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Abstract—Creating defenses against flooding-based, distributed denial-of-service (DDoS) attacks requires real-time monitoring of

network-wide traffic to obtain timely and significant information. Unfortunately, continuously monitoring network-wide traffic for

suspicious activities presents difficult challenges because attacks may arise anywhere at any time and because attackers constantly

modify attack dynamics to evade detection. In this paper, we propose a method for early attack detection. Using only a few observation

points, our proposed method can monitor the macroscopic effect of DDoS flooding attacks. We show that such macroscopic-level

monitoring might be used to capture shifts in spatial-temporal traffic patterns caused by various DDoS attacks and then to inform more

detailed detection systems about where and when a DDoS attack possibly arises in transit or source networks. We also show that such

monitoring enables DDoS attack detection without any traffic observation in the victim network.

Index Terms—DDoS attack, monitoring, network traffic, attack dynamics, spatial-temporal pattern.
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1 INTRODUCTION

THE success of the Internet derives in large part from the
end-to-end principle [1], which enabled deploying a

simple network infrastructure (of packet-forwarding nodes
supported by a few routing protocols), allowing network
applications to evolve independent of the core network. In
particular, the end-to-end congestion-control mechanisms
of the TCP (Transmission-Control Protocol) played a key
role in achieving a robust and stable Internet. At the same
time, the existing end-to-end mechanisms have proven
ineffective at protecting the Internet from distributed
denial-of-service (DDoS) attacks, an increasingly frequent,
global disturbance [2].

A DDoS attack is a simultaneous network attack on a
victim (e.g., a Web server or a router) from a large number
of compromised hosts, which may be distributed widely
among different, independent networks. By exploiting
asymmetry between network-wide resources and local
capacities of a victim, a DDoS attack can build up an
intended congestion very quickly at an attacked target. The
Internet routing infrastructure, which is stateless and based
mainly on destination addresses, appears extremely vulner-
able to such coordinated attacks.

DDoS attacks cannot be detected and stopped easily
because forged source addresses and other techniques are
used to conceal attack sources. DDoS attacks can take a
victim network off the Internet even without exploiting
particular vulnerabilities in network protocols or weak-
nesses in system design, implementation, or configuration.
While applying security patches may avert attacks against

protocol or system vulnerabilities, congestion-inducing
DDoS attacks exploit an inherent weakness in the Internet
design and, thus, present a serious threat to Internet
stability. This paper focuses on such congestion-inducing
(so-called flooding) DDoS attacks.

Packet filtering is the main response to confirmed DDoS
attacks; however, attacks must first be detected. Flooding
attacks can be most easily detected at the victim, where all
attack packets can be observed [3]. Unfortunately, an attack
victim cannot defeat a flooding attack simply through
detection. Instead, attack packets must be filtered in transit
networks, preferably close to attack sources, before they
converge on the victim. Attempts in transit networks to
detect such attacks often lead to a high false-alarm rate.
Similarly, networks hosting attack sources may observe
only a normal outgoing pattern of Internet traffic [4],
which shows high variability [5]. Stealthy attacks (such as
increasing rate, fluctuating rate, and natural-network-
congestion-like attacks [3], [6]) increase detection difficulty.

In this paper, we argue that DDoS flooding attacks alter
internal characteristics of network-wide traffic so that an
appropriate monitoring method can detect the attacks
without observing traffic in the victim network. To avoid
congestion in the Internet, all TCP flows adapt themselves
in a self-organized manner. Adaptive behaviors of flows in
different directions play a crucial role to keep the Internet
stable and to form macroscopic (or aggregate) traffic
patterns. DDoS attack packets do not observe TCP conges-
tion-control algorithms; rather, they overwhelm the in-
tended victim, causing well-behaved flows to back off and
then ultimately to starve. DDoS attacks also impair other
traffic flows that happen to share a portion of the congested
network. Such network-wide phenomena might show
themselves in shifting spatial-temporal patterns, which
can be captured by using a novel technique we developed
to analyze macroscopic behavior [7]. Our technique can
infer the congestion state of specific network areas without
directly measuring them. This proves advantageous in
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attack detection because congested routers near the victim
may fail to collect and transfer measurement data.

In this paper, we show that macroscopic (space-time)
behavior of network traffic could provide significant
information to detect DDoS attacks, which exhibit apparent
effects on network congestion even while attackers con-
stantly modify their techniques to avoid detection. When
coupled with a dynamic monitoring capability deployed in
transit or source networks, our analysis method could
provide an alert function to warn detection systems about
where and when an attack probably arises. Since attacks are
becoming more sophisticated, we experiment in this paper
with different attack modes: constant rate, increasing rate,
natural-network-congestion-like, subgroup, pulsing, and
TCP-targeted attacks. We use simulation results to show
how our technique monitors spatial-temporal patterns
under diverse DDoS flooding attacks. We show that these
attacks, which have an apparent effect on network conges-
tion, reveal themselves as shifts in spatial-temporal traffic
patterns without any observations from the suffering
victim. The dynamic nature of some stealthy attacks may
even become an advantage because our technique benefits
from increased correlation arising under shifting patterns in
network traffic.

The rest of this paper is structured as seven sections. In
Section 2, we place our ideas within the context of prior and
on-going research related to DDoS defense. In Section 3, we
explain our technique to analyze macroscopic behavior. In
Section 4, we describe our simulation model. In Section 5,
we report our results. In Section 6, we discuss strengths and
limitations of our proposed technique. We outline future
work in Section 7, before concluding in Section 8.

2 RELATED WORK

Our literature survey found researchers attempting to
detect DDoS attacks from three different perspectives:
1) near the victim [8], [9], [10], [11], [12], [13], 2) near attack
sources [14], [15], [16], and 3) within transit networks [17],
[18], [19], [20], [21]. From all these perspectives, researchers
are investigating various approaches to analyze packet data
(e.g., headers, aggregate flows, and correlations) in an effort
to distinguish normal traffic from attack packets. The
problem is difficult because DDoS attackers can release
high volumes of normal-looking packets without being
easily traceable or filtered. To date, no known set of
characteristics clearly and accurately distinguishes between
normal and attack traffic. Further, Staniford et al. [22] argue
that, by controlling only one million hosts on the Internet,
attackers can initiate DDoS attacks sufficiently diffuse to
avoid detection using current techniques. Chang [23]
discusses the difficulties in more detail.

