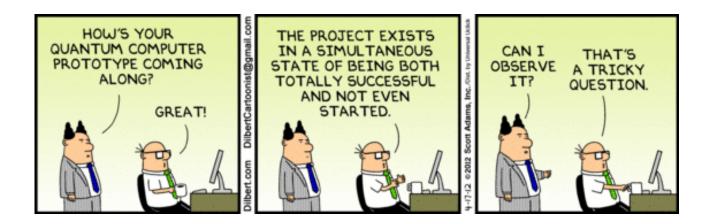

Future Needs of Characterization and Metrology for Silicon Qubits in Quantum Computing

Neil Zimmerman, Rick Silver, Xiqiao Wang NIST

Fuechsle, M, etc., A single-atom transistor. Nat Nano **2012**, 7, (4), 242-246.




How do we


- Find and identify single atoms?
- Measure 500 000 000 coherence times?

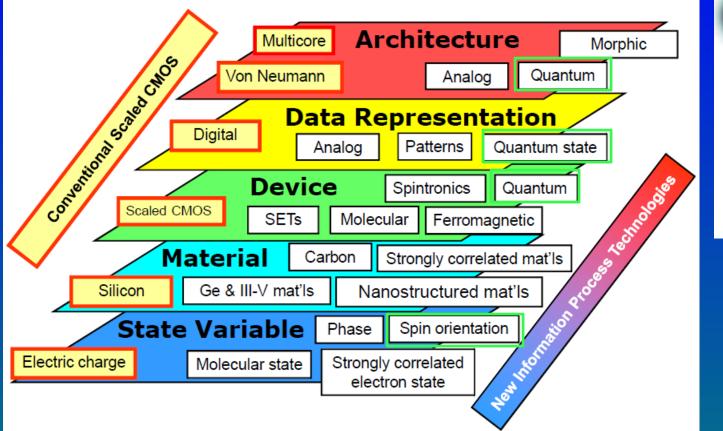
3/29/2017

 Quantify how strain produces devices?

"I'd rather uncover less than cover more"

• Please ask questions

3/29/2017

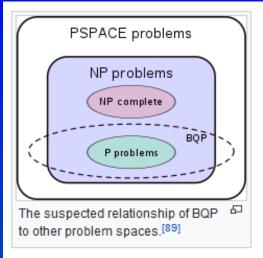


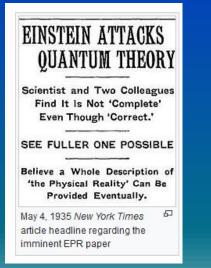
- Quantum Computing
 - Beyond CMOS
 - The potential of quantum computing: Quantum parallelism
- Characterization future needs of Si qubits
 - Structural
 - Electrical
- Summary of needs

Quantum Computing in Beyond CMOS

3/29/2017

A Taxonomy for Nano Information Processing Technologies



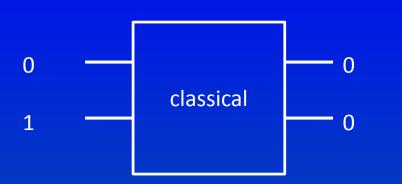

INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2.0

2015 Edition

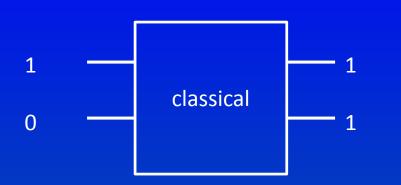
BEYOND CMOS

(most recent BC full chapter, IRDS 2016 similar)

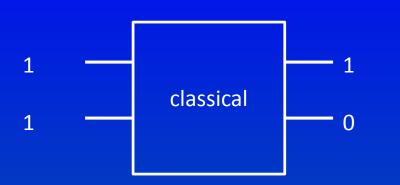
Physical Measurement Laboratory


- Computer science: QC
 can solve problems not
 possible with any classical
 computer
 - Eg, factorizing large integers aka cracking passwords
- Why is this?

