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ABSTRACT 
Developing optimized distributed protocols for large-scale 
networks is a challenging problem due to scalability and stability 
concerns.  Scalability concerns can be naturally addressed by 
interpreting distributed protocols as a non-cooperative game of 
local protocol components attempting to maximize their 
individual utilities.  One of the difficulties in implementing this 
approach is developing adaptive algorithms capable of learning of 
the expected utilities and adjusting the corresponding control 
actions for the purpose of approaching the solution to the 
corresponding game, and thus optimization of the global system 
performance.  It is known that the best response by each 
component to its expected utility may result in unstable behavior 
and deterioration of the overall performance.  On an example of 
cross-layer optimization of a TCP/IP network, this paper 
discusses the possibility of avoiding these undesirable effects by 
allowing the control actions occasionally deviate from their best 
response values.  Using simulations, the paper suggests that (a) 
sufficient level of randomness in route selection improves the 
network performance by eliminating the route flapping instability, 
(b) the optimal level of randomness keeps the network within the 
stability region in close proximity to the border of this region, and 
(c) it may be possible to optimize the network performance by 
adjusting the level of randomness. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: – modeling techniques, 
performance attributes, reliability, availability, and serviceability. 

General Terms 
Algorithms, Management, Performance, Design, Reliability, 
Theory. 

Keywords 
Distributed protocols, optimization, learning algorithms, game 
theory, TCP/IP, OSPF, randomized routing, routing stability. 

1. INTRODUCTION 
Recent technological advances made implementation of 
complicated adaptive network management algorithms 
technologically feasible [1].  Adaptive network management 
algorithms extract essential information from real-time or near 
real-time measurements and produce the appropriate responses.  
Developing optimized distributed protocols for large-scale, self-
managed systems is a challenging problem due to scalability and 
stability concerns.  Scalability concern can be naturally addressed 
by interpreting distributed protocols as a non-cooperative game 
where each component is modeled as a player attempting to 
maximize its own utility [2].  Success of this game theoretic 
approach, however, requires solving two major problems.  The 
first problem is identifying of the “optimal” individual utilities 
through resource pricing so that (hopefully unique) Nash 
equilibrium in this game optimizes the overall network 
performance.  Since typically such “optimal” individual utilities 
are themselves solution to some global optimization problem, the 
second problem is developing adaptive algorithms capable of 
learning of the expected utilities and adjusting the corresponding 
control actions for the purpose of approaching the solution to the 
corresponding game, and thus optimization of the global system 
performance.  Distributed, adaptive algorithms attempt to 
approach the global optimum by learning evolution, when each 
player makes its decisions based on the history of its own 
decisions and responses by other players [2].  Typically, if this 
evolutionary process converges, the corresponding steady state 
also represents the Nash solution to the corresponding game and 
thus optimizes the overall steady-state performance.  The 
convergence, however, is not guaranteed even in a rather 
exception case of a pure Nash equilibrium in the corresponding 
game, let alone a common case of a mixed Nash equilibrium. 

A classical networking example of such instability is route 
flapping in a situation of equal cost multipath [3].  It is known [4] 
that under certain conditions the necessary and sufficient 
condition for the routing algorithm to achieve optimal load 
balancing is to select minimum cost route, where the link costs 
are increasing and convex functions of the link loads.  However, 
adaptive version of this routing, which estimates the average link 
loads, and then routes the entire flow on the minimum cost path, 
increases load on the minimum cost route until flow admission 
strategy takes over or at least two feasible routes have 
approximately the same cost.  After that the routing decisions 
become very sensitive to the route costs causing route flapping 
instability, which significantly increases the amount of signaling 
traffic and may cause deterioration in the network performance 
[5].  Conventional approach to ensuring convergence to the 
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optimum is switching only a small (infinitesimal) portion of 
traffic on the minimum cost route [6].  Except for MPLS, 
currently existing routing algorithms, such as Open Shortest Path 
First (OSPF) and its Traffic Engineering (TE) extensions require 
flow level granularity in load balancing, i.e., all packets of the 
same flow are to be routed on the same minimum cost path to 
avoid out of order arrivals [3]. 

