
Investigating Global Behavior in Computing Grids 

Kevin L. Mills and Christopher Dabrowski 

National Institute of Standards and Technology 
Gaithersburg, Maryland 20899 USA 

{kmills, cdabrowski}@nist.gov  

Abstract. We investigate effects of spoofing attacks on the scheduling and exe-
cution of basic application workflows in a moderately loaded grid computing 
system using a simulation model based on standard specifications. We conduct 
experiments to first subject this grid to spoofing attacks that reduce resource 
availability and increase relative load. A reasonable change in client behavior is 
then introduced to counter the attack, which unexpectedly causes global per-
formance degradation. To understand the resulting global behavior, we adapt 
multidimensional analyses as a measurement approach for analysis of complex 
information systems. We use this approach to show that the surprising perform-
ance fall-off occurs because the change in client behavior causes a rearrange-
ment of the global job execution schedule in which completion times inadver-
tently increase. Finally, we argue that viewing distributed resource allocation as 
a self-organizing process improves understanding of behavior in distributed 
systems such as computing grids.  

1   Introduction 

The Internet provides a communications infrastructure for distributed applications 
with global reach and massive scale. Already, designers have specified software com-
ponents [1] that developers can use to construct and deploy computing and data grids 
[2], [3]. How will such distributed systems behave? One possibility is that distributed 
systems are complex adaptive systems [4] consisting of interconnected components, 
where change in any component propagates to many other components through feed-
back-driven interactions over space and time. Such interactions may arise through in-
direct coupling (e.g., sharing resources) exhibited as individual actors adapt their be-
havior based on information gained through feedback. Complex systems often exhibit 
the property of self-organization [4], which drives global system behavior (e.g., job 
scheduling and execution) from less organized states toward coherent patterns. We 
suspect self-organization will arise with increasing frequency as distributed systems 
pervade the globe. Unfortunately, little is known about how to detect, predict, and 
shape global behaviors in distributed systems. 

Here, we study an important aspect of global behavior in grid systems, envisioned 
to offer high-performance computing as a commodity for those who require substan-
tial processing cycles to design more effective drugs or engine components, to do fi-
nancial risk analyses, to model global climate, to understand our universe, and so on. 
We consider distributed protocols for allocating processor resources deployed across 



a global grid. Our research shows such protocols can yield a self-organizing, global 
pattern of job scheduling and execution, as various independent clients sense the state 
of available processors and adapt accordingly. We investigate distributed resource al-
location in a moderately loaded grid that is subjected to an attack intended to reduce 
substantially the available computing resources. We introduce a small change in client 
behavior to mitigate effects of the attack, but find unexpectedly that the global pattern 
of job execution degrades rather than improves. This result illustrates that surprising 
global behavior can arise in a distributed system, and motivates our interest in finding 
techniques to reveal, understand, and shape system behavior. 

In this paper, we make three main contributions. First, we define a grid simulator 
combining model components representing selected, standard specifications. We 
chose specifications based on the current posture of the Global Grid Forum, which 
suggests that future grid systems will be built from a combination of web services [5] 
and open grid services [6]. For functions lacking completed specifications, we mod-
eled components from the Globus Toolkit 4 [7], an available grid framework that pro-
vides a significant level of capability. Our simulator allows us to model a plausible 
distributed system in significant detail. Second, we show that a moderately sized grid 
can exhibit unanticipated and undesirable global behavior arising from adaptive proc-
esses. We illustrate that adaptation by many individual actors can lead to self-
organization on a global scale. Third, we describe and apply a multidimensional 
analysis approach to reveal underlying causes for observed global behavior. The 
analysis approach is adapted from the physical sciences, where spatiotemporal analy-
ses [8] have long been a standard technique to model system dynamics. While we use 
spatiotemporal analysis, we increase the number of dimensions to account for logical 
partitions within the system we study. For example, we consider completion times 
among various job classes over space and time (a 4D analysis). We find multidimen-
sional analyses provide more insight into system behavior than can be obtained by 
summarization through averages and variances. 

The remainder of the paper is organized as five sections. Section 2 outlines related 
work to simulate grid systems and to investigate distributed resource allocation in 
grids. Section 3 describes our analysis approach. We discuss our detailed grid simula-
tion model in Section 4, before describing our experiment design and metrics in Sec-
tion 5. Section 6 presents our simulation results, investigates causes underlying an un-
expected outcome, and describes scheduling and execution of jobs in computing grids 
as a self-organizing process. 

2   Related Work 

While there is significant research on simulating grids, little of that work studies scal-
ability, effects of failures and attacks, or global behaviors. SimGrid [9], GridSim [10], 
and MicroGrid [11] provide toolsets for simulating grid applications on large-scale 
networks. These grid simulations do not combine model components representing se-
lected web services, Globus Toolkit 4 components, and open grid services. Further, 
these simulators aim mainly to provide overall assessment of performance in network 



protocols and middleware, rather than isolating causal behaviors that unexpectedly af-
fect global performance. 

Numerous researchers have investigated resource allocation in large (simulated) 
grids using a decentralized approach in which clients employ independent schedulers. 
For instance, Ernemann et al. [12] report results suggesting that geographically dis-
tributed grids improve overall response time. Various studies [12], [13], [14], [15] 
have applied market-based economic models to optimize resource use and minimize 
cost when scheduling jobs in distributed grids. Other researchers [16], [17], [18] have 
investigated prioritization schemes, considering factors such as quality-of-service and 
workflow requirements.  Only a few grid-scheduling studies consider effects of uncer-
tainty. Krothapalli and Deshmukh [19] consider performance of alternative schedul-
ing approaches given partial information. Chen and Maheswaran [20] consider how 
resource failure affects scheduling. Subramani et al. [21] attempt to identify and ad-
dress causes of unexpected performance degradations in grids. These studies rely ex-
tensively on summary measures of performance, and provide little insight into under-
lying global behavior. Our paper contributes to such investigations and demonstrates 
an analysis approach providing insight into global system behavior and causes. 