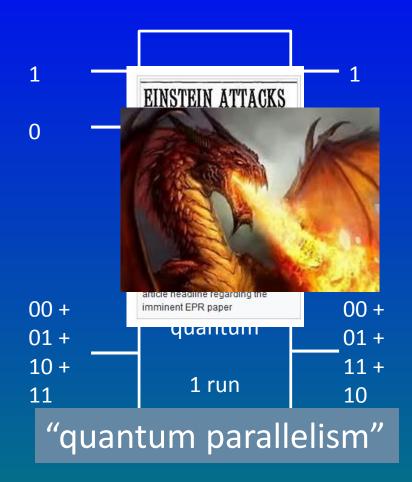
3/29/2017


- Computer science: QC can solve problems not possible with any classical computer
 - Eg, factorizing large integers aka cracking passwords
- Why is this?

3/29/2017


- Computer science: QC can solve problems not possible with any classical computer
 - Eg, factorizing large integers aka cracking passwords
- Why is this?

3/29/2017


- Computer science: QC can solve problems not possible with any classical computer
 - Eg, factorizing large integers aka cracking passwords
- Why is this?

3/29/2017

- Computer science: QC can solve problems not possible with any classical computer
 - Eg, factorizing large integers aka cracking passwords
- Why is this?

3/29/2017

- Computer science: QC can solve problems not possible with any classical computer
 - Eg, factorizing large integers aka cracking passwords
- Why is this?
 - "Superposition" means all possible iterations are solved at the same time!
- Decoherence destroys superposition (bad).
 3/29/2017

Some necessary items for a QC

- Si qubits with electron spin as the state variable (cf charge on the gate of a MOSFET switch)
 - Need $T_{\text{coherence}}/T_{\text{switch}} > 10^3$ (assumes QEC).
 - Eg, switching time 1 ns
 - No decoherence for 1 μs
 - Need up to 500 million qubits all operating correctly

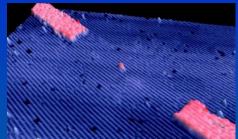
3/29/2017

- No decoherence
- No drift or other gross problems
- Need up to 3 X 10¹³ (30 Tb) of classical bits
- Other candidates:
 - Atoms and ions
 - Superconducting qubits

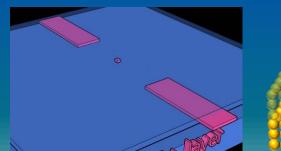
. . .

3/29/2017

He

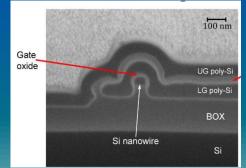


- Quantum Computing
 - Beyond CMOS
 - The potential of quantum computing: Quantum parallelism
- Characterization future needs of Si qubits
 - Structural
 - Electrical
- Summary of needs


Two prototypes of Si qubits

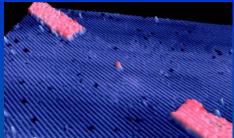
3/29/2017

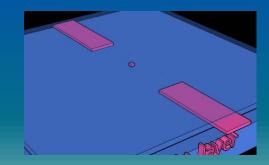
"single atom" Patterned P atoms encased in Si "quantum dot" Si/SiO2 multi-gate multi-layer MOSFET

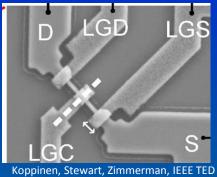


Fuechsle, M, etc., A single-atom transistor. Nat Nano **2012**, 7, (4), 242-246.

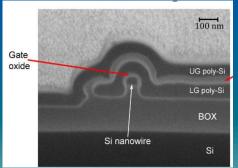
D LGD LGS LGC S⁻


2013 Koppinen, Stewart, Zimmerman, IEEE TED

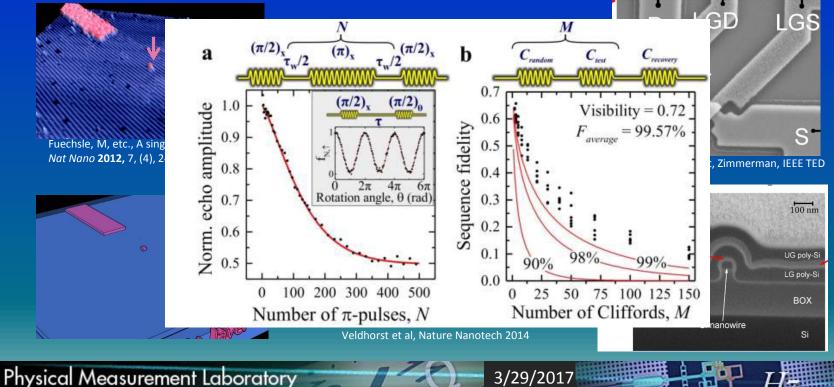

13


A smattering of metrology and characterization needs

Just illustrative, not exhaustive


Fuechsle, M, etc., A single-atom transistor. Nat Nano **2012,** 7, (4), 242-246.