Practical protocol implementations usually offer some 
phenomenological mechanisms for alleviating instability 
problems.  For example, OSPF routing protocol assumes uniform 
traffic split among multiple equal minimum cost routes in order to 
achieve better load balancing and allows minimum period of 30 
seconds for the link cost updates [3].  New technological 
advances allow for more flexibility in tuning the protocols to 
specific conditions.  Taking advantage of these emerging 
capabilities requires better understanding of various trade-offs 
involved in protocol design, including stability/performance 
trade-off.  Possibility of stabilization of a minimum cost routing 
by adding the load independent component to link costs has been 
discussed in [5], [7]-[8].  The main conclusion is that stability 
generally requires the relative weight on the dynamic (load 
sensitive) component of the link cost to be sufficiently small.  
Increase of the dynamic component improves the network 
performance until the performance peaks and then deteriorates.  
Deterioration in the network performance occurs close to the 
point of loosing stability. 

Recently, IP community expressed interest in relaxing OSPF 
requirement to split load equally among feasible routes of 
minimum cost in a situation of equal cost multi-path [9]-[10].  
Paper [9] has demonstrated that any (including optimal) routing 
can be viewed as a minimum cost routing based on some link 
costs assuming, however, the ability to split traffic arbitrarily 
among multiple feasible minimum cost routes.  Paper [9] has 
argued that technologically such ability may be achieved in IP 
network running OSPF or IS-IS protocols by manipulating the set 
of next hops for route prefixes.  Due to inherent uncertainties in 
the external demands and network conditions, e.g., due to link 
failures, it is natural to attempt to determine the set of optimal, 
i.e., minimum cost, routes and the optimal load split among these 
routes adaptively, based on the on-line measurements.  This paper 
is a preliminary attempt to identify approach to this problem in a 
context of cross-layer optimization of a TCP/IP network.  The 
paper proposes a scheme allowing flows to be routed on “almost” 
minimum cost paths.  The load split among “almost” minimum 
cost routes is optimized by sending more flows with the same 
source-destination on the paths with lower estimated costs.   

The proposed scheme allowing routing decisions occasionally 
deviate from their optimal (minimum estimated cost) route 
selection has natural interpretation as a learning or evolutionary 
algorithm.  One may expect that adding “noise” to the system 
dynamics may stabilize the system in some neighborhood of the 
optimal state, trading steady-state performance under quasi-
stationary conditions for robustness under unexpectedly changing 
conditions.  The question we are most interested in this paper is 
stabilization and optimization of the network by such 
randomization.  Note the difference between this view and view 
accepted in genetic algorithms, where algorithm mutation is 
basically a discovery mechanism.  

The paper considers a TCP/IP network where TCP-AQM 
flow control mechanism is assumed to maximize the aggregate 
utility [5].  We assume that a single route is selected for each 

arriving flow, and that TCP-AQM instantaneously maximizes the 
aggregate utility.  These assumptions reflect flow level 
granularity in load allocation and much faster TCP-AQM 
convergence then a flow arrival/departure process.  Section 2 
abstracts TCP operations as an aggregate utility maximization 
problem for a given set of flows.  Section 3 characterizes the 
optimal flow level granularity routing and introduces a non-

cooperative game *G  with a Nash equilibrium representing the 
optimal routing.  Learning algorithm attempting to approach this 
equilibrium by the best responses to the expected utility 
represents the minimum cost routing and may exhibit route 
flapping instability causing sharp deterioration in the network 
performance.  Section 4 describes a minimum average cost 
routing representing the stochastic fictitious play in the 

corresponding game *G .  Section 5 describes a model for the 
network dynamics with the minimum average cost routing and 
random number of flows in progress due to random flow 
arrivals/departures.  Section 6 reports simulation results indicating 
that (a) sufficient level of randomness improves the network 
performance by eliminating the route flapping instability, (b) the 
optimal level of randomness keeps the network within the 
stability region in close proximity to the border of this region, and 
(7) it may be possible to adaptively optimize the level of 
randomness. Finally, conclusion summarizes the results and 
outlines direction for future research. 
 

