NIST logo
*
Bookmark and Share

Wind Engineering and Coastal Inundation Project

Summary:

The project develops the 21st century procedures needed for achieving designs that are safe, sustainable, and economical under extreme winds and coastal inundation, consistent with priorities described in the new Measurement Science R&D Roadmap for Windstorm and Coastal Inundation Impact Reduction ( NIST 2014). It supports these procedures with novel tools for accurate characterization of wind and coastal flood hazards, aerodynamic loading, and structural response to these effects. These tools include modern probabilistic and statistical methods, efficient extreme wind effects estimation methods and Computational Wind Engineering methods applicable to bluff body aerodynamics calculations, supported by aerodynamics testing in the newly developed NIST civil engineering wind tunnel.

Description:

Objective: To develop next-generation methods and tools to better characterize wind and coastal inundation hazards and associated loads, and response of structures to extreme winds, including tornadoes, thus enabling performance-based standards for designing structures to resist extreme winds and coastal inundation. 

What is the new technical idea?
The technical ideas described in this section include (1) quantification of extreme wind, tornado, and coastal inundation hazards, (2) development of methods using state of the art measurement and computational technologies for determining wind loads on the building envelope and main wind force resisting computational system, and (3) development of performance-based design methods for tornado-resilient design.  These technical ideas support topics that have all been identified by the professional community in the new Measurement Science R&D Roadmap for Windstorm and Coastal Inundation Impact Reduction (NIST 2014) as being high priority.

The project uses the capabilities of numerical computation, existing data, and spatial statistics to develop new procedures that describe wind hazards and effects, with superior accuracy and for any mean recurrence interval that will be required for the development of the ASCE 7 Standard or other standards. An improved description will help reduce losses and waste of materials and achieve more efficient structures.

Tools for accurate characterization of tornado hazards (extreme wind speeds and wind-borne debris impacts) and development of tornado hazard maps, as well as methodology for performance-based tornado-resilient design of conventional buildings subject to tornado hazards will be developed. In addition, tools/methodologies for characterizing the design hazard associated with coastal inundation (hurricane storm surge, flooding, and tsunamis) will be developed.

New methods for estimation of wind loads on both the building envelope and the main wind force resisting system (MWFRS) will developed, based on modern aerodynamic test data, to replace the multiple existing methods in the current ASCE 7 standard, which are based on 30-50 year old data and often yield very different answers for the same building. These methods will be based on analysis of data from the NIST, Tokyo Polytechnic University (TPU), and other aerodynamic databases.

Progress will be achieved in the development of Computational Fluid Dynamics algorithms and software consistent with models of separated flows around bluff bodies, supported by aerodynamics testing in the newly developed NIST civil engineering wind tunnel. The software will be capable of simulating effectively the aerodynamic loads on buildings immersed in atmospheric flows. This effort will substantially reduce the need for slow and expensive wind tunnel testing; eliminate uncertainties due to Reynolds number violation effects; and allow the routine production of "on-demand" detailed estimates of wind loads for Database-Assisted Design and other structural design applications, including performance-based and non-linear behavior based structural design.

What is the research plan?
Wind climatology: (a) directional wind speed databases prepared for engineering office use (2017); (b) estimates of uncertainties in structural response associated with uncertainties in definition of extreme wind climate (2015). Tornado-resistent design: (a) perform comprehensive review of existing tornado databases and current methods for tornado risk estimation (2015); (b) develop tornado risk metrics, with appropriate consideration of spatiality, for a pilot midwestern municipality (2016); (c) develop risk-consistent performance-based tornado design methodology to ensure that the performance of all components and systems that make up a building meet the same performance objective when subject to tornado hazards (2019).

Aerodynamic loading: (a) Synthesize comprehensive aerodynamic database from published and publicly available wind tunnel and field data (2015); (b) use analysis of the synthesized database to develop improved methods for estimation of wind loads on the building envelope (2016), MWFRS (2017), and building elements that act as or support both the envelope (i.e., components and cladding) and the MWFRS, such as exterior load bearing walls and roof trusses (2018); (c) develop pre-standard provisions for the ASCE 7 standard for wind loads on the building envelope (2016), the MWFRS (2018), and building elements acting as both (2019); and (d) enhance the previously developed Database-Assisted Design software to enable use of the much larger TPU aerodynamic database, which will greatly expand the range of building geometries (2015).