Techniques that envision placing detection mechanisms
near the attack victim share similar advantages and
disadvantages. First, positioning near the victim provides
a clear point to observe all incoming traffic, which should
ease detection because attack traffic may be a significant
portion of incoming traffic. Unfortunately, attack traffic
could overload local resources and degrade the effective-
ness of response mechanisms. Further, identifying attack
traffic does not necessarily identify sources (because

addresses may be forged), and does nothing to stop the
attack. Selected researchers investigate attack suppression
methods; however, such methods require deployment of
cooperative, distributed mechanisms within elements
throughout a network. Attack suppression can be carried
out more effectively near sources; however, detecting
attacks near sources proves more difficult because attack
traffic might be a small fraction of all traffic generated near
a source. Detecting attack traffic in transit networks (as we
propose) provides a unique perspective because traffic
monitors placed throughout a network might be able to
collect information that can be subjected to correlation
analysis. Such analysis could possibly detect some classes of
stealthy attacks difficult to detect near sources or victims
and could serve as an early-warning system to alert and
activate more detailed monitoring near suspicious sources
and suspected victims. Below, we survey representative
research from each perspective: 1) near the victim, 2) near
sources, and 3) in transit networks.

Most DDoS-related research has focused on detection
mechanisms deployed near vulnerable servers, where
incoming attack traffic could deny access to legitimate
users. Many mechanisms attempt to detect attacks by
analyzing specific features, e.g., header information, con-
nection counts, correlations, and congestion. For example,
Noh et al. [8] attempt to detect attacks by computing the
ratio of TCP flags to TCP packets received at a Web server.
(TCP flags denote how to interpret other fields within the
header.) Noh et al.’s algorithms also consider the relative
proportion of arriving packets devoted to TCP, UDP (User-
Datagram Protocol), and ICMP (Internet Control Message
Protocol) traffic. The premise of Noh’s work is that
characteristics of DDoS traffic differ from normal traffic.
Similarly, Basu et al. [9] proposed techniques to extract
features from connection attempts and then to classify
attempts as suspicious or not. The rate of suspicious
attempts over a day helped to expose stealthy denial-of-
service attacks, which attempt to maintain effectiveness
while avoiding detection. Li and Chi [10] used autocorrela-
tion of arrival traffic as a feature to distinguish between
normal and attack traffic. However, assuming absence of
correlation between legitimate and malicious traffic seems
implausible because both types of traffic must transit some
shared portion of the network.

Other researchers have investigated techniques to dis-
card attack traffic. Ioannidis and Bellovin [11] proposed an
aggregate-based congestion control (ACC) algorithm to be
deployed in routers (intermediate nodes that forward
packets between source and destination). ACC combines
detection with rate limiting. Here, each router periodically
classifies discarded packets (from the router’s drop history)
into “aggregates,” based on a selected set of characteristics.
To block an aggregate upstream, a cooperative mechanism
called “pushback” enables routers to transfer their findings
hop-by-hop toward attack sources, which can then be
subjected to rate limiting. Some other researchers have also
devised response mechanisms [12], [13] triggered by DDoS-
induced congestion, although they do not specify ways to
determine the congestion.
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Some researchers have focused on techniques that can be
deployed near traffic sources. In general, detecting DDoS
traffic near attack sources is ineffective because individual
sources do not generate sufficient packets to induce local
congestion. Instead, congestion arises closer to the victim,
where attack packets arrive in aggregation. However, DDoS
traffic may still show up to some extent at sources since
attack packets do not observe TCP congestion-control
algorithms. Mirkovic et al. [14] devised D-WARD, a DDoS
defense system installed in edge routers (that connect
clients and servers to a transit network) to monitor the
asymmetry of two-way packet rates and, thus, to identify
attacks. Similarly, Gil and Poleto [15] proposed a heuristic
data-structure (MULTOPS), which exploits correlation of
inbound and outbound packet rates for subnet prefixes (i.e.,
higher-order bits in a network address) at different
aggregation levels to detect ongoing congestion-based
attacks in a source network. Kim et al. [16] proposed a
discrete-wavelet transform technique to statistically analyze
correlation of destination addresses in outgoing traffic at an
edge router.

In the future, Internet Service Providers (ISPs) may offer
subscribers DDoS defenses in the form of enhanced security
services, such as virtual-private networks (VPNs), which
ensure traffic flows only among a designated set of trusted
computers, and managed firewalls [17]. More sophisticated
schemes have been proposed [18], but remain too immature
to deploy. Talpade et al. [19] designed NOMAD, a network-
traffic monitor deployed in a single transit router to detect
network anomalies by analyzing packet-header informa-
tion, such as time-to-live (TTL) and source and destination
addresses. Akella et al. [20] proposed a detection mechan-
ism to identify anomalies by comparing current traffic
profiles with profiles of normal traffic, as observed at edge
routers, which exchange information with other edge
routers to increase confidence. In work most closely related
to our own, Lakhina et al. [21] suggested a subspace method
for characterizing network-wide anomalies by examining
the multivariate time series of all origin-destination flows
among routers in a transit network. Using Principal
Component Analysis [24], origin-destination flows are
decomposed into constituent eigenvectors (explained below
in Section 3), where the top few eigenvectors depict normal
traffic and remaining eigenvectors expose anomalies. Our
own approach reveals congestion by examining only the
eigenvector corresponding to the largest eigenvalue, which
we associate with a strong correlation over the whole
network [7], [25]. In addition, by taking advantage of
increased correlations arising in a large network, our
approach might require only a few observation points.