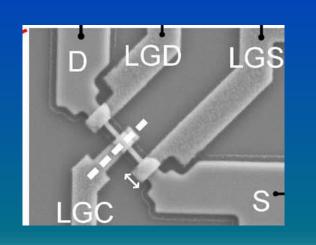
3/29/2017



14

A smattering of needs: Decoherence measurements

Decoherence measurements – need 99.9% fidelity
 – For a single qubit, need to repeat 100's of microwave pulses 1000's of times

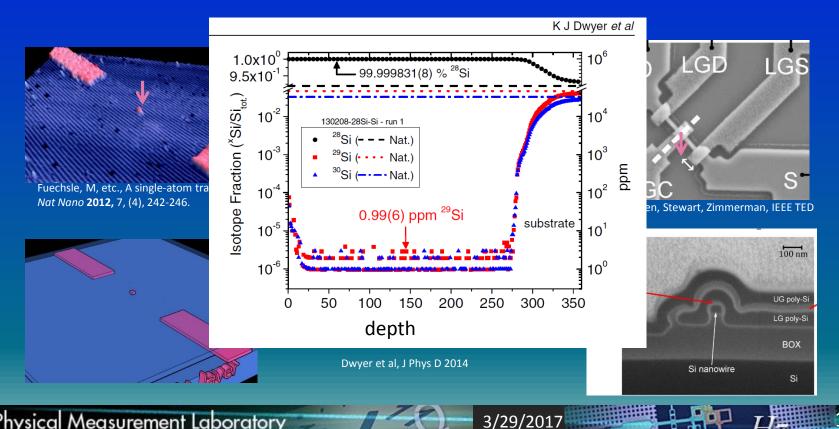

- For 500 000 000 qubits?!?

15

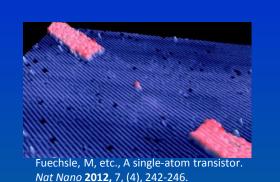
Aside: Everything is harder at low temperatures

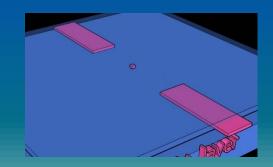
- Many of the measurements we discuss must be done at low temperatures.
 - Limited number of leads
 - Can't see inside dewar
 - Power < 1 mW \Rightarrow current < 1 μ A!

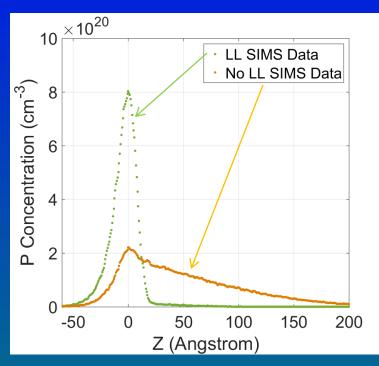
Physical Measurement Laboratory


3/29/2017

16


A smattering of needs: ²⁸Si isotopic enrichment

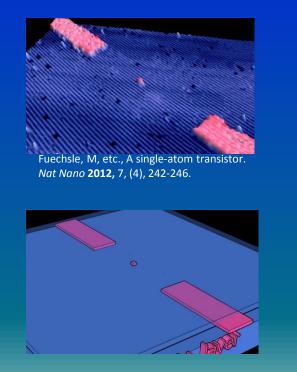

- Spin qubits were in GaAs, but nuclear spins cause decoherence ightarrow
- In Si, isotope 5% ²⁹Si (bad) \bullet
- Want << 10^{-4 29}Si this SIMS measurement down to 1 ppm! ullet


A smattering of needs: dopant "monolayer" thickness

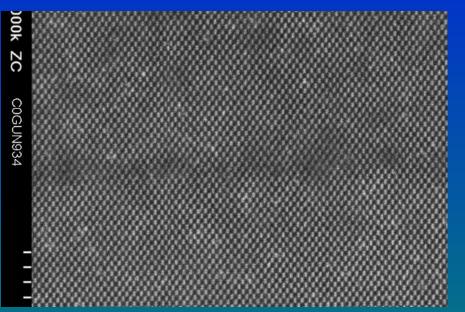
How do we measure the thickness of an epitaxial 1 nm layer?