2. MODEL 
A network is comprised of a set of nodes Nn ∈  connected by 

bi-directional links Ll ∈  with finite capacities lc .  Traffic with 

source-destination Ss ∈  can be routed over feasible acyclic 

paths sRr ∈ .  We assume that there are ss KM dim=  

users sKk ∈  generating demand with source-destination s .  

Each user sKk ∈  has utility function )(xus  of transmitting at 

a rate 0≥x , where functions )(xus  are strictly increasing and 
continuous. 

It is known [11], [5], that TCP-AQM results in the bandwidth 
allocation maximizing the aggregate utility.  Note that for TCP 
utility functions )(xus  are typically strictly concave.  Assuming 

that user sKk ∈  traffic can be arbitrarily split among feasible 

routes sRr ∈ , the aggregate utility maximization problem is as 
follows: 
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where krx  is the user sKk ∈  rate on a feasible route sRr ∈ , 
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is the total link l  load. 
 Sometimes it is more convenient (and also relevant [11]) to 
replace capacity constraints (2) with penalty function in the 
optimized criterion.  Consider the following optimization problem 
                                 W
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subject to constraints (3)-(4), where the social welfare is 
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and penalty functions lf  are monotonously increasing and 
convex: 
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),0[ ∞∈∀y . 

In this paper we assume that the entire user sKk ∈  flow 
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is routed on a single path skr .  It is straightforward to modify 
optimization problems (1)-(4) and (5)-(6) to account for this 
requirement by adding the corresponding integer constraints 
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Further in the paper we always assume that numbers of users with 
the same source-destinations are large: 
                           SsM s ∈∀>> ,1                                   (11) 

In this practically important case solution to the corresponding 
discrete optimization problem can be approximated based on the 
solution to the following continuous optimization problem: 
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subject to constraints 0≥srz .  If solution to optimization 

problem (12) is known: )( srzZ = , the optimal flow-level 
granularity routing algorithm allocates 
                              ssrsr MM α≈                                        (13) 

users Ss ∈  on a route sRr ∈ , where 

                             ∑
∈′

′=
sRr
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In a case when user utilities )(xus  are concave, optimization 
problems (1)-(4) and (3)-(6) are convex and thus they have unique 

optimal solution *X  and no other locally optimal solution exists. 

3. MINIMUM COST ROUTING 
A necessary condition for a vector )( srzZ =  to be a solution 
to optimization problem (12) can be characterized in terms of the 
link costs (7) as follows [5]-[6].  A set of path flows is optimal if 
the flows are positive on feasible paths of minimum cost, where 
the cost of a path is a sum of the costs of the path’s links: 

                                    ∑
∈

=
rl
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and the link costs (7) are calculated at the point )( srzZ = .  

These necessary conditions are also sufficient if utilities )(xus  
are concave and thus optimization problem (12) is convex.  The 
characterization of the optimal load allocation in terms of the 
minimum cost routing implies that at the optimum the paths along 
which the load with the same source-destination Ss ∈  is split 
must have the same cost, which is the minimum cost over all 
feasible paths with the same source-destination s  (a situation of 
equal cost multi-path). 