3 ANALYSIS TECHNIQUE

Networked computers exchange packets across transport
connections that adapt their rate of flow based on apparent
congestion (measured by round-trip delay and packet loss).
Microscopic behavior (packet flows on individual connec-
tions) can look quite different from macroscopic behavior
(aggregate flows across all connections in space and time).
In large networks, interactions among adaptive connections
and variations in user demands lead to emergence of

spatial-temporal correlations among various characteristics,
such as congestion [26]. Capturing macroscopic patterns of
such correlation over time could help us to understand
shifting traffic patterns, to identify operating conditions,
and to reveal traffic anomalies. Motivated by these insights,
we developed a novel method to analyze spatial-temporal
traffic at large scale [7], [25]. Our analysis method can infer
a shift in traffic pattern for large areas of interest outside
those few areas where measurements are made. In this
paper, we apply our method to watch network-wide
patterns based on measurements from only a few observa-
tion points. In this section, we introduce our method.

3.1 Spatial-Temporal Correlation

The TCP congestion-control algorithm exhibits a self-
organizing property: When a large number of connections
share the Internet, underlying interactions among the
connections avoid router congestion simultaneously over
varying spatial extent. A number of empirical studies have
convincingly shown that the temporal dynamics of Internet
traffic exhibits long-range dependence (LRD) [27], [28], [29],
[30], [31], which implies existence of nontrivial correlation
structure at large timescales. A recent study of correlations
among data flows in a French scientific network, Renater
[32], detected the signature of such spatial-temporal
correlation.

The Renater study uses random matrix theory (RMT) to
analyze cross-correlations among network flows. RMT
compares a random correlation matrix—constructed from
mutually uncorrelated time series—against a correlation
matrix for data under investigation. Deviations between
properties of the two matrices convey information about
“genuine” correlations. In the Renater study, the largest
eigenvalue is approximately 100 times larger than predicted
for uncorrelated time series, and the eigenvector component
distribution of the largest eigenvalue deviates significantly
from the Gaussian distribution predicted by RMT. Further,
the Renater study reveals that all components of the
eigenvector corresponding to the largest eigenvalue are
positive, which implies their collective contribution to the
strong correlation in congestion over the whole network.
Since all network flows contribute to the eigenvector, the
eigenvector can be viewed as an indicator of spatial-
temporal correlation in network congestion.

In this view, congestion emerges from underlying
interactions among flows crossing a network in various
directions. Our hypothesis: congested destinations, caused
by flash crowds (i.e., legitimate users simultaneously
accessing the same Web site) or by flooding DDoS attacks,
should be exposed through their correlation, as revealed by
components of the eigenvector of the largest eigenvalue.
Therefore, we can define a weight vector by grouping
eigenvector components corresponding to a destination
together to build up information about the influence of the
destination over the whole network. Contrasting weights of
the weight vector against each other, we can summarize a
network-wide view of spatial-temporal correlation, locate
congested destinations, and observe how traffic patterns
change. In particular, using relatively few observation
points, we could infer a shift in the spatial-temporal
correlation of large areas of interest outside those few areas
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where measurements are made [7], [25]. This approach
could significantly reduce requirements for data, perhaps to
the point where analysis could occur in real time. In what
follows, we describe the mathematical details of our
analysis method.

3.2 Representing Network Flow Data

We assume a network organized in four levels:

1. backbone routers,
2. subnet routers,
3. leaf routers, and
4. host computers.

Backbone routers connect to each other with high capacity
links to forward packets among geographically distributed
sites, which we call subnets. Each subnet router connects
one geographic area (an aggregation of leaf routers) to a
backbone router, allowing packets to be forwarded between
the local subnet and remote subnets. Each subnet router
also connects to a set of leaf routers, each of which forwards
packets between a specified set of host computers and the
connected subnet router. In this conception, a source host
computer in one subnet may send a packet to a receiving
host computer in a remote subnet by forwarding the packet
to a designated leaf router. The leaf router then forwards
the packet to a designated subnet router, which then
forwards the packet to a connected backbone router. The
backbone router forwards the packet toward the backbone
router connected to the (destination) subnet containing the
receiving host computer. The destination subnet router
forwards the packet to the leaf router to which the receiving
host computer connects. The leaf router then forwards the
packet to the receiving host. Modern computer networks
share a similar topological organization.

Assume N subnets, interconnecting through backbone
routers to form a network, with L subnet routers selected as
observation points to log outbound traffic. First, we need to
represent packets flowing between source-destination pairs
(of subnets). Let xx ¼ ðxx1; xx2; . . . ; xxNÞT denote the flow vector
of corresponding packet counts, observed in L subnets
during a given time interval. Each element of this flow
vector is itself a vector defining the number of packets
flowing into the corresponding subnet from each observa-
tion subnet. To obtain the flow variables in this vector, we
first enumerate the destination subnets and then the
observation posts by 1 to L, and group indices by subnet:
subnets sending to the first subnet in the first block, xx1, and
those sending to the second subnet in the second block, xx2,
and so forth. Thus, we form xx with subvectors in the order

xx1 ¼ ðx11; x21; . . . ; xL1ÞT ;
xx2 ¼ ðx12; x22; . . . ; xL2ÞT ; . . . ;
xxN ¼ ðx1N; x2N; . . . ; xLNÞT ;

where xij represents packet flow from the ith observation
point (i ¼ 1; 2; . . . ; L) to the jth subnet (j ¼ 1; 2; . . . ; N). Each
flow variable xij is normalized as fij by its mean mij and
standard deviation �ij,

fij ¼ ðxij �mijÞ=�ij: ð1Þ

The normalized flow vector ff corresponding to xx, com-
prises N normalized subvectors ffkkðk ¼ 1; 2; . . . ; NÞ, where
each subvector is formed from normalized flow variables
fik (i � L and k � N).

3.3 Cross-Correlation Analysis

Cross-correlation analysis is a tool commonly used to
analyze multiple time series. We can compute the equal-
time cross-correlation matrix CC with elements

CðijÞðklÞ ¼ fijfkl
� �

t
; ð2Þ

which measures correlation between fij and fkl, where � � �h it
denotes an average over a selected time interval t. We are
free to select any useful value for t. The cross-correlation
matrix is real and symmetric, with each element falling
between �1 and 1.