3   Analysis Approach 

We conduct simulations defined by a set of parameters (e.g., space, demand, negotia-
tion strategy, and failure-response behavior) and observe system dynamics over time 
with respect to various logical partitions (e.g., event type and job class). We represent 
the entire system state as a multidimensional space. To investigate selected system 
dynamics, we project various views of this space, using a three-step procedure: (1) 
subset the space along dimensions of interest, (2) partition the subset into equivalence 
classes, and then (3) transform each equivalence class into measures of interest. Sub-
sequently, we plot derived views in 2D, 3D, or 4D, depending upon the characteristics 
of the equivalence classes. 

We represent system state(s) as a space, U, of multidimensional points, xr, i.e., 

))}.,,,,,,,,({( xxxxxxxxx oiejspadnxU ==
r

 (1) 

Each of the dimensions is defined in Table 1. To explain our analysis procedure, we 
will derive two views used later in the paper to explore the effects of failure-response 
behavior (s) on two event types: reservations created (designated E1) and task comple-
tions (designated E2). 

We begin by examining the effects of failure-response behavior on reservations 
created when demand (d) is 50% and the probability (p) of spoofing selected nodes is 
½. We define a subspace, V1, such that 

)}.5.050|{( 11 EepdUxxV xx =∧=∧=∧∈=
rr

 (2) 

Next, we partition subspace V1 into equivalence classes, Qi, where every class consists 
of points with a common time interval (i), specifically 



}.|{ 1 iiVxxQ xi =∧∈=
rr

 (3) 

Table 1.  Definition of dimensions locating each point in system state space 

Dimension Variable Range 
Space n 1 < n < N, where N is the number of observation points 

Demand d 10 < d < 100, where d mod 10 = 0 
Negotiation 

Strategy a },...,{ 1 gAAa∈ , where g = number of strategies 

Spoofing  
Probability p 0 < p < 1 

Failure-
Response  
Behavior 

s },...,{ 1 hSSs∈ , where h = number of behaviors 

Job Class j },...,{ 1 wJJj∈ , where w = number of job classes 

Event Type e },...,{ 1 zEEe∈ , where z = number of event types 

Time  
Interval i 

1 < i < (T / I), where T is simulation run time and I is   
      the observation interval size and i = t/I for t = current  
      simulation time  

Observation o integer 
 
Subsequently, we map portions of each equivalence class to a specific value by de-

fining operators, Gs(i), where  

.)( ∑
=
∈

=

ss
Qx

xs

x
i

oiG
r

 
(4) 

This yields a 2D view, where one dimension represents a particular failure-response 
behavior (s) and the other dimension denotes specific time intervals (i) and each cell 
(s, i) contains an aggregate count of reservations created, obtained from equation 4. 
As discussed later, plotting such views for different s reveals large differences in the 
pattern of reservations created over time. To investigate such differences in more de-
tail, we define a new view of the system state space to consider the evolution of task 
completion times for particular job classes (j). 

We begin by defining the subspace, V2, of interest: 

))},()(5.050|{( 212122 JjJjSsSsEepdUxxV xxxxxxx =∨=∧=∨=∧=∧=∧=∧∈=
rr  (5) 

and then a relation, R, to form equivalence classes on V2: 

),( yxyx jjssyRx =∧=⇔
rr

 (6) 

where .2Vy∈r  Here, }{2 kQRV = forms (k = 1, 2, 3, 4) equivalence classes, each 
combining one of two selected failure-response behaviors with one of two selected 



job classes. Next, we define a scaling factor, f, derived from the maximum observa-
tion in subspace V2: 

,1)|max( 2 +∈= Vxof x
r

 (7) 

and then we define the following operators: 

.)1(1)( fkxxG o
kQx

k ×−++=
∈
r

r  
(8) 

4   Simulation Model 

We find that simulation provides an excellent vehicle to investigate global behavior, 
for several reasons. First, simulation models allow construction of systems of large 
scale, which can be expensive to achieve in a test bed. Second, simulation models al-
low complete access to system state, which is impractical in a large deployed system. 
Third, simulation models provide rigorously controllable and repeatable conditions, 
which are difficult to ensure in a test bed of significant size. Fourth, simulation mod-
els allow incorporation of various levels of abstraction, while deployed systems typi-
cally include incidental complexity that is impractical to remove. Prior to conducting 
experiments, we verified our model for correct operation through extensive trials, re-
moving several biases and errors in the process. In our experiment we used our model 
for qualitative analysis of system dynamics, rather then to make quantitative perform-
ance predictions; therefore, our verification process focused on ensuring correct inter-
pretation of the standard specifications we modeled, rather than validating the model 
against measured performance data. In this section, we describe our simulation model, 
concentrating on the grid computing aspects. 

4.1 Network and Web Services Model 

We define a topology of sites, each located at a point (x, y, z). The x-y coordinates lo-
cate a site in the Internet and the z coordinate defines the distance in router hops from 
the site to the Internet. The model uses differences in x-y coordinates to compute 
Euclidean distances among sites, and then converts those distances to Internet router 
hops by assuming that routers are separated by a specified distance. The distance in 
hops between two sites is defined by the distance between the sites in Internet router 
hops plus the number of z-coordinate hops required for each site to reach the Internet. 
Messages flowing between sites are delayed in proportion to distance in hops. Mes-
sages flowing within sites incur simulated local-network transmission delays. Nodes 
are defined and allocated to sites. Each node has a mailbox, which simulates a sockets 
interface and related transport protocols, including multicast. Each node simulates 
CPU-execution time required by processes executing on the node. Nodes also include 
a standard set of services modeled after web services for messaging [22], addressing 
[23], and stateful resources [1]. At selected sites, our model deploys simulated infor-



mation and index servers, which we model as service groups. We also define a two-
level hierarchy of index servers, linked together through simulated query aggregators 
(modeled after the index service of Globus Toolkit 4) to form a monitoring and dis-
covery service that grid clients use to discover the nature and location of available re-
sources.  