Given route costs rd , consider individual optimization 

problem for a user sKk ∈  

                         );,(~maxmax
0

dxrU sxRr s ≥∈
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where the individual net utility is 

                   rss xdxudxrU −= )();,(~
                           (17) 

Optimization problem (16)-(17) can be rewritten as follows: 
                     { }rRrsx

dxxu
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− min)(max
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with internal optimization having a form of a minimum cost 
routing: 
                                     rRr

d
s∈

min                                               (19) 

In absence of the equal cost multi-path situation solving 
individual optimization problem (16)-(17) by each user 

SsKk s ∈∈ ,  independently from each other results in the 

optimal load allocation if the link cost ld  are “right”.  This 
simple observation suggests possibility of a distributed algorithm 
for optimization of the overall network performance.  However, 
achieving this goal requires first, identifying the “right” link costs, 
an, second, dealing with equal cost multi-path situation when 
minimum cost route selection (19) is indifferent between two or 
more minimum cost routes. 

Solving these problems requires accounting for the 
“interactions” among different users (flows) due to dependency of 
the actual route costs in each user individual net utility (17) not 
only on the routing and flow control decisions made by this user, 
but also on the routing and flow control decisions made by other 
users.  Accounting for these interdependencies naturally leads to 
the following game theoretic interpretation of the optimal load 
allocation problem.  Consider a non-cooperative game G  of all 

users sKk ∈ , Ss ∈ .  User k  attempts to select its route 

sk Rr ∈  and rate ),0[ ∞∈kx  in order to maximize its utility 

  ),()(),;,( kkrkkskkkks xrdxxuxrxrU
k −−−− −=   (20) 



where vector kr−  includes routes and vector kx−  includes rates 

for all users except user k .  Note that expression (20) assumes 
(11).  Solution to the user optimization problem 
                ),;,(maxmax

0 kkkksxRr
xrxrU

ksk
−−≥∈

                       (21) 

depends on the decisions by other users.  Note that this game 
theoretic formulation assumes that instantaneous information on 
the link costs is available to the users and users can 
instantaneously react to this information by adjusting their routes 
and transmission rates.  In practical applications, the frequency of 
link cost updates is upper bounded, e.g., for OSPF routing 
protocol the shortest period between link costs updates is 30 
seconds [3].  Section 5 accounts for finite frequency of link cost 
updates in the dynamic model of route selection. 

Due to much faster TCP-AQM convergence than frequency 
of routing updates we assume that given routes for all users, rates 

*
kk xx =  maximize the criterion (6).  This can be justified when 

user utility functions )(xus  are typically strictly concave and 

thus game G  in rates )( kx  for given routes )( kr  have unique 

pure equilibrium )( *
kx , where ssk Kkzx ∈= ,**  and )( *

sz  

is the unique solution to the following optimization problem 
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for given portions of flows routed on different feasible paths 
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where 1),( =jiδ  if ji =  and 0),( =jiδ  otherwise.  

Under this assumption routing and flow control game G  

simplifies into routing game *G  where each user sKk ∈  

selects its route kr  in an attempt to minimize the route cost: 

                               )(min *
krRr

rd
sk

−∈
                                         (24) 

where the route costs are calculated assuming that user rates have 

already reached the optimum *
kk xx =− : 

                      ),()( **
kkrkr xrdrd −−− =                               (25) 

Importance of the game *G  follows from the following two 
observations: (a) minimum cost routing (19) can be viewed as the 

best user response in the game *G , where rr dd ~=  are the 
observed route costs, (b) there is a close relation between Nash 

equilibrium strategies in the game *G  and solution to 
optimization problem (12).  It can be shown that each local 
maximum in (12) corresponds to Nash equilibrium in the game 

*G , where user sKk ∈  selects strategy sk Rr ∈  with 

probability srα , given by (14).  A local solution to (12), which 
sends entire traffic with the same source-destination s  on a 

single feasible route ss Rr ∈* , corresponds to pure equilibrium 

strategy *
sk rr = for users sKk ∈  in the game *G .  Solution 

to (12), which splits traffic with the same source-destination s  

among feasible routes sRr ∈ , corresponds to mixed strategy for 

users sKk ∈  in the game *G : select route sRr ∈  with 

probability srα , given by (14). 