Physical Measurement Laboratory

3/29/2017


We believe the monolayer (green curve) is about 5 Å thick.

18


A smattering of needs: single atom overgrowth thickness, etc.

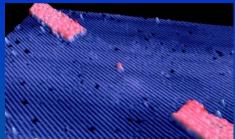
- We would like to characterize the Si overlayer
 - Thickness
 - Purity
 - Crystallinity, ...

But we don't know exactly where the overlayer starts!

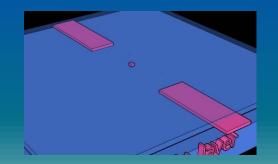
Physical Measurement Laboratory

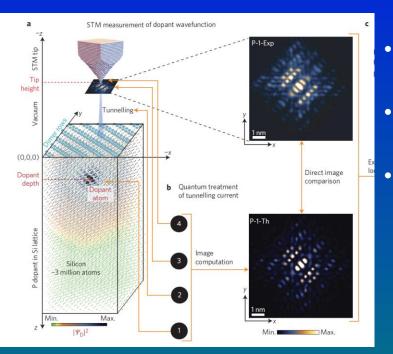
3/29/2017

Si


P+ monolayer?

20

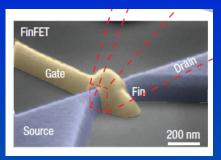

Si


A smattering of needs: single atom locations

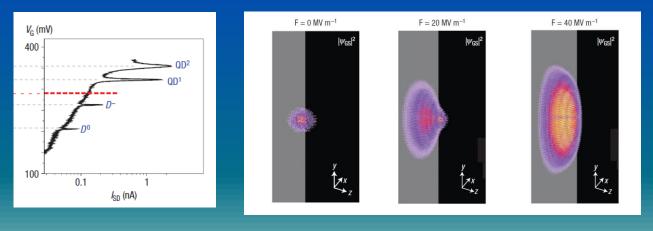
 For CMOS now, and even more for single atom devices, knowledge of the location of every <u>individual</u> dopant is crucial

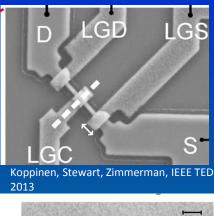
Fuechsle, M, etc., A single-atom transistor. Nat Nano **2012**, 7, (4), 242-246.

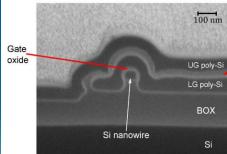
3/29/2017


Usman et al, Nature Nanotech 2016

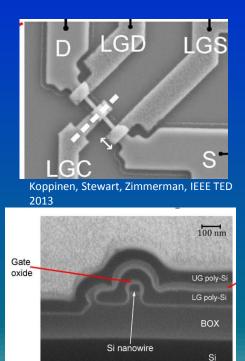
- STM imaging (slow)
- No deeper than 5 nm
- Required isolated dopant


A smattering of needs: dopant identification


3/29/2017

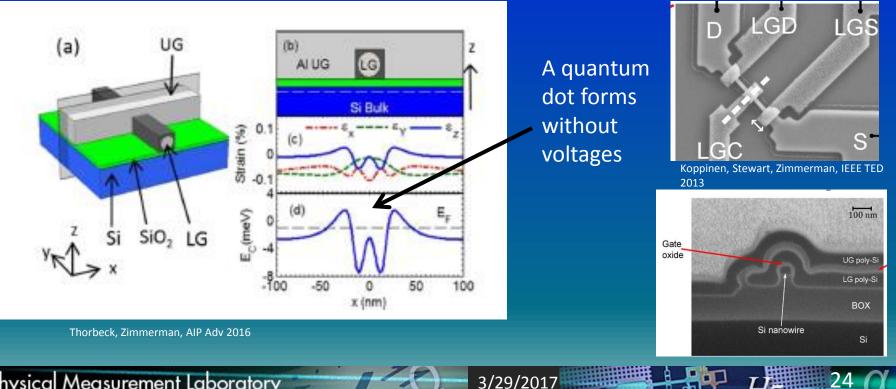

- Given background doping of wafers, we need to identify the species
- Can be done by comparing I(V) and modelling