Fig. 1. Snapshot of system execution: client spawns supervisory processes for two applications 

4.2 Grid Computing Model 

At the application level, we model two main components, service providers and cli-
ents, found in well-known grid models (e.g., [2]). Service providers control availabil-
ity of grid resources. Grid clients discover resources and enter into agreements for 
their use to execute client jobs. We describe these components and the procedures for 
reaching agreements and executing jobs.  Figure 1 provides a simplified view of the 
model. 

Service Providers.  We designate selected sites as service-provider sites, where we 
deploy grid services, service factories, and schedulers. We model grid services in two 
parts: (1) application code, which executes jobs provided by clients; and (2) grid 
processors, which provide platforms upon which application code executes. Grid 
processors may be either clusters or vector computers, both capable of parallel execu-
tion. Each grid processor implements a simulated job manager (modeled after the Dis-
tributed Resource Management System [28]) that responds to job requests by locating 
and loading appropriate application code and obtaining input files from the requesting 
client. The job is then queued until its start time. 

Scheduler

Task
Control

Negotiation
Control

Grid Processor

Service 
Negotiator Agreement

Grid ProcessorGrid Processor

Service
Instance

Service 
Negotiator

Agreement

Execution 
Control

CLIENT

Application
Client 

Negotiator

Task 1

Discovery
Control

Task 2

Grid Processor

Service 
Negotiator

Agreement

Client 
Negotiator

Task 3

Task
Control

Negotiation
Control

Application
Task 1

Discovery
Control

Task 2

Scheduler

Job
Manager

Job
Manager

Job
Manager

Job
Manager

spawnsspawns

negotiates
negotiates

monitors

monitors

requests 
reservation

spawns

Supervisory Process Supervisory Process

spawns

Information
Server

Index
Server

Information
Server

Index
Server

Index
Server

Service
Factory

Service
Instance

Service
Factory

Service
Instance

Scheduler

Task
Control

Negotiation
Control

Grid Processor

Service 
Negotiator Agreement

Grid ProcessorGrid Processor

Service
Instance
Service
Instance

Service 
Negotiator

Agreement

Execution 
Control

CLIENT

Application
Client 

Negotiator

Task 1

Discovery
Control

Task 2

Grid Processor

Service 
Negotiator

Agreement

Client 
Negotiator

Task 3

Task
Control

Negotiation
Control

Application
Task 1

Discovery
Control

Task 2

Scheduler

Job
Manager

Job
Manager

Job
Manager

Job
Manager

spawnsspawns

negotiates
negotiates

monitors

monitors

requests 
reservation

spawns

Supervisory Process Supervisory Process

spawns

Information
Server
Information
Server

Index
Server
Index
Server

Information
Server
Information
Server

Index
Server
Index
Server

Index
Server
Index
Server

Service
Factory
Service
Factory

Service
Instance
Service
Instance

Service
Factory
Service
Factory

Service
Instance
Service
Instance



Each grid service has a service description, whose attributes include: type of appli-
cation code (or task type) and descriptions of available grid processors on which the 
application code may run. Each grid processor description identifies processor type 
(pType: cluster or vector), available parallelism (or pFactor), and processor speed 
(pSpeed in cycles/second). A service factory manages each service description. 

To advertise service availability, a service factory registers the service description 
with a local information server. Remote clients discover service descriptions through 
an indexing server and then contact an associated service factory to enter into agree-
ments for services. For each client request, a service factory spawns a transient entity 
called a service instance, which provides a service negotiator to negotiate a service 
agreement locally on behalf of a remote client. The service instance contains an 
agreement document [29] and maintains negotiation status. If an agreement is 
reached, the service instance launches an execution controller to act as local proxy on 
behalf of the remote client. The execution controller submits jobs and status requests 
and reports job status to the client. We model each service instance (containing ser-
vice negotiator, agreement, and execution controller) as a single container with life-
time determined by the negotiation duration or, if successful, by job length. 

Each service-provider site contains a scheduler that controls reservation of CPU 
time on all grid processors within the site. For a client to obtain an agreement, a ser-
vice negotiator must first reserve (through the site scheduler) time on an appropriate 
processor component. Each site scheduler is independent of other schedulers and ac-
cepts reservations on a first-come, first-serve basis with backfilling. All clients are 
given equal priority. As a policy, each scheduler attempts to allocate tasks with 
smaller pFactors to smaller clusters, thus saving large grid clusters for tasks requiring 
greater parallelism. 

Grid Clients and Applications.  We model each grid client as a set of independent 
applications, each with one or more tasks. While tasks in an application must execute 
sequentially in a workflow, each task contains subtasks that may execute in parallel. 
Each task is described by: task type (application code), pFactor (number of parallel 
processors required for subtasks), pType (cluster or vector), and pCycles (CPU cycles 
needed to run the task). The task duration, tDuration, may be computed as: 

)( pSpeedpFactortCyclestDuration ×=  (9) 

Clients create separate supervisory processes for each application. For each appli-
cation task, the supervisor initiates service discovery, followed by negotiation to ob-
tain an agreement to execute the task on a processor, and then monitors execution 
through a service instance. Since tasks are sequenced within an application, negotia-
tion for a task is triggered when the previous task finishes. An application is complete 
when its last task finishes, at which time the supervisory process terminates. 