4. MINIMUM AVERAGE COST ROUTING 
The following minimum average cost routing reduces sensitivity 
of the routing decisions to the instantaneous link utilization by 
randomizing routing decisions.  Given the observed route costs 

rr dd ~= , each user s  selects a route sRr ∈  with probability 

srβ , where distribution ),( ssrs Rr ∈= ββ  minimizes the 
average route cost 
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subject to conditions ssrsr Rr ∈≥=∑ ,0,1 ββ  and 

the following condition 
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k

≥− ∑
∈

ββ log                               (27) 

requiring a certain level of randomness in the route selection 
measured by the entropy of this selection sh . 

It is known [12] that solution to (26)-(27) is as follows 
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where  
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and sγγ =  is the unique solution to equation 

                           sss hDA =+− γ                                      (30) 
The average route cost (24) can be expressed as follows 
                            γγ ddAD ss )(=                                   (31) 

It is easy to verify that a case 0=sh  or, equivalently, 

∞=sγ , corresponds to the minimum cost routing selection, 

and that a case )log(dim ss Rh =  or, equivalently 0=sγ , 

corresponds to the equal flow split among sRdim  feasible 

routes sRr ∈ .  Figure 1 sketches the probability 1β  of route 

1r  selection as a function of the difference in the route costs 

12 dd −  in a case of two feasible routes: },{ 21 ddRs = .  
Note, that procedure (28)-(30) can be easily generalized to 
include routing only over a subset of “almost” minimum cost 



feasible routes ss RRr ⊆∈ * , e.g., routes having “sufficiently” 
low cost. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Probability of route 1r  selection 

           )0( 210 ∞=<<<= ∞γγγγ . 
 

A minimum average cost route selection with positive entropy 
0>h , or equivalently finite parameter ∞<γ , reduces the 

overall system performance measured by the criterion (6), 
comparatively to a case of the minimum cost routing with 

0=h , or equivalently ∞=γ , assuming that this minimum 

cost routing is stable.  For small entropy 0>h , or equivalently 
large parameter ∞<γ , this loss in performance can be 
estimated as follows: 

              ( )∑ −≈−
s

sss
opt DDaWW min                       (32) 

where the average and the minimum route costs for a user 

sKk ∈  are respectively sD  and 

                         srRrs dD
s∈

= minmin                                          (33) 

and 0>sa  are some constants.  Expression (32) suggests 

minimum cost route selection (19), for which min
ss DD = .   

However, minimum cost routing may result in unstable 
behavior, which typically leads to deterioration on the network 
performance and undesirable transient effects.  Stability 
requirements impose low limit on the average cost of a selected 
route (see Section 6 of the paper).  Figure 2 sketches selection of 
the optimal operating point )( sD  subject to the stability 

constraints in a case of two source-destinations }2,1{=S .  The 
shape of the stability region can be obtained by stability analysis 
of the presented in the next section network dynamic equations.  
In this paper we only conjecture that this stability region is 
convex in the average route costs. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Optimal operating point 
 

5. DYNAMICS AND LEARNING 
Consider the following model of TCP/IP operation.  Link costs 
are updated and routing decisions are made at moments 

,..2,1,0, == iiti τ .  Flows arriving during time interval 

),[ 1+∈ ii ttt  are routed based on the link costs at the moment 

itt = , while “fast” TCP-AQM flow control keeps the 
transmission rates of all flows at the optimal levels all time.  
Thus, the number of flows sKk ∈  routed on a path sRr ∈  at 

step 1+i  is 
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where the total number of flows sKk ∈  in the system at step i  

is )(iM s , constant 
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route r  cost is 
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link l  cost is 
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link l  load at step i  is 
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and the rate of a flow sKk ∈   is 
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Note that in a case of file transfer, with Poisson flow arrivals 
and exponentially distributed file sizes, vector 
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( )SsRriM ssr ∈∈ ,:)(  forms a Markov chain for 