We can further analyze the correlation matrix CC through
eigenanalysis [33]. The equation

CwCw ¼ �ww ð3Þ

defines eigenvalues and eigenvectors, where � is a scalar,

called the eigenvalue. If CC is a square K-by-K matrix, then

ww is the eigenvector, a nonzero K by 1 column vector. (In

our application, we set K ¼ LðN � 1Þ, which is the number

of sampling points multiplied by the number of subnets,

omitting flows within the same subnet.) Eigenvalues and

eigenvectors always come in corresponding pairs. An

eigenvector is a special kind of vector for its associated

matrix, because the action of the underlying operator

represented by the matrix takes a particularly simple form:

rescaling by a real number multiple. The eigenvector ww11

corresponding to the largest eigenvalue �1 often has special

significance. The eigenvalues and eigenvectors can be

computed in various ways [33]. We exploit the MATLAB

eig command, which uses the QR algorithm [34].

3.4 Defining the Weight Vector

The cross-correlation matrix contains information about

underlying interactions among various flows among sub-

nets. The components of the eigenvector ww11 of the largest

eigenvalue �1 represent the corresponding flows’ influences

on macroscopic behavior, abstracted from the matrix CC into

the pair (�1,ww
11). The eigenvectorww11 comprisesN subvectors,

i.e., ww11 ¼ ðww11
11; ww

11
22; . . . ; ww

11
NNÞ

T . The kth subvector ww11
kk, corre-

sponding to the kth subnet, is formed from components w1
ik

(i � L and k � N) representing the ith obsevation point’s

contribution to the kth subnet.We consider the square of each

component, (w1
ikÞ

2, instead ofw1
ik itself because

P
i;kðw1

ikÞ
2 ¼ 1

[35].Wedefine theweightSk (k ¼ 1; 2; . . . ; N) to be the sumof

all (w1
ikÞ

2 in the kth subvector ww11
kk, i.e.,

Sk ¼
XL
i

ðw1
ikÞ

2: ð4Þ

Sk represents the relative strength of flows from L observa-
tion points toward the kth routing domain. Thus, the
knowledge of weight vector SS ¼ ðS1; S2; . . . ; SNÞ across
varying k constitutes a summary view of network-wide
traffic. The evolving pattern of spatial-temporal correlation

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005



might allow us to infer where and when network congestion
emerges.

4 SIMULATION MODEL

Simulation plays a key role in understanding network
behavior. Choosing a proper level of abstraction for a model
depends very much on the objective. Studying collective
phenomena seems to require simulating networks with
large spatial extent, but also including essential details
representing protocol mechanisms across several layers of
functionality (e.g., application, transport, network, and
link). Yet, computational requirements must be restricted
in space and time. Most available network simulators
represent detail not germane to our study. Such a simulator
would require that we configure numerous low-level
parameters and consume computation simulating irrelevant
details. For that reason, we chose to base our study on an
abstract model that we developed and validated against
current understanding of Internet dynamics.

Previously, we adopted a two-tier modeling approach
that maintains the individual identity of packets [26]. While
our two-tier model has been applied successfully to
represent some traffic characteristics in large networks,
doubts exist about the realism of the regular network
structure of our model. In this paper, we retain the
individual identity of packets and the Reno TCP conges-
tion-control algorithm, but replace the regular network
structure of our previous two-tier model with an irregular
topology based on a real network.

4.1 Topology

We transform our two-tier model into an irregular four-tier
topology, as shown in Fig. 1. (The host-computer tier is not
shown.) While the network becomes heterogeneous and
hierarchical, (tier-four) host-computer behavior remains
homogeneous. The (tier-one) backbone topology, including
11 (backbone) routers (A;B; . . . K), resembles the original
Abilene network [36]. We model links between backbone
routers to have varying delays. The longest link (between
routers D and F) has a 20 ms propagation delay; the shortest

link (between routers J and K) has a 3 ms delay. Forty (tier-
two) subnets connect to the backbone through subnet
routers, represented by designators such as A1 and B2.
Each subnet contains a variable number of (tier-three) leaf
routers, such as A1a and B2b. Each leaf router supports an
equal number (200) of (tier-four) source hosts, and a
variable number (� 800) of (tier-four) receivers, activated
on demand. Link capacities gradually increase from host to
backbone, with backbone links being hundreds of times
faster than links to hosts.

4.2 Traffic Sources

Our model includes 22,000 sources (200 per leaf router
times 110 leaf routers), which operate at the packet level.
Each source generates traffic as an ON/OFF process,
alternating between wake and sleep periods with average
durations �on and �off , respectively. At the beginning of
each ON period, a destination receiver is chosen
randomly from among leaf routers other than the local
routers, i.e., all flows transit through at least one
backbone link. Though we choose destinations with equal
probability, our irregular network topology (Fig. 1) leads
to higher probability of selecting leaf routers in some
subnets over others.

Modern TCP implementations contain four intertwined
algorithms: slow start, congestion avoidance, fast retrans-
mit, and fast recovery. We simulate Reno TCP, except
that our model reduces the congestion window to half the
current window size after receiving one, instead of three,
duplicate ACKs. While packets can be lost in our model,
all packets on a connection take the same route, so no
reordering occurs. We previously verified [7], [25], [26]
that our TCP model generates behavior consistent with
the dynamics of Internet traffic at various timescales.