Computational Wind Engineering (CWE): (a) Perform state-of-the-art review for simulation of the planetary boundary layer (2015); (b) develop inflow boundary conditions for engineering models of turbulent flows (2015); (c) use publicly available open source CFD software and experiment design techniques to assess  sensitivity of aerodynamic pressures on a rectangular cylinder induced by uniform, smooth flow to parameters of the simulation (time step, grid type, configuration and size, type and order of numerical scheme, computational domain size, turbulence model) (2016); (d) perform comparison between CFD time series pressure estimates and wind tunnel pressure measurements for rectangular cylinder in uniform smooth flow (2016); (e) develop method for simulating shear flow with Atmospheric Boundary Layer target turbulence and mean flow characteristics by using item (b) above at inflow boundary and appropriate conditions at other boundaries (2017); (f) repeat the items (c) and (d) above for simulation of flow over a rectangular cylinder immersed in shear flow by using item (e) above (2018); (g) revise modeling of flow near separation lines in light of results of comparisons (such as tuning turbulence model parameters) (2019); (h) develop methods for reducing computational resources and times via development of wall functions and simplified flow models (2019). Coastal Inundation:  Determine data needs and Investigate suitability of existing storm surge databases for application of NIST method for probabilistic assessment of combined hurricane wind, surge and waves (2017).

Major Accomplishments:

Research Outcomes:

  • Habte, Filmon; Chowdhury, Arindam; Yeo, Dong H. ; Simiu, Emil; "Wind directionality factors for non-hurricane and hurricane-prone regions", J. Struct. Eng. in review.
  • Simiu, Emil; Fu, Tuan-Chun ; Gan Chowdhury, Arindam;Smith, Douglas; Zisis, Ioannis; Irwin, Peter; (2014) "Experimental investigation of wind pressures on large-scale building models and comparisons with field measurements", J. Struct. Eng. in review.
  • Simiu, Emil; Habte, Filmon; Gan Chowdhury, Arindam; (2014). " Data volume reduction for aerodynamic testing and structural design", Wind and Structures, in review.
  • Kuligowski, Erica D.; Lombardo, Franklin T.; Phan, Long T.; Levitan, Marc L.; Jorgensen, David P., (2013). "Technical Investigation of the May 22, 2011, Tornado in Joplin, Missouri: Darft Final Report." NIST NCSTAR 3 (Draft for Public Comment).
  • Yeo, D. (2013). “Generation of Large Directional Wind Speed Datasets for Estimation of Wind Effects with Long Return Periods”, Journal of Structural Engineering, ASCE, in review.
  • Dunn, C.L., Friedland, C.J., and Levitan, M.L., (2013). “Statistical representation of design parameters for hurricane risk reduction of structures”, Structural Safety, in review.
  • Kuligowski, Erica D.; Lombardo, Franklin T.; Phan, Long T.; Levitan, Marc L.; Jorgensen, David P., (2013). "Technical Investigation of the May 22, 2011, Tornado in Joplin, Missouri: Draft Final Report." NIST NCSTAR 3 (Draft for Public Comment),

Potential Research Impacts:

  • Yeo, D. (2014). "Generation of Large Directional Wind Speed Data Sets for Estimation of Wind Effects with Long Return Periods." J. Struct. Eng.
  • Gabbai, R. and Simiu, F., (2013). “Evaluation of Mean Recurrence Intervals of Wind Effects for Tall Building Design”, Journal of Structural Engineering, ASCE, in press.
  • Simiu, E., Letchford, C., Isyumov, N., Chowdhury, A.G., and Yeo, D, (2013). “An Assessment of ASCE 7-10 Standard Methods for Determining Wind Loads”, Journal of Structural Engineering, ASCE, in press.
  • Yeo, D. and Potra, F., (2013). “Sustainable Design of Reinforced Concrete Structures through CO2 Emission Optimization”, Journal of Structural Engineering, ASCE.
  • Yeo, D., Lin, N., and Simiu, E. (2013). “Estimation of Hurricane Wind Speed Probabilities: Application to New York City and Other Coastal Locations,” Journal of Structural Engineering, ASCE.
  • Hagos, A., Habte, F., Chowdhury, A., and Yeo, D. (2014). "Comparisons of Two Wind Tunnel Pressure Databases and Partial Validation against Full-Scale Measurements." J. Struct. Eng. , 10.1061/(ASCE)ST.1943-541X.0001001 , 04014065.