,..2,1,0=i   A case of a fixed set of flows can be obtained by 

assuming the total number of flows sKk ∈  in the system is 

fixed SsMiM ss ∈= ,)( .  In a case of a large numbers of 

flows in progress (11), zero order approximation of evolution of 
Markov chain ( )SsRriM ssr ∈∈ ,:)(  is described by a 
closed system of deterministic “averaged” equations for the 
vector of averages ( )SsRriME ssr ∈∈ ,:)]([ .  In a case 
when optimization problem (12) has a solution, which does not 
split demand with the same source-destination among multiple 
feasible routes, this optimum is an equilibrium for the averaged 
system.  As it has been shown in [5], even in this case, the 
equilibrium may be unstable for the minimum cost routing (34)-
(40) with 0)( ≡ihs , or equivalently, ∞≡)(isγ , 

,..2,1,0, =∈ iSs .  This “route flapping instability” is 

typical in a general case when optimization problem (12) has a 
solution, which splits demand with the same source-destination 
among multiple feasible routes.  The instability can be prevented 
by reducing sensitivity of the link costs to the link utilization.  
Paper [5] has considered such a reduction by adding a static 
component to the link costs in a case when optimization problem 
(12) has a solution, which does not split demand with the same 
source-destination among multiple feasible routes. 

We propose reducing sensitivity of the link costs to the link 
utilization with minimum average cost routing (34)-(36) by 
controlling entropies )(ihs , or equivalently, parameters )(isγ , 

for ,..2,1,0, =∈ iSs  in a general case when optimization 

problem (12) has a solution, which splits demand with the same 
source-destination among multiple feasible routes.  Game 
theoretic interpretation offers important insights into this problem.  
A minimum average cost routing (34)-(36) represents a smooth 

(logistic) fictitious play [2] in the game *G  allowing one to 
leverage relevant results on the learning in games for distributed 
protocol optimization.  For example, known results [2] obtained 
by application of stochastic approximation to learning algorithms 
suggest that randomized routing (34)-(36) with large ∞→sγ  
and link costs averaged over a large number of link cost update 
cycles results in load allocation close to the optimal. 

Note, that the game theoretic interpretation of the minimum 
average cost routing algorithm suggests other rationales for 
randomization of the routing decisions besides elimination 
instability, such as unavoidable uncertainties in the operating 
environment, such as link failures, and “protection” against 
malicious attempts to manipulate the link cost values by an 
adversary/adversaries [2], [13]-[14].  Also note that the minimum 
average cost routing can be interpreted as an evolutionary 
algorithm, where attempt to minimize the route cost by each user 

sKk ∈  represents selection while randomization of the routing 
decisions represents mutations.  The optimal operating point on 
Fig. 2 represents the optimal level of mutations.   

6. SIMULATION RESULTS 
This section presents simulation results indicating benefits of 
randomization of the routing decisions and possibility of adaptive 
optimization by adjusting the level of the randomness based on 
observed network stability/instability.  We uses the latest version 
(v.2.01) of the GLASS simulation tool [15].  We extended the tool 
so that it provided periodical link cost updates and added a 
module that calculated the link costs for each feasible route and 
made the minimum average cost routing decisions.  In order to 
investigate the possibility of adaptation we also implemented a 
module capable of observing history of route costs for the last 
several link cost update periods.  Note that the simulation has 
reflected only the “IP part” of the TCP/IP cross-layer 
optimization.  GLASS simulation has assumed that each arriving 
flow occupied a fixed bandwidth.  This assumption corresponds to 
a particular case of TCP/IP for rigid streaming applications with 
utility function closely approximated by a step-wise function. 

Figure 3 demonstrates existence of the optimal level of the 

randomness, represented by parameter 6.0≈optγ  for a fully 
connected network with 12 nodes and a Poisson flow arrivals.   
 

 

 

 

 

 

 

 

 

Fig. 3.  Fully connected network with 12 nodes: aggregate utility. 