We model supervisors as multiple components for: service discovery, agreement 
negotiation, and execution monitoring (including fault detection and recovery and job 
rescheduling). The discovery component activates on task completion to find the next 
task requiring services, and first queries a local index server for references to any re-
mote information server with service descriptions matching task requirements. For 
each reference retrieved, the discovery component queries the associated information 
server to obtain matching service descriptions, which are then cached locally for use 
by the negotiation component. The negotiation component identifies the next incom-



plete task having no service agreement, ranks and selects cached discoveries for a 
task, and then creates a client negotiator for each selection. Selection criteria give 
higher priority to more recent discoveries and those that have not been tried previ-
ously. Similar to Condor-G [3], the negotiation component prioritizes discoveries dur-
ing subsequent negotiations (as described below) to favor those that can execute the 
task sooner. If negotiation produces a successful agreement, a monitoring component 
registers with the service instance for notification of the outcome and accompanying 
output. 

Agreement Negotiation.  Negotiation commences when a client negotiator is cre-
ated to obtain an agreement for a specific task. The negotiator, provided with a ser-
vice description and the address of a service factory, queries the factory to obtain an 
agreement template, containing a set of possible agreement terms and, optionally, a 
list of creation constraints. We use creation constraints to convey existing reservations 
for grid processors associated with a service factory. Client negotiators use this in-
formation to determine an earliest possible start time. Execution ceases for any client 
negotiator obtaining an unacceptably late start time; otherwise, each client negotiator 
instantiates an agreement template for a selected task and end time on a subset of 
available processors, and then forwards the template (as an agreement offer) to a ser-
vice factory, which spawns a service negotiator. 

Our model allows negotiation to proceed according to one of two strategies: single-
reservation request (SRR) or multiple-reservation request (MRR). In SRR, which 
closely follows WS Agreement [29], the service negotiator immediately acknowl-
edges the client’s request and contacts the scheduler to obtain a reservation, request-
ing start and end times on the processors specified in the agreement offer. If a reserva-
tion is granted, the service negotiator forwards an acceptance to the client; otherwise, 
the negotiator forwards a rejection (which can occur because multiple applications 
may be competing for the same processors). In SRR, an offer is considered obligating; 
thus, acceptance instantiates an agreement that both parties must observe. Independ-
ent of outcome, the negotiation terminates. 

Negotiation Feedback. In MRR, negotiation may continue after initial rejection.  
MRR rejections contain an updated reservation list for applicable processors. A client 
negotiator may use this feedback to compose a “follow-up” offer to the service nego-
tiator. This process may repeat, with additional follow-up offers, until an agreement is 
reached or negotiation is terminated. In contrast, SRR requires restarting negotiation 
to retrieve the template with the updated reservation list to use this feedback in pre-
paring a new offer. The MRR strategy also differs from the SRR strategy in that client 
offers are not obligating. Using MRR, a client may create multiple client negotiators 
to simultaneously negotiate agreements for the same task and then accept the best 
one. The client may replace an existing observed agreement with a new agreement, if 
obtained prior to task execution. This again contrasts with the SRR strategy, where of-
fers from client negotiators must be sequenced to prevent concurrent observed agree-
ments. Each client was configured to negotiate with either MRR or SRR, while ser-
vice negotiators handled both strategies. Both SRR and MRR adapt to feedback, as is 
characteristic of actors in self-organizing systems [4]. As we show in Sections 6.2 and 
6.3, repeated attempts to secure services through negotiation lead to interactions 
where adaptation to feedback drives global resource allocation. 



5 Experiment Description 

We deployed our model in a simulated grid and conducted an experiment to compare 
the effectiveness and overhead of SRR and MRR. Below, we describe the experiment 
topologies, workload and design, and then define the metrics of comparison. 

5.1 Experiment Topologies and Workload 

In each experiment repetition, we generated a random topology by varying (uniformly 
between -4,000 and 4,000) the x-y coordinates (z = 2) of each site, which limited 
maximum inter-site distance to 16 hops. Each topology consisted of 42 sites: 30 ser-
vice sites and 12 client sites. Each client site provided 25 applications for a total of 
300 applications comprising 600 tasks.  Each service site hosted a variable number of 
grid processors (allocation shown in Table 2) and one service factory to register ser-
vice descriptions with a site-local information server. Service factories dynamically 
create service instances in response to client offers–one instance per client negotiator. 
Each service site contained one scheduler, and also contained a local information 
server and index server, which itself was subordinate to 12 index servers, one at each 
client site.  

Table 2.  Resources at Service Sites 

Site Type Processors at Site Number of Sites 
1 (1) 500-processor cluster 12 
2 (2) 500-processor cluster 6 

3 (1) 500-processor cluster 
(2) 1000-processor vector 6 

4 (2) 500-processor cluster 
(1) 5000-processor cluster 6 

Table 3.  Description of Task Types 

Task Type pType pFactor pCycles 
T1 Cluster 500 2.25e6 
T2 Vector 1000 1.005e7 
T3 Cluster 5000 2.50e7 

Table 4.  Description of Application Types 

Application Type Number, Type and Sequencing of Tasks 
A1 and A2 (2) of task T1, executed sequentially 

A3 (3) of task T1, executed sequentailly 
A4 (1) of task T1 followed by (1) of task T3 
A5 (1) of task T2 

 
With no comprehensive studies of grid workflows to rely on, we chose relatively 

basic workflows in order to provide a simple baseline for analysis. We simulated ap-
plications consisting of one to three compute-intensive, parallelized tasks (each re-



quiring between 500 and 5000 processors). We selected task types (Table 3) with 
execution times (average 1.38 hours/task) on the same order as observed in selected 
processor workload trace studies [30], [31]. Task definitions were combined to form 
application workflows of five types (Table 4). 

We chose to experiment with a grid under moderate (50%) workload so that at-
tacks would generate stress. Our attack model would not stress a lightly loaded grid, 
while a heavily loaded grid would already be operating under stress. We required 
each client site to have 25 applications (five instances of each application type), and 
calibrated simulated processor speeds to ensure these 300 applications consumed 50% 
of the capacity shown in Table 2. We activated service providers and applications af-
ter a random initial delay. Applications started after a further random delay (up to 2 
hours) to simulate start of a workday. We assumed users requiring applications to 
complete within a 100,000 s deadline (just over one day), but allowed up to 200,000 s 
for applications to complete in order to measure the extent to which applications ex-
ceeded the deadline. 