When awake, a source may send, subject to any
restrictions imposed by our TCP model, one packet at each
time-step to the source’s attached leaf router. The packets
are placed at the end of the router’s queue. When sleeping,
the source does not generate new packets at each time-step.
ON/OFF sources provide a convenient model of user
behavior.
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Empirical measurements on the Internet observe a
heavy-tailed distribution of file sizes [5], [27], [28], [29],
[30], [31]. Here, we use the Pareto distribution to model
heavy-tailed characteristics. The Pareto distribution func-
tion has the following form: P ½X � x� ¼ 1� ðk=xÞ�, k � x,
where 0 < � < 2 is the shape parameter. Using empirical
measurements of Internet traffic, Crovella and Bestavros
[28] showed that ON (data transfer) periods are heavy-
tailed with � ¼ 1:0� 1:3, and OFF (thinking) periods are
heavy-tailed with � ¼ 1:5. For Web traffic, they found a
strong preference for small file sizes. For our experiments,
we selected the same shape parameter, � ¼ 1:5, for both ON
and OFF processes; however, we selected different means.
Here, �on ¼ 50 (packets) is selected to represent the
preference for small files, as is typically the case with
Web page downloads. Empirical observations of OFF
periods change dramatically between observations made
at night or in the day. We selected �off ¼ 5; 000 (milli-
seconds) to represent the average thinking time before a
user requests another file. For our purposes, we need to
simulate background traffic that is neither too sparse nor
too congested. A network driven by sparse traffic cannot
produce the network-wide coherence required for a few
observation points to sense shifts in traffic patterns.

4.3 Routers

Packets, the basic transmission unit on the Internet, contain
destination addresses (used by routers to correctly forward)
and source addresses (used by receivers to identity the
destination for acknowledgments). Our four-tier topology
requires us to make some assumptions about the relative
packet-forwarding rate between each tier. Our model
allows sources to generate one packet every millisecond,
or 1,000 packets per second (pps). We assume that leaf
routers forward at 5,000 pps, subnet routers forward at
20,000 pps, and backbone routers forward at 160,000 pps.
Selecting these relative rates mirrors the way in which
capacity increases with aggregation in a hierarchical net-
work. Of course, real networks exhibit larger link capacities
than our model, but also carry more connections. In
particular, real backbone links can sustain much higher
rates than we model; however, we find that further
increasing capacity has no influence on our results because
backbone links are already lightly loaded.

To store and forward packets (which in our model travel
a constant, shortest path between a source-destination pair
for each flow), all routers maintain a queue of limited
length, where arriving packets are stored until they can be
processed: first in, first out. The maximum queue length in
routers may influence both network performance and
simulation results: small queue lengths lead to many losses
during TCP slow start, while large queues produce
excessive delays. To achieve a reasonable balance, TCP
simulations often [37], [38] set router queue lengths in a
range of 10 to 200 packets. We assume that setting
maximum queue length (160 packets, here) within this
range would not influence our qualitative findings.

We select several subnet routers (B4, D5, F4, I1, and J5) as
observation points, which record all outbound flows to
destination leaf routers. We assume a central collector
reliably receives a continuous stream of measured data
from the observation points in time to perform analysis.

4.4 Model Summary

In summary, we model a hierarchical network with
increasing forwarding capacity moving upward from
sources to backbone routers. While forwarding capacities
in our model are below those of real networks, we
simulate fewer (up to 22,000) transport connections than
would be carried in real networks. We size forwarding
capacities to yield moderate levels of congestion given the
number of sources we simulate. We select a maximum
queue length for routers (within the range used often in
TCP simulations) so that excessive packet discards or
queuing delays do not influence our results. Our model
ensures at least 10,000 connections are simultaneously
active (i.e., in an ON period). Each active connection
generates 2,000 pps (when including acknowledgments
from the destination). In aggregate, then, our model
generates at least 20 million pps of background traffic to
create the haystack in which attack traffic may hide.

5 SIMULATION EXPERIMENTS

DDoS attacks directed against the network infrastructure
can lead to more widespread damage than those directed
against individual Web servers. Here, a subnet router (I1)
will be the attack target. (Elsewhere in [25], we report
results where the attack target is a leaf router.) Since routers
under attack may fail to collect and transfer measurement
data, we assume in our experiments that the attack disables
the observation point deployed at the subnet-router I1; thus,
we perform our analysis using data from only four
observation points (B4, D5, F4, and J5), which encompass
10 percent (L ¼ 4) of the 40 subnets. Since stealth of attack
strategies may vary, we experiment with a range of attacks:
constant rate, increasing rate, natural-network-congestion-
like, pulsing, TCP-targeted, and subgroup attacks. Fig. 2
illustrates four attack classes.

We uniformly distribute 50 DDoS attack sources
throughout the simulated network. In our least stealthy
(constant-rate) attack, each attack source generates 200 pps,
for an aggregate rate of 10,000 attack pps (one for every
2,000 normal packets). In our most stealthy attack, three
groups of (� 17) attack sources alternate, yielding an
aggregate rate of 3,400 attack pps (less than one for every
5,900 normal packets). We describe each attack further
below, as we apply our analysis technique to detect the
attacks.

5.1 Constant Rate Attack

Constant rate, the simplest attack technique, is typical of
known DDoS attacks [3]. We arrange for all the 50 attack
sources simultaneously to launch constant-rate attacks. We
do not have attack sources generate packets with full force
[14], so they cannot be easily identified through attack
intensity at the source or in transit networks. We assume a
variable H represents the intensity of an attack source.
Since sources can only create one packet every milli-
second, the maximum attack rate is one packet per
millisecond; thus, H � 1 packet/ms. Fig. 2a shows the
attack dynamics with a constant rate, starting from time
t0. We experiment with a constant-rate DDoS attack where
H ¼ 1=5, that is, each attack source creates one attack
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packet for every five milliseconds (200 pps per source)
beginning from t0 (= 500 s).

To show spatial changes in traffic under this constant-
rate attack (H ¼ 1=5), we calculate the weight vector SS
using M data points within a moving time window MT
from one period to the next. Fig. 3 shows SS evolving with
T ¼ 2 s and with the time window MT ð¼ 200� 2 s ¼
400 sÞ sliding ahead every 20 s. The time axis indicates the
end of the moving time window. The location axis
represents 11 backbone-router zones, each of which
denotes the subset of subnet routers therein. We can see
that the attack leads to a network-wide shift in spatial-
temporal correlation, and congestion at the victim (I1)
reveals itself. Since we can observe this phenomenon and
get the time and location of the attack (and without any
help from the suffering victim), this type of monitoring
should be meaningful to trigger detailed detection and
filtering. On the other hand, Fig. 3 also contrasts the
distinct effect of the transient period (during onset of the
attack) with indistinctness after the new pattern becomes
steady (say around t ¼ 900 s). With fewer observation
points, the effect of transient periods is helpful for
monitoring the network-wide pattern shifting over time
[7], [25].