Since simulation of one scenario (one set of parameters, including 
γ ) takes approximately 11 hours, we looked at one source-
destination pair, approximately accounting for the effect of the 
remainder of the network by fixed background traffic.  Running 
one scenario for this simplified network model takes 
approximately one hour.  To reduce simulation time further we 
investigated a simple two-node, two-link network shown on 
Figure 4. 

 

 

 

 

Fig. 4.  Two-node, two-link network fragment. 

 
This network qualitatively exhibits the same pattern of behavior 

shown on Figure 3 with 7.0≈optγ . 

Figure 5 shows evolution of the low capacity link cost for 
sufficiently high level of randomness in the route selection: 
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optγγ <<≤0 .  This evolution exhibits stable routing 
behavior without periodic pattern indicative of a route flapping 
instability.  Random fluctuations in the link cost result from 
random flow arrivals/departures.  Note that we cut off the link 
costs at certain level, arbitrarily scaled as link cost 1=d . 

 

 

 

 

 

 

 

 

Fig. 5.  Link costs: a case of stable routing )0( optγγ <<≤  

Figure 6 shows evolution of the low capacity link cost for 
sufficiently low level of randomness in the route selection: 

optγγ >> .  This evolution demonstrates unstable (periodic) 
routing behavior combined with random fluctuations resulted 
from random flow arrivals/departures.   
 

 

 

 

 

 

 

 

Fig. 6.  Link costs: a case of unstable routing )( optγγ >>  

Figure 7 shows evolution of the low capacity link cost on the 

border between stability and instability regions: optγγ ≈ .   

 

 

 

 

 

 

 

 

Fig. 7. Link costs: stability/instability border region )( optγγ ≈  

 

Figure 7 demonstrates emergence of unstable (periodic) pattern in 
the routing behavior.   

Simulation results presented on Figures 5-7 suggest that the 
optimal operating point lies within the network stability region in 
close proximity to the border of this region as assumed in off-line 
selection of the optimal operating point is depicted on Figure 2.  
We attempted to use this observation for adaptive optimization of 
the minimum cost routing.  Based on the last 10 link cost update 
periods, the adaptive version of the minimum average cost routing 
algorithm approximately determines if the routing behavior is 
stable (non-periodic) or unstable (periodic).  In the former case 
adaptive algorithm increases parameter γ  by 10 per cent.  In the 
latter case adaptive algorithm reduces parameter γ  by 50 per 
cent.  Figure 8 shows the corresponding random walk performed 
by the parameter γ . 

 

 

 

 

 

 

 

 

 

Fig. 8.  Random walk by parameter γ . 

Figure 9 demonstrates that the density of the probability 
distribution for this random walk is concentrated in the 

neighborhood of the optimal parameter 7.0≈optγ .  Simulation 
has also revealed that the performance loss for a case of the 
adaptive parameter γ  as compared to a case of preset optimal 

parameter optγγ =  is only 2-3 per cent.  This preliminary result 
may be viewed as an encouragement for future efforts in adaptive 
routing algorithms. 

 

 

 

 

 

 

 

 

Fig. 9.  Probability density of random walk by parameter γ . 
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7. CONCLUSION 
Based on interpretation of cross-layer optimization of TCP/IP 
network as a learning algorithm, this paper has reported initial 
simulation results indicating that (a) sufficient level of 
randomness in route selection improves the network performance 
by eliminating the route flapping instability, (b) the optimal level 
of randomness keeps the network within the stability region in 
close proximity to the border of this region, and (c) it may be 
possible to optimize the routing algorithm performance by 
adaptively the level of randomness in the route selection.  Current 
research investigates shape of the stability region and the optimal 
selection of the operating point conjectured in Figure 2.  This 
research is based on stability analysis of the discrete dynamic 
system (34)-(40).  Future efforts should be concentrated on on-
line determination of the set of “almost” minimum cost routes and 
estimation of the entropy of the route selection, based on the 
historic observations. 
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