5.2 Experiment Design and Metrics 

Initially, we considered effects on system performance of an attack carried out 
through spoofing by authorized but malicious service providers. Spoofing occurs 
when a bogus service factory at a miscreant site returns a faked template showing all 
the site’s grid processors without reservations, leading a client negotiator to assume 
its task can be run immediately. This causes client negotiators to submit offers to the 
bogus service factory, which makes no further response, thus denying service to the 
client. Consequently, spoofed client negotiators time out (after 30 s) and terminate. 
Spoofing causes clients to lose time pursuing bogus resources, delaying application 
completion. We were interested to see how our simulated grid responded to this 
threat, and especially to discern performance differences between the two negotiation 
strategies. To assist clients, we defined an adaptive failure-response behavior in 
which clients react to negative feedback – service factories that caused timeouts were 
not retried for 5000 s, and after three consecutive timeouts a service factory was not 
retried for a specific task. 

We configured our clients so that half negotiated under SRR and half under MRR. 
We subjected this configuration to three scenarios: (1) normal conditions (50% work-
load, no spoofing), (2) spoofing without failure response, and (c) spoofing with failure 
response. For each scenario, we executed repetitions of a simulated workday. Spoof-
ing sites, chosen randomly with probability ½, remained so for the duration of a repe-
tition. On average, 15 of 30 sites were spoofing in any repetition, eliminating half the 
system capacity and driving workload to 100%. Both spoofing scenarios were sub-
jected to an identical sequence of 545 randomly generated topologies. 

We measured two main aspects of system performance: application completion 
time (Tc) and overhead. We recorded frequency distributions (interval 10,000 s) for Tc 
across all topologies for each combination of scenario and negotiation strategy, and 
used those distributions to compute probability density functions (PDFs). For applica-
tions completing by goal Tg (= 100,000s), we computed average application dura-
tion, ,appD as a proportion of Tg: 



[ ]

,
1

/)/)(( ∑ −
=

=

≤

appN

i
appgidc

D NTTT
gC TT

app

 
(10) 

where Td denotes time the discovery process commenced for application i, Tc is com-
pletion time for application i, and Napp is number of applications (with Tc < Tg) in the 
experiment. We denote the average application duration across all repetitions 
as .appD We also computed P(Tc < Tg), probability an application completes by Tg. 

We measured overhead based on messages transmitted to complete negotiation. 
(Note that in these experiments we allowed up to five active client negotiators for 
each application task.) We defined as the minimum number of messages, Xngt = 25, 
the expected minimum when five client negotiators activate simultaneously for a task 
using the SRR negotiation strategy. We computed the average Ongt for a task as 

[ ] ,//)(
1

task

N

i
ngtingtngt NXMO

task

∑
=

=  (11) 

where Mngt is the number of negotiation messages counted to obtain agreements for 
task i and Ntask is the number of tasks. 

ngtO  denotes 
ngtO averaged over all repetitions.  

6 Results and Discussion 

Table 5 summarizes system performance. Spoofing caused application duration to in-
crease by 30% and P(Tc < Tg) to fall by 15%. Spoofing also caused negotiation over-
head to increase fifteen times. However, incorporating adaptive failure response to 
combat spoofing decreased this overhead by about 50%, due to fewer interactions 
with spoofing sites. Unexpectedly, though, incorporating failure response caused an 
increase in application duration and a decrease in the probability of completing appli-
cations by Tg. This surprising result is supported by the probability density functions 
(PDFs) for application-completion times, plotted in Figure 2 for three scenarios: (a) 
no spoofing, (b) spoofing without failure response, and (c) spoofing with failure re-
sponse. As expected, a large number of applications completed later when spoofing 
occurred, as client negotiators lost time making offers to bogus sites before eventually 
reaching legitimate sites. Unexpectedly, adaptive failure response led to a distinct 
right-shift in the PDF, as more applications completed later. This puzzling result re-
quired further investigation. To understand and explain the unexpected outcome, we 
identified topologies that exhibited the greatest performance degradation when using 
adaptive failure response. Then we selected one of those topologies for multidimen-
sional analyses, using the approach outlined earlier in Section 3. 



 
Table 5.  Summary of system performance 

6.1 Multidiminsional Analysis 

Let failure-response behavior be },{ FRNoFRs∈ , where NoFR signifies no failure 
response and FR signifies failure response, and let event types of interest be 

},{ TCRCe∈ , where RC denotes reservations created and TC denotes tasks com-
pleted. We first examined effects of s on RC, instantiating subspace V1 (equation 2) 
by choosing ex=RC. We defined equivalence classes using equation 3, selecting ob-
servation interval I=1,000 s (the smallest granularity we could plot conveniently) over 
T=200,000 s to yield 200 equivalence classes 1 < i < 200, summed across failure-
response behavior s and job class j.  Each equivalence class was then restricted to s = 
FR or s = NoFR and aggregated  (equation 4) to generate two time series, as shown in 
Figure 3, revealing two different patterns of reservation creation. Most notably, Fig-
ure 3 shows, at i = 100 (t = 100,000 s), a large spike in reservations created appeared 
when failure response was employed. Figure 3 also shows that over the interval 1 < i 
< 50 more reservations were created when failure response was used – while for the 
interval 51 < i < 100, no reservations were created when failure response was used. 
These large shifts in the pattern of reservation creation suggested to us that the sched-
ule of job executions was being altered.  

