Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Quantum information science

By its very nature, quantum science sets fundamental limits on precision measurements, so by necessity NIST is a leader in basic and applied research in quantum science. Some of the most fundamental quantum research in the world is carried out in partnerships between NIST and top universities, such as JILA, the Joint Quantum Institute (JQI) and the Joint Center for Quantum Information and Computer Science (QuICS). Scientists in these institutes leverage the combined resources of the partners to advance research in the control of atoms and molecules and development of ultra-fast lasers capable of manipulating states of matter. The discoveries that have been made in these institutes continue to be applied at NIST to meeting new measurement challenges, such as the development of the world’s best atomic clocks and lasers.

An emerging research focus at NIST is understanding the potential for quantum-based technology to transform security, computing and communications, and to develop the measurement and standards infrastructure necessary to exploit this potential. Breakthroughs at NIST enabled the first forays into real-world quantum computing and tested the limits of quantum information and security. NIST is also developing the technology to harness the power of quantum computing in the everyday world through nanotechnology.

The Research

Projects & Programs

Platform for Realizing Integrated Molecule Experiments (PRIME)

Ongoing
Blackbodies realize a clear relationship between radiated power and temperature through Planck’s law. While a reliable instrument for temperature and power calibrations, blackbodies are afflicted with a plethora of systematics (e.g., non-ideal emissivity, propagation loss, temperature gradients

Quantum Physics Theory

Ongoing
The scope of the work ranges from calculations of QED effects in atoms to detailed studies of photon wave functions.

Quantum Many-Body Physics, Quantum Optics, and Quantum Information

Ongoing
Differences between typical AMO and condensed matter systems bring with them exciting new physics. In contrast to condensed matter systems, AMO systems are often studied far out of equilibrium, are evolving in time, and are subject to dissipation. As a result, many-body AMO systems open a whole new

Micro- and nano-optomechanical systems

Ongoing
Our primary current research direction involves the use of fabricated devices with sub-wavelength periodicity (photonic crystals) as optomechanical elements. Such structures enable a rich variety of devices, including mirrors, polarizers, and filters, in a configuration that couples naturally to

Additional Resources Links

News

Ebb and Flow: Creating Quantum Dots Automatically With AI

Even though research on artificial intelligence (AI) goes back to the 1960s , it wasn't until the past decade that AI really became an integral part of our lives. From automatically recognizing faces in our photo library to predicting traffic congestion and finding the fastest routes to our destination, AI is everywhere. It is also revolutionizing how research and science are being done, from data

Tiny New Lasers Fill a Long-Standing Gap in the Rainbow of Visible-Light Colors, Opening New Applications

NIST Participates in White House Summit on Standards for Critical and Emerging Technology

With Some Bumps, NIST Scientists Devise a Novel Way to Extend the Wavelength Range of Microcombs