Attack intensity H may influence spatial-temporal
dynamics. Fig. 4 shows the spatial-temporal pattern of a
constant-rate attack with H ¼ 1=10 (100 pps per source),
and the weaker visibility of I1 (compared against Fig. 3

when H ¼ 1=5). We can easily imagine an attack weak

enough not to cause an apparent shift of spatial-temporal

correlation. In such cases, our method would prove

ineffective.
While current detection methods seem designed mainly

to counter constant-rate DDoS attacks, attackers may choose

more sophisticated attack dynamics. As defense mechan-

isms are deployed to counter simple attacks, we are likely to

see more complex attack patterns that make counter-

measures against attacks more difficult.

5.2 Increasing Rate Attack

Usually, an abrupt change in traffic volume is an important

signal to initiate anomaly detection. Attacks that exhibit a

gradually increasing rate, as shown in Fig. 2b, may lead to

slow exhaustion of a victim’s resources. The state change in

the victim network could be so gradual that services

degrade slowly over a long period, delaying detection of
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Fig. 2. Attack dynamics for: (a) constant rate, (b) increasing rate,

(c) subgroup, and (d) pulsing.

Fig. 3. Spatial-temporal pattern of constant-rate attack with H ¼ 1=5.

Fig. 4. Spatial-temporal pattern of constant-rate attack with H ¼ 1=10.



the attack; thus, some other form of anomalous pattern
must be identified.

In this experiment, we assume that the steady attack rate
(H ¼ 1=5) of each attack source is achieved gradually over
300 seconds (from t0 ¼ 500 s to t1 ¼ 800 s) starting from a
weak rate (H ¼ 1=35). Here, each attack source begins by
generating about 29 pps, which increases gradually to a full
rate of 200 pps. Fig. 5 shows the spatial-temporal pattern of
this increasing-rate attack. The attack gradually builds up
congestion in router I1 as attack intensity increases and,
thus, reveals itself in the spatial-temporal evolution. An
increasing-rate attack might deliberately accelerate slowly
taking a very long time to reach a steady intensity; however,
we believe that the congestion caused by this class of attack
will still be discovered eventually [25].

5.3 Natural-Network-Congestion-Like Attack

Flash crowds on the Internet can trigger false alarms among

DDoS attack-detection mechanisms. Further, DDoS attacks

may mimic natural network congestion in order to avoid

detection [6]. Usually, legitimate traffic occurs in waves,

while DDoS attacks, such as ICMP ping flooding, direct

malicious traffic toward victims in a fairly persistent form.

An experienced attacker may design each attack source to

behave like a normal user, exhibiting bursts of traffic

followed by silent periods, so that the flooding attack would

appear similar to natural network congestion. In particular,

if attack packets use the same forged source addresses

during each burst period, then the attacks cannot be

detected simply by recognizing sudden change in the

number of connections [39].
Following the expression formulated by Huang et al. [6],

we can calculate the minimum number of attack sources
required to deplete the link capacity (Cv packets/ms) of a
victim,

Ns � Cvð�0
on þ �0

offÞ=�0
on; ð5Þ

where �0
on and �0

off denote the mean ON and OFF periods
for each source. In our experiments, the capacity of the

victim subnet is 20 packets/ms, i.e., Cv ¼ 20. If we set �0
on ¼

5 ms and �0
off ¼ 50 ms, then Ns � 220. Here, we use only

50 such attack sources to degrade victim performance, and
we observe if this low-grade attack leads to a corresponding
shift in spatial-temporal pattern. Fig. 6 shows the spatial-
temporal pattern formed by this low-grade attack, which
mimics natural network congestion. The spatial-temporal
evolution reveals the induced congestion.

5.4 Pulsing Attack

Pulsing attacks, exhibiting a fluctuating rate oscillating
between H and zero, periodically reduce attack traffic in
order to avoid detection. The dynamics of a pulsing attack
appear as an ON/OFF pattern with period Tp and burst
duration lp, as shown in Fig. 2d. During a pulsing attack,
attack sources periodically abort the attack only to resume
it later.

In our simulated pulsing attacks, we set Tp ¼ 300 s,
lp ¼ 60 s, and H ¼ 1=5. Fig. 7 shows the resulting spatial-
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Fig. 5. Spatial-temporal pattern of increasing-rate attack with H ¼ 1=5

increased fromH ¼ 1=35 over 300 seconds from t0 ¼ 500 s to t1 ¼ 800 s.
Fig. 6. Spatial-temporal pattern of natural-network-congestion-like
attack with �0

on ¼ 5 ms, �0
off ¼ 50 ms, and Ns ¼ 50.

Fig. 7. Spatial-temporal pattern of pulsing attack with Tp ¼ 300 s,

lp ¼ 60 s, and H ¼ 1=5.



temporal pattern; the attack is clearly revealed. The
dynamic nature of the pulsing attack leads to frequent
shifts in the traffic pattern, which strengthens correlation
and causes the greater weight of victim I1 to persist.

A sophisticated attacker may attempt to launch a special

variant of the pulsing attack: a low-rate TCP-targeted DDoS

attack [40], which exploits the TCP retransmission time-out

mechanism to throttle TCP flows, while eluding detection.