Realized Research Impacts:

  • Gabbai, R. and Simiu, E. (2014). "Evaluation of Mean Recurrence Intervals of Wind Effects for Tall Building Design." J. Struct. Eng., 140(1), 04013037.
  • Published Final Report - National Institute of Standards and Technology (NIST) Technical Investigation of the May 22, 2011, Tornado in Joplin Missouri.
  • Kuligowski, Erica, Phan, Long, Levitan, Marc, Jorgensen, David (2013) Preliminary Reconnaissance of the May 20, 2013, Newcastle-Moore Tornado in Oklahoma, NIST SP 1164.
  • Simiu, E., Letchford, C., Isyumov, N., Chowdhury, A., and Yeo, D. (2013). "Assessment of ASCE 7-10 Standard Methods for Determining Wind Loads." J. Struct. Eng., 139(11), 2044–2047.
  • Yeo, D., Lin, N., and Simiu, E. (2014). "Estimation of Hurricane Wind Speed Probabilities: Application to New York City and Other Coastal Locations." J. Struct. Eng., 140(6), 04014017.
  • Yeo, D., (2013). “Multiple Points in Time Estimation of Peak Wind Effects on Structures”, Journal of Structural Engineering, ASCE, 139, 462-471.
  • Fu, T.C., Aly, A.M., Chowdhury, A.G., Bitsuamlak, G., Yeo, D. and Simiu, E. (2012). “A Proposed Technique for Determining Aerodynamic Pressures on Residential Structures,” Wind and Structures, 15 (1).
  • Lombardo, F.T., (2012). “Improved extreme wind speed estimation for wind engineering applications,” Journal of Wind Engineering and Industrial Aerodynamics, Volumes 104–106, Pages 278–284.
  • Yeo, D. and Simiu, E., “High-Rise Reinforced Concrete Structures: Database-Assisted Design for Wind,” Journal of Structural Engineering, ASCE.
  • Crosti, C., Duthinh, D., and Simiu, E., “Risk-consistency and synergy in multi-hazard design,” Journal of Structural Engineering, ASCE.
  • Coffman, B., Main, J., Duthinh, D., and Simiu, E., (2010). “Wind Effects on Low-Rise Metal Buildings: Database-Assisted Design vs. ASCE 7-05 Standard Estimates,” Journal of Structural Engineering, ASCE.
  • Duthinh, D., and Simiu, E., (2010). “Safety of Structures in Strong Winds and Earthquakes: Multihazard Considerations,” Journal of Structural Engineering, ASCE.
  • Simiu, E., Gabbai, R.D., Fritz, W.P., “Wind-induced tall building response: a time domain approach,” Wind and Structures, 11, 427-440.
  • Lombardo, F.T., Main, J.A., and Simiu, E. (2009) “Automated Extraction and Classification of Thunderstorm and Non-Thunderstorm Wind Data for Extreme-Value Analysis,” Journal of Wind Engineering and Industrial Aerodynamics, 97(3-4), 120-131.
  • Fritz, W.P., B. Bienkiewicz, B. Cui, O. Flamand, T. C. E. Ho, H. Kikitsu, C. W. Letchford, and E. Simiu , “International Comparison of Wind Tunnel Estimates of Wind Effects on Low-Rise Buildings: Test-Related Uncertainties,” Journal of Structural Engineering, ASCE, 134 87-90.

Impact of Standards and Tools:

  • Proposals submitted to the ASCE 7 Standard on combined wind and storm surge, combined wind and seismic loads, database assisted design, and the wind tunnel method. (FY13)
  • New hurricane shelter design wind speed map submitted to and accepted by the ICC 500 Storm Shelter Standard committee. Updated draft standard will be released for public comment soon. (FY13)
  • Database Assisted Design for Tall Reinforced Concrete Buildings software tools. (Posted online in FY11)
  • Technical Basis for Regulatory Guidance on Design-Basis Hurricane-Borne Missile Speeds for Nuclear Power Plants, issued as NUREG/CR-7004, U.S. Nuclear Regulatory Commission. (Published in FY12)

Start Date:

October 1, 2011

Lead Organizational Unit:

el

Staff:

Project Leader: Dr. Emil Simiu

Associate Project Leader: Dr. Long T. Phan

Contact

General Information:
Dr. Emil Simiu, Project Leader
301-975-6076 Telephone

100 Bureau Drive, M/S 8611
Gaithersburg, MD 20899-8611