To examine this at finer resolution, we defined additional subspaces to consider 
task completions (ex=TC) under two negotiation strategies },{ MRRSRRa∈  for par-
ticular job classes }33,23,13,21,11{ TATATATATAj∈  chosen by selecting task types 
from Table 3 comprising application types A1 and A3 from Table 4. Using the ap-
proach shown in equation 5, we defined a subspace, V2, to to consider the tasks for 
application A1. We then defined a relation, R1, (similar to equation 6) to form eight 
equivalence classes {Qk}, k = 1 …8, on V2, with each partition representing a combi-
nation of failure-response behavior (s), job class (j), and negotiation strategy (a). Us-
ing equation 7, we determined a scaling factor, f, and operators as defined in equation 
8 for each partition. Applying these operators yielded eight time series, shown in Fig-
ure 4 (a) and (b). Similarly, we defined another subspace, V3, to which we applied R1 

Application Duration  

.appD  P(Tc < Tg) 
Negotiation Overhead 

ngtO  
 

Total SRR MRR Total SRR MRR Total SRR MRR 
No   
Spoofing 0.355 0.363 0.348 1.000 1.000 1.000 2.02 1.15 2.89 

Spoofing 
without  
failure  
response 

0.660 0.728 0.526 0.845 0.728 0.963 30.74 40.09 22.05 

Spoofing 
with failure 
response 

0.712 0.816 0.612 0.800 0.711 0.890 17.46 18.90 16.11 



to form 12 equivalence classes. We then determined a scaling factor and operators to 
yield 12 time series, shown in Figure 4 (c) and (d). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Comparative PDFs for Application-Completion Times given: (a) No Spoofing, 
(b) Spoofing without Failure Response, and (c) Spoofing with Failure Response. 
 

 

 

 

 

 

 

 

 

Fig. 3. Two Time Series: (a) Reservations Created without Failure Response and (b) Reserva-
tions Created with Failure Response 

The 20 time series shown in Figure 4 reveal shifts in the temporal evolution of job 
completions. Specifically, when failure response was employed for clients using SRR, 
initial tasks for both applications (A1T1 and A3T1) scheduled and completed earlier 
than when failure response was not used, while their second tasks (A1T2 and A3T2) 
completed in roughly the same time range irrespective of failure-response behavior. 
Third tasks (A3T3) for clients using SRR were completed later when failure response 
was used. Employing adaptive failure response helped clients using SRR become 

0.00

0.10

0.20

0.30

10
00

0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0
90

00
0

10
00

00

11
00

00

12
00

00

13
00

00

14
00

00

15
00

00

16
00

00

17
00

00

18
00

00

19
00

00

20
00

00

>2
00

00
0

Time

Pr
ob

ab
ili

ty

(a) No Spoofing

(b) Spoofing without Failure Response

(c) Spoofing with Failure Response

0.00

0.10

0.20

0.30

10
00

0
20

00
0
30

00
0
40

00
0
50

00
0
60

00
0
70

00
0
80

00
0
90

00
0

10
00

00

11
00

00

12
00

00

13
00

00

14
00

00

15
00

00

16
00

00

17
00

00

18
00

00

19
00

00

20
00

00

>2
00

00
0

Time

Pr
ob

ab
ili

ty

(a) No Spoofing

(b) Spoofing without Failure Response

(c) Spoofing with Failure Response

0

50

100

150

200

250

300

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

Time

A
m

pl
itu

de

Without Failure Response

With Failure Response

0

50

100

150

200

250

300

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

Time

A
m

pl
itu

de

Without Failure Response

With Failure Response



more competitive in obtaining reservations earlier in time. As Figures 4(b) and 4(d) 
show, this led clients using MRR to have more difficulty obtaining early reservations 
for second (e.g., A1T2 and A3T2) and third (A3T3) tasks within an application. Thus, 
while the initial tasks for clients using MRR completed within the same time range 
regardless of whether adaptive failure response was used, second and third tasks were 
delayed when failure response was activated. 

 

Fig. 4. Time Series of the Count of Task Completions Showing Time Shifts in the Execution 
Schedule When Adaptive Failure Response is used to Combat Spoofing Attack 

6.2 Self-Organization and Adaptive Failure Response 

This result demonstrates that taking a seemingly sensible action, here having clients 
resist spoofing, can lead to unanticipated system-wide performance degradation. In 
our example, introducing the adaptive failure response feedback mechanism (recall 
sec. 5.2) helped clients using SRR negotiation to become more competitive. This led 
to an unintentional reordering in the global schedule so that many second and third 
tasks executed later, and completion of jobs was delayed for most clients. This reor-
dering arises from a self-organizing process in which numerous feedback-driven in-
teractions among independent actors during negotiation form the global schedule. 
Multidimensional analysis allowed us to observe and explain this phenomenon. 

We explored this behavior under several different conditions, as described in detail 
elsewhere [32]. First, we altered the scheduling algorithm to permit applications to re-
serve resources early (optimistically) for all tasks, rather than waiting until a previous 

Time

A
m

pl
itu

de
s

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T1 time shift

SRR Clients

Time

A
m

pl
itu

de
s

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

Time

A
m

pl
itu

de
s

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T1 time shift

SRR Clients

Time

A
m

pl
itu

de
s

(b) Task-Completion Count for A1 Initiated by Clients using MRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T2 time shift

MRR Clients

Time

A
m

pl
itu

de
s

(b) Task-Completion Count for A1 Initiated by Clients using MRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T2 time shift