Under such an attack, TCP flows to the victim may

continually incur loss as they try to exit their timeout

states. The TCP-targeted DDoS attack transmits short-

duration high-rate bursts periodically. We simulate such a

TCP-targeted attack with the same parameters used by

Kuzmanovic and Knightly [40], i.e., Tp ¼ 1:1 s, lp ¼ 100 ms,

and H ¼ 1. Fig. 8, which shows the spatial-temporal pattern

of this TCP-targeted DDoS attack, still reveals the induced

congestion at the victim I1.
Note that the weight of the victim in Fig. 8 does not

benefit from the dynamics of this TCP-targeted attack. Fig. 8
is similar to Fig. 4 and Fig. 6, which exhibit natural patterns
of congestion. In fact, the actual intensity

lp �H

Tp
¼ 0:1� 1

1:1
¼ 1

11

� �

of our simulated TCP-targeted attack is the same as the
intensity

�0
on

�0
on þ �0

off

¼ 5

5þ 50
¼ 1

11

 !

of our attack that mimics natural network congestion,

which is similar to the intensity (H ¼ 1=10) of our simulated

constant-rate attack (Fig. 4). The TCP-targeted and the

natural-congestion attacks both exhibit fluctuating rates but

over small timescales (near or under 1 s); so, the associated

spatial-temporal traffic patterns tend to become steady

more quickly, causing loss of the increased correlation

associated with changing traffic patterns. However, the

dynamics of the pulsing attack (Fig. 7) varies over a larger

time scale (about 300 s); so, the increased correlation is

present not only at onset of the attack, but continues to

appear during the entire attack.

5.5 Subgroup Attack

If compromised sources are divided into several subgroups
that coordinate so that one subgroup is always active, then
successive attacks by the subgroups can still induce
continuous denial of service at an attack victim. To
simulate a subgroup attack, we divide 50 attack sources
into three subgroups. As shown in Fig. 2c, each of the three
subgroups (I: 17 sources, II: 17 sources, and III: 16 sources)
is active in turn: the first subgroup attacking from t0 to t1,
the second subgroup attacking from t1 to t2, and the third
subgroup starting from t2. Here, we set t0¼500 s, t1¼680 s,
t2 ¼ 860 s, and H ¼ 1=5. This results in a situation where
the aggregate attack rate does not exceed 3,400 pps (or
about one in 5,900 normal packets). We also arrange the
three subgroups spatially in the left, the middle, and the
right of the network so that the attack changes direction
dynamically. Such attack dynamics make it difficult for
traceback approaches [41], [42] to identify the attack
sources and for aggregate congestion-control (ACC) me-
chanisms [43] to capture the congestion signature.

Fig. 9 shows the spatial-temporal pattern of our
simulated subgroup attack, which reveals itself through
the signature of congestion at victim I1. Comparing against
the constant rate attack (Fig. 4), we find the dynamic nature
of the subgroup attack seems advantageous for detection by
our analysis method because the increased correlation
induced by shifts in attack traffic keeps the weight of the
victim I1 salient over a longer time range.

Fig. 10 shows the spatial-temporal pattern of only five
backbone-router zones (G to K), where the weight vector SS
evolves with T ¼ 2 s and with the time window MT
(¼ 200� 2 s ¼ 400 s) sliding ahead every 20 s, revealing
the congestion arising in the subnet I1. The effects of the
subgroup attack remain evident, while the observation of
only a portion ½LðN � 1Þ ¼ 72� of the network requires less
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Fig. 8. Spatial-temporal pattern of TCP-targeted attack with Tp ¼ 1:1 s,

lp ¼ 100 ms, and H ¼ 1.

Fig. 9. The spatial-temporal pattern of the subgroup attack with three

subgroups and H ¼ 1=5.



computing time and memory than for the case of Fig. 9,
where LðN � 1Þ ¼ 156. This hints at future investigation
into trade-offs between detection ability and space-time
granularity in order to understand how much computing
time might be required to achieve specific levels of
detection.

6 DISCUSSION

The approach we propose aims at monitoring network
traffic at a macroscopic level in order to reveal dynamic
shifts in congestion patterns, which might signal onset of a
DDoS attack. Our method reveals possible attacks without
observations near the victim. On the other hand, our
technique cannot readily distinguish the cause of observed
congestion, which might result from flash crowds or partial
network outages, as well as from DDoS attacks. For this
reason, our method can only serve as an alert function to
trigger more detailed monitoring mechanisms, focused on
particular points where congestion appears. Such a two-
pronged strategy could improve the efficiency and effec-
tiveness of monitoring functions because detailed monitor-
ing processes consume substantial resources. Incorporating
our approach could permit such processes to be activated
only where and when needed.

We illustrated that our approach could succeed when
observing at only a subset of possible measurement points;
thus, reducing associated computation and memory cost.
On the other hand, such reduction can be effective only
when the network operates with sufficient space-time
correlation; thus, lightly loaded networks might prove
unsuitable for monitoring with only a few observation
points. Elsewhere in [7], we found our method effective
when monitoring at only 10 percent of available points.
Effectiveness diminished, however, when we monitored at
only 5 percent of available points.

Overall, our method provides significant information

only if attacks cause apparent effects on network conges-

tion. On the other hand, we showed our method could

detect stealthy DDoS attacks more readily than constant-

rate attacks, which inject higher volumes of attack traffic.

For example, with our analysis method, pulsing and

subgroup attacks exhibit increased congestion over a longer

period than constant-rate attacks. This occurs because our

method benefits from increased correlations arising during

periods of changing traffic patterns. Stealthy attacks can

extend periods of change. This demonstrates that our

approach is not wholly dependent on the intensity of attack

traffic. Of course, we can imagine a DDoS attack weak

enough not to cause any apparent shift in spatial-temporal

correlation.
Regarding efficiency, the technique we propose should

require fewer resources than spatial approaches [21], [36] to
macroscopic-level monitoring. This derives from the fact
that we consider only the eigenvector corresponding to the
largest eigenvalue, which we associate with a strong
correlation over the whole network. Even so, our method
requires computing a K �K cross-correlation matrix and
then finding all K eigenvectors. Recall that K ¼ LðN � 1Þ,
where L is the number of observation points and N is the
number of areas to be observed. This suggests limits on
monitoring area and frequency and on the number of
observation points.

In previous work [7], we investigated the computational

and memory requirements of our technique. Storing our

matrix requires at least b:K2 bytes, where b is the number of

bytes allocated to each cell. Computing the correlation

matrix and all eigenvalues and eigenvectors with MATLAB

on a 1 GHz personal computer (PC) required: 1) 0.06 s for

K ¼ 108, 2) 1.1 s for K ¼ 320, and 3) 9.98 s for K ¼ 640.