Lansbergen et al, Nature Phys 2008

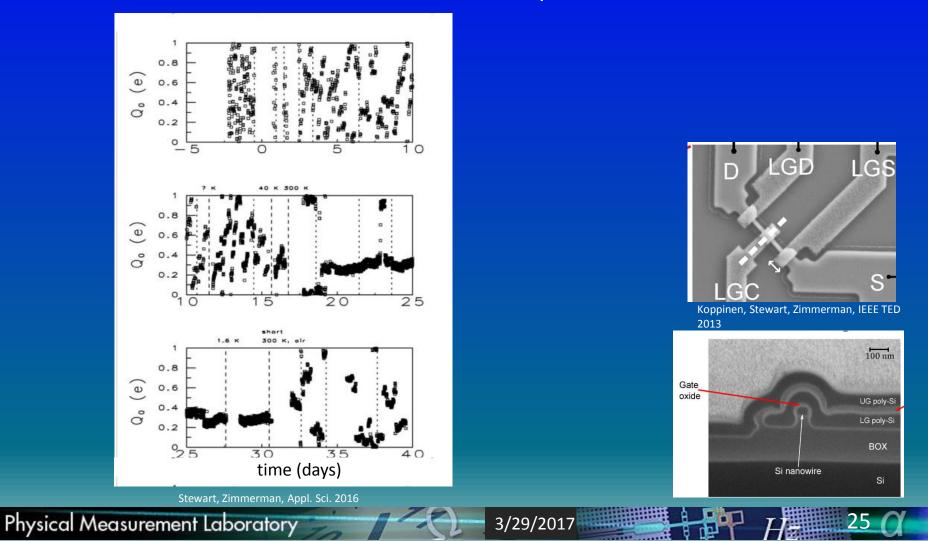


A smattering of needs: strain-induced quantum dots

3/29/2017


 Stress and strain are very important in CMOS, for enhancing mobility

23


A smattering of needs: strain-induced quantum dots

- Stress and strain are very important in CMOS, for • enhancing mobility
- We have discovered that they also can change the device • electrical geometry completely!

A smattering of needs: defect-induced time instability

• "Charge offset drift" – similar to V_T shift

3/29/2017

26

Hz

- Quantum Computing
 - Beyond CMOS
 - The potential of quantum computing: Quantum parallelism
- Characterization future needs of Si qubits
 - Structural
 - Electrical
- Summary of needs

Summary of needs

Need	Single atom or quantum dot	New or extension?	Challenge 1	Challenge 2	Known technique destructive?
1 ppm isotopes	both	extension	SIMS?	Atom probe?	Yes
1 nm monolayer thickness	Single atom	extension	Epitaxial - hard to find	Atom probe?	Yes?
Location of monolayer	Single atom	extension	Epitaxial - hard to find	STEM/EDS?	Yes
Strain-induced dots	Quantum dot	extension	Re-focus existing techniques	Deliberate design for tighter geometry?	yes
Coherence time	both	new	99.9%	500 000 000 qubits	No
Single atom location	Single atom	new	STM – slow	Low temperature	No
Dopant identification	Quantum dot	new	SET - slow	Low temperature	no
Charge offset drift	Quantum dot	new	SET - slow	Low temperature	no