MRR Clients

Time

A
m

pl
itu

de
s

(c) Task-Completion Count for A3 Initiated by Clients using SRR

NoFR

FR

NoFR

FR

A3  T1
A3T1 time shift

SRR Clients A3 T2

FR

NoFR
A3 T3

A3T3 time shift

Time

A
m

pl
itu

de
s

(c) Task-Completion Count for A3 Initiated by Clients using SRR

NoFR

FR

NoFR

FR

A3  T1
A3T1 time shift

SRR Clients A3 T2

FR

NoFR
A3 T3

A3T3 time shift

Time

A
m

pl
itu

de
s

(d) Task-Completion Count for A3 Initiated by Clients using MRR

NoFR

FR

NoFR

FR

A3  T1

A3T2 time shift
MRR Clients A3 T2

FR

NoFR
A3 T3A3T3 time shift

Time

A
m

pl
itu

de
s

(d) Task-Completion Count for A3 Initiated by Clients using MRR

NoFR

FR

NoFR

FR

A3  T1

A3T2 time shift
MRR Clients A3 T2

FR

NoFR
A3 T3A3T3 time shift

Time

A
m

pl
itu

de
s

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T1 time shift

SRR Clients

Time

A
m

pl
itu

de
s

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

Time

A
m

pl
itu

de
s

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T1 time shift

SRR Clients

Time

A
m

pl
itu

de
s

(b) Task-Completion Count for A1 Initiated by Clients using MRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T2 time shift

MRR Clients

Time

A
m

pl
itu

de
s

(b) Task-Completion Count for A1 Initiated by Clients using MRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T2 time shift

MRR Clients

Time

A
m

pl
itu

de
s

(c) Task-Completion Count for A3 Initiated by Clients using SRR

NoFR

FR

NoFR

FR

A3  T1
A3T1 time shift

SRR Clients A3 T2

FR

NoFR
A3 T3

A3T3 time shift

Time

A
m

pl
itu

de
s

(c) Task-Completion Count for A3 Initiated by Clients using SRR

NoFR

FR

NoFR

FR

A3  T1
A3T1 time shift

SRR Clients A3 T2

FR

NoFR
A3 T3

A3T3 time shift

Time

A
m

pl
itu

de
s

(d) Task-Completion Count for A3 Initiated by Clients using MRR

NoFR

FR

NoFR

FR

A3  T1

A3T2 time shift
MRR Clients A3 T2

FR

NoFR
A3 T3A3T3 time shift

Time

A
m

pl
itu

de
s

(d) Task-Completion Count for A3 Initiated by Clients using MRR

NoFR

FR

NoFR

FR

A3  T1

A3T2 time shift
MRR Clients A3 T2

FR

NoFR
A3 T3A3T3 time shift



task completed before seeking resources for the next task. Here, spoofing again 
caused performance degradation. Use of adaptive failure response caused further de-
cline, with SRR clients benefiting at the expense of MRR clients. Multidimensional 
analysis of task completions revealed that when failure response was used, the global 
job execution schedule was again reordered so that second and third tasks executed 
later. Next, we introduced a different mix of applications and tasks, maintaining the 
basic workflow. Again, spoofing caused performance to degrade substantially, while 
use of failure response caused a slight degradation in which SRR clients benefited 
while MRR clients suffered. Multidimensional analysis of task completions revealed a 
similar task-reordering phenomenon to that observed with the original job mix. Fi-
nally, we defined a workload where every application consisted of only a single task, 
thus removing task dependencies in multi-task applications. While spoofing again in-
creased application completion times, the introduction of failure response had little ef-
fect on the relative performance of MRR and SRR clients. Nevertheless, multidimen-
sional analysis of task completions revealed underlying shifts in completion times, 
albeit in muted form.  Thus, under the various conditions we examined, adaptive fail-
ure response either further degraded or failed to improve application-completion 
times, and a comparable reordering of job completions was observed in each case. 

7 Conclusions 

Scheduling and execution of jobs in a grid can exhibit a self-organizing behavior aris-
ing from distributed resource-allocation protocols. In the cases we studied, this self-
organizing behavior leads to unexpected increase in application-completion times 
when adaptive failure response is used to combat a spoofing attack. Without tools 
such as multi-dimensional analysis to explore global behavior, much time and ex-
pense might be wasted attempting to identify and explain causes of this unexpected 
system performance. We believe that the key to understanding and controlling large, 
distributed systems is to view processes, such as distributed-resource allocation, as 
self-organizing. Doing so could provide a basis for creating measurement techniques 
and control algorithms to manage distributed systems of scale and complexity. Oth-
erwise, with inadequate analytic tools, unanticipated consequences of underlying self-
organizing processes will likely hamper adoption of promising technologies, such as 
grid computing.  

In this paper, we explored a limited model of a computing grid that uses simple 
processes to allocate distributed resources among applications with basic workflows. 
Numerous researchers have proposed more complex regimes (such as market-based 
approaches) for distributed resource allocation, and we expect future proposed grid 
standards to include more nuanced algorithms, which may lead to other unexpected 
global behaviors caused by underlying self-organizing processes. Given this, we plan 
to explore behaviors that might arise if more sophisticated approaches are deployed. 
Subsequently, we will investigate techniques for influencing global behaviors in dis-
tributed systems. 



References 

1. The WS Resource Framework, V1.0. Computer Associates International, Inc., Fujitsu 
Limited, Hewlett-Packard Development Company, International Business Machines Cor-
poration and The University of Chicago (2004) 

2. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid, An Open Grid 
Services Architecture for Distributed Systems Integration. Global Grid Forum (June 2002) 

3. Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor-G: A Computation 
Management Agent for Multi-Institutional Grids. Proceedings of the Tenth IEEE Interna-
tional Symposium on High Performance Distributed Computing. San Francisco (August 7-
9, 2001) 55-67 

4. Holbrook, M.B.: Adventures in Complexity: An Essay on Dynamic Open Complex Adap-
tive Systems, Butterfly Effects, Self-Organizing Order, Coevolution, the Ecological Per-
spective, Fitness Landscapes, Market Spaces, Emergent Beauty at the Edge of Chaos, and 
All That Jazz. Academy of Marketing Science Review (2003) 

5. Web Services Architecture. W3C Working Group Note (February 11, 2004) 
6. The Open Grid Services Architecture, Version 1.5. Global Grid Forum (March 10, 2006) 
7. I. Foster et al.: A Globus Primer or, Everything You Wanted To Know About Globus But 