Extrapolating from these observations, we estimate com-

puting a K ¼ 800 matrix within the 20 s monitoring cycle

used in this paper. Storing such a matrix would require

about five Mbytes (we used eight bytes per cell). Similarly,

we estimate computing a K ¼ 1; 000 matrix within 35 s at a

memory cost of eight Mbytes. Storing a network-wide (e.g.,

K ¼ 10; 000 matrix) would require 800 Mbytes of memory

and take about seven hours to compute; thus, our approach

cannot be adopted directly to monitor the Internet. Despite

such scaling limitations, our approach could be applied by

cooperating Internet service providers (ISPs) to offer DDoS

alert services to paying subscribers.

Assume that k1 ISPs form a peer-to-peer (P2P) network,

consisting of k2 nodes (k � k1), to share data and offer a

DDoS alert service about M monitored targets of interest to

a subscriber. Further, assume that k3 observation points

(k3 � k2 � k1) are distributed within the ISPs. Each of the

k2 P2P nodes is charged with calculating a weight vector

for a subset N (� M) of the monitored targets. From

L observation points (L � k3), each P2P node would gather

flow data (xij) about the M monitored targets, where each

xij represents traffic from the ith (1::L) observation point to

the jth (1::M) monitored target. Each P2P node then collects

flow data (but only for its N monitored targets) from the

other (k2� 1) P2P nodes and aggregates this with the

relevant flow data measured within its own domain.

Suppose this process of gathering the flow data needs time

t1. After aggregating flow data from the other nodes, each

P2P node uses our approach to calculate the weight vector

for just its N monitored targets and, subsequently, forwards

the weight vectors to an alert process operating on behalf of
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the subscriber. Suppose this process of calculating the

weight vectors needs time t2. To achieve real-time monitor-

ing, each P2P node, assuming a given number of observa-

tion points (k3), may not take on too many monitored

targets (N), and the granularity of the monitoring time (T )

must be larger than t1þ t2.
For example, assume L ¼ 10 observation points assigned

to each of k2 ¼ 4 P2P nodes; thus, k3 ¼ 40 (L� k2) observa-
tions points. Supposing that a subscriber wishes to monitor
M ¼ 100 targets, so that each P2P node is responsible for
monitoring N ¼ 25 targets, then each P2P node would need
to collect an L�M [i.e., 10*100] element flow data set.
Assuming each element takes 4 bytes, then transmitting this
4,000 bytes would take only t1 ¼ 320 us (assuming 100Mbps
transmission speed). Further, assuming use ofMATLAB on a
1 GHz PC, computing a weight vector for a

K ¼ ðN � 1Þ � k3 � N � k3 ¼ 25� 40 ¼ 1; 000

matrix would require about t2 ¼ 35 s. Under these assump-
tions, our method could provide a DDoS alert service to a
subscriber interested in monitoring M ¼ 100 targets within
a T ¼ 90 s lag time.

From this discussion, the trade-offs become clear
between time lag, the number of observation points, and
the number of monitored targets. One may increase the
number of observation points by lowering the number of
targets monitored or by adding more cooperating nodes to
keep the number of targets within a suitable range to
achieve the desired time lag. The time lag may also be
increased as an alternative to increasing the number of
cooperating nodes. Of course, the cooperating ISPs may
deploy additional sets of cooperating nodes to serve the
requirements of more subscribers, each of whom presum-
ably is interested in monitoring a different set of targets.
One could imagine cooperating ISPs offering such DDoS
alert services to paying subscribers, particularly businesses
that might wish to monitor on the order of a few hundred
sites deployed around the globe.

7 FUTURE WORK

We plan to investigate the ability of our method to detect
DDoS attacks under more realistic conditions. First, we may
consider alternate patterns of background traffic in two
respects: effects of correlation and effects of higher
variability. What is the minimum level of correlation in
network traffic required to sense shifts in spatial-temporal
traffic patterns with only a few observation points? More
generally, can we establish trade-offs among level of
correlation and needed number of observation points? We
suspect that higher variability in background traffic might
benefit our analysis method by increasing correlation in
network traffic. To explore effects of higher variability, we
may select destinations from nonuniform distributions.
Second, we may explore relationships between attack
characteristics and the detection ability of our method.
The results reported here suggest our technique is more
sensitive to attacks with changing patterns than to attacks
with higher, sustained intensity. This indicates potential for
our method to reveal several classes of stealthy attack. We

seek a clearer understanding of relationships between
attack characteristics and detection sensitivity.

8 CONCLUSIONS

Creating defenses for DDoS attacks requires monitoring
dynamic network activities in order to obtain timely and
significant information. While much current effort focuses
on detecting constant-rate attacks, attack patterns appear
likely to become more sophisticated. In this paper, we
proposed a means for early detection of DDoS flooding
attacks by monitoring macroscopic (network-wide) effects.
We experimented with different attack modes: constant
rate, increasing rate, natural-network-congestion-like, pul-
sing, TCP-targeted, and subgroup attacks. We found that
these attacks, which have the apparent effect of inducing
network congestion, reveal themselves through shifts in
spatial-temporal patterns that exhibit the same signature:
congestion at the victim network. Our simulation results
show that macroscopic-level monitoring could capture
shifting traffic patterns during transient periods with
relatively few observation points. Our analysis method
reveals the time and location of an attack without
observations from the suffering victim. We also find the
dynamic nature of selected attack types (e.g., subgroup and
pulsing attacks) may be advantageous for our analysis
method because increased correlation induced by changes
in attack traffic keeps the weight of the attack victim salient
for longer periods. Our results suggest that macroscopic-
level monitoring might be both practical and helpful for
triggering more focused detection and filtering in transit or
source networks. Further work is needed to investigate
engineering trade-offs among the space and time granular-
ity of monitoring, the number of observation points, and the
ability to detect attacks under diminishing levels of
intensity.
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