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Abstract
Setting the control parameters of a genetic algorithm so as to obtain good results
is a long-standing problem. We define an experiment design and analysis method
to determine relative importance and effective settings for control parameters of any
evolutionary algorithm, and we apply this method to a classic binary-encoded genetic
algorithm (GA). Subsequently, as reported elsewhere, we applied the GA, with the
control-parameter settings determined here, to steer a population of cloud-computing
simulators toward behaviors that reveal degraded performance and system collapse.
GA-steered simulators could serve as a design tool, empowering system engineers to
identify and mitigate low-probability, costly failure scenarios. In the existing GA
literature, we uncovered conflicting opinions and evidence regarding key GA control
parameters, and effective settings to adopt. Consequently, we designed and executed
an experiment to determine relative importance and effective settings for seven GA
control parameters, when applied across a set of numerical optimization problems
drawn from the literature. This paper describes our experiment design, analysis, and
results. We found that crossover most significantly influenced GA success, followed
by mutation rate and population size, and then re-randomization point and elite
selection. Selection method and the precision used within the chromosome to repre-
sent numerical values had least influence. Our findings are robust over 60 numerical
optimization problems.

Keywords
Genetic algorithms, orthogonal fractional factorial experiment design, sensitivity
analysis.

1 Introduction

We aim to devise tools that system engineers can use to explore model-based designs
for low-probability, costly failure scenarios (Taleb, 2010). As a first approach, we are
investigating guided random search techniques that can steer a population of model
simulators toward parameter combinations that yield degraded performance or system
collapse. We identified genetic algorithms (GAs) as a search technique that might be
well suited for our problem. GAs can find good solutions within a large, ill-defined
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search space, and can be readily adapted to a wide variety of search problems (Mitchell,
1998).

The classic binary-encoded GA we adopted exhibits a number of control parameters
(explained in Section 2), such as: population size, selection method, number of elite
individuals, generations at which to re-randomize the population, number of crossover
points when swapping chromosomes between pairs of individuals, and mutation rate. As
we discuss in Section 3, we consulted the literature and found conflicting advice about
relative importance and effective settings for these GA control parameters. Further, we
found only a small collection of studies (none definitive) attempting to guide selection of
GA control settings. Some authors (DeJong, 2007) advised that one should experiment
with a GA in the intended application and use those experiments to determine the
most effective control settings. Other researchers (Bartz-Beielstein et al., 2005) provide
techniques that can be used to sequentially search the parameter space of evolutionary
algorithms to find optimal control settings for individual problems. While sequential
parameter optimization (SPO) might prove effective for a wide range of numerical
optimization problems, sequentially searching the GA in our intended application is not
feasible because the cloud-computing simulators we are exploring require significant
computation time. Instead, we designed and conducted an experiment and analysis to
search, across a set of 60 numerical optimization problems, for the most important GA
control parameters, and effective settings to use. While a classic binary-encoded GA
may not exhibit the best performance on numerical optimization problems, we show
that a sufficient set of numerical optimization test problems can give significant