Were Afraid to Ask, an Early and Incomplete Draft (May 8, 2005)  
8. Bak, P.: How Nature Works: the science of self-organized criticality. Copernicus, New 

York (1996) 
9. Legrand, A., Marchal, L., Casanova, H.: Scheduling Distributed Applications: The Sim-

Grid Simulation Framework. Proceedings of the third IEEE International Symposium on 
Cluster Computing and the Grid (CCGrid'03). Tokyo (May 12-15, 2003) 138-145 

10. Buyya, R. Murshed, M.: GridSim: a toolkit for the modeling and simulation of distributed 
resource management and scheduling for Grid Computing. Concurrency and Computation: 
Practice and Experience. Vol. 14. (2002) 1175-1220 

11. Liu, X., Xia, H., Chien, A.: Validating and Scaling the MicroGrid: A Scientific Instrument 
for Grid Dynamics. Journal of Grid Computing. Vol. 2, No. 2 (2004) 141–161 

12. Ernemann, C., Hamscher, V., Yahyapour, R.: Benefits of Global Grid Computing for Job 
Scheduling. Proceedings of the Fifth IEEE International Workshop on Grid Computing 
(GRID 2004). Pittsburgh. (November 8, 2004) 374-379. 

13. Wolski, R., Brevik, J., Plank, J., Bryan, T.: Grid Resource Allocation and Control Using 
Computational Economies. In Berman, F, Fox, G., Hey, T. (eds.): Grid Computing: Mak-
ing the Global Infrastructure a Reality. Wiley and Sons, New York. (2003) 747–772 

14. Gomoluch, J., Schroeder, M.: Market-based Resource Allocation for Grid Computing: A 
Model and Simulation. Proceedings of the First International Workshop on Middleware 
for Grid Computing. Rio de Janeiro. (June 16-20, 2003) 211-218 

15. Yeo, C.S., Buyya, R.: Service Level Agreement based Allocation of Cluster Resources: 
Handling Penalty to Enhance Utility. Proceedings of the 7th IEEE International Confer-
ence on Cluster Computing. Boston. (September 27-30, 2005) 

16. In, J., Avery, P., Cavanaugh, R., Ranka, S.: Policy Based Scheduling for Simple Quality of 
Service in Grid Computing. Proceedings of the Eighteenth International Parallel and Dis-
tributed Processing Symposium (IPDPS'04). Santa Fe. (April 26-30, 2004) 23 

17. He, X., Sun, X., Von Laszewski, G.: A QoS Guided Scheduling Algorithm for Grid Com-
putting. Journal of Computer Science and Technology, Special Issue on Grid Computing. 
Vol. 18, No. 4 (2003) 442-450 

18. Cooper, K., et al.: New Grid Scheduling and Rescheduling Methods in the GrADS Project. 
Proceedings of the Eighteenth International Parallel and Distributed Processing Sympo-
sium (IPDPS'04). Santa Fe. (April 26-30, 2004) 199 

19. Krothapalli, N. Deshmukh, A.: Dynamic allocation of communicating tasks in computa-
tional grids. IIE Transactions. Vol. 36, No. 11. (2004) 1037-1053 



20. Chen, H. Maheswaran, M.: Distributed Dynamic Scheduling of Composite Tasks on Grid 
Computing Systems. Proceedings of the Sixteenth International Parallel and Distributed 
Processing Symposium (IPDPS 2002). Fort Lauderdale (April 15-19, 2002) 

21. Subramani, V., Kettimuthu, R., Srinivasan, S., Sadayappan, P.: Distributed Job Scheduling 
on Computational Grids using Multiple Simultaneous Requests. Proceedings of the Elev-
enth IEEE International Symposium on High Performance Distributed Computing 
(HPDC-11 '02). Edinburgh (July 24-26, 2002) 359 

22. SOAP V1.2 Part 1: Messaging Framework. W3C Recommendation (June 24, 2003) 
23. WS Addressing. BEA Systems Inc., International Business Machines Corporation, and 

Microsoft Corporation, Inc. (March, 2004) 
24. WS Resource Lifetime, V1.1. Computer Associates International, Inc., Fujitsu Limited, 

Hewlett-Packard Development Company, International Business Machines Corporation 
and The University of Chicago (March, 2004) 

25. Publish-Subscribe Notification for Web Services, V1.0. Akamai Technologies, Computer 
Associates International, Inc., Fujitsu Limited, Hewlett-Packard Development Company, 
International Business Machines Corporation, SAP AG, Sonic Software Corporation, 
Tibco Software Inc. and The University of Chicago (March 2004) 

26. WS Services Topics, V1.0. Akamai Technologies, Computer Associates International, 
Inc., Fujitsu Limited, Hewlett-Packard Development Company, International Business 
Machines Corporation, SAP AG, Sonic Software Corporation, Tibco Software Inc. and 
The University of Chicago (March, 2004) 

27. WS Service Group, V1.0. Computer Associates International Inc., Fujitsu Limited, Hew-
lett-Packard Development Company, International Business Machines Corporation and 
The University of Chicago (March, 2004) 

28. Distributed Resource Management Application API Specification 1.0. Global Grid Forum 
(June, 2004) 

29. Web Services Agreement Specification (WS-Agreement). Global Grid Forum (September, 
2005) 

30. Parallel Workloads Archive. The Hebrew University of Jerusalem. 
http://www.cs.huji.ac.il/labs/parallel/workload/ 

31. Shan, H., Oliker, L.: Job Superscheduler Architecture and Performance in Computational 
Grid Environments. Proceedings of the 2003 ACM/IEEE Conference on Supercomputing. 
Phoenix (November 15-21, 2003) 44 

32. Mills, K., Dabrowski, C.: Investigating Global Behavior in Computing Grids: the Ex-
tended Report. Draft technical report. U.S. National Institute of Standards and Technology 
(Available from the authors). 

 
 