3/29/2017

27 0

Hz

Bnb

Summary of needs

Need	Single atom or quantum dot	New or extension?	Challenge 1	Challenge 2	Known technique destructive?
1 ppm isotopes	both	extension	SIMS?	Atom probe?	Yes
1 nm monolayer thickness	Single atom	extension	Epitaxial - hard to find	Atom probe?	Yes?
Location of monolayer	Single atom	extension	Epitaxial - hard to find	STEM/EDS?	Yes
Strain-induced dots	Quantum Need to know strain at low T! Need EBSD Power < 1 mW!			ate or tighter ry?	yes
Coherence time	both	new	99.9%	500 000 000 qubits	No
Single atom location	Single atom	new	STM - slow	Low temperature	No
Dopant identification	Quantum dot	new	SET - slow	Low temperature	no
Charge offset drift	Quantum dot	new	SET - slow	Low temperature	no

3/29/2017

28

Hz

Bnb

Summary of needs

Need	Single atom or quantum dot	New or extension?	Challenge 1	Challenge 2	Known technique destructive?	
1 ppm isotopes	both	extension	SIMS?	Atom probe?	Yes	
1 nm monolayer thickness	Single atom	extension	Epitaxial - hard to find	Atom probe?	Yes?	
Location of monolayer	Single atom	extension	Epitaxial - hard	STEM?	Yes	
Strain-induced	Quantum dot	Great new ic		ا ! esliberate	yes	
dots	Quantum dot	CALCHSION	techniques	design for tighter geometry?	ýc.	
Coherence time	both	new	99.9%	500 000 000 qubits	No	
Single atom location	Single atom	new	STM - slow	Low temperature	No	
Dopant identification	Quantum dot	new	SET - slow	Low temperature	no	
Charge offset drift	Quantum dot	new	SET - slow	Low temperature	no	

3/29/2017

29

Hz

Bnb

Research performed in part at the NIST Center for Nanoscale Science and Technology

Summary of needs National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

National Institute of Standards and Technology

30

Need	Single atom or quantum dot	New or extension?	Challenge 1	Challenge 2		vn nique ructive?
1 ppm isotopes	both	extension	SIMS?	Atom probe?	Yes	•~~•
1 nm monolayer thickness	Single atom	extension	Epitaxial - hard to find	Atom probe?	Yes?	jĝi
Location of	Single atom	extension	Epitaxial - hard	STEM?	Yes	••
monolayer		Great new ideas needed!				SCIENTIA
Strain-induced dots	Quantum dot		r	yes		
		losh Pomerc	Stewart,	No		
Coherence time	both	Curt Richter, NIST				UNSW
Single atom	Single atom	Alan Seabau	е	No		
location	U U	Jim Clarke, Intel				
Dopant identification	Quantum dot	new	SET - slow	Low temperature	no	
Charge offset drift	Quantum dot	new	SET - slow	Low temperature	no	ANFF

3/29/2017

Physical Measurement Laboratory

```
"1) Future Needs of Characterization and Metrology for Silico"
.....
"2) "
....
"3) Outline"
.....
"4) Quantum Computing in Beyond CMOS"
.....
"5) The Potential of a Quantum Computer (QC)"
.....
"6) The Potential of a Quantum Computer (QC)"
.....
"7) The Potential of a Quantum Computer (QC)"
.....
"8) The Potential of a Quantum Computer (QC)"
.....
"9) The Potential of a Quantum Computer (QC)"
.....
"10) The Potential of a Quantum Computer (QC)"
.....
"11) Some necessary items for a QC"
"12) Outline"
.....
"13) Two prototypes of Si qubits"
"14) A smattering of metrology and characterization needs"
.....
"15) A smattering of needs: Decoherence measurements"
"16) Aside: Everything is harder at low temperatures"
"17) A smattering of needs: 28Si isotopic enrichment"
"18) A smattering of needs: dopant monolayer'thickness"
```

....

"19) A smattering of needs: dopant monolayer" thickness [HID" "20) A smattering of needs: single atom overgrowth thickness," "21) A smattering of needs: single atom locations" "22) A smattering of needs: dopant identification" "23) A smattering of needs: strain-induced quantum dots" "24) A smattering of needs: strain-induced quantum dots" "25) A smattering of needs: defect-induced time instability" "26) Outline" "27) Summary of needs" "28) Summary of needs" "29) Summary of needs" "30)" "31)" "32) " ш "33) "

Physical Measurement Laboratory

Ha 34 ()

3/29/2017

25	25	229	
25	25	229	
19	62	199	
19	79	177	
45	97	155	
46	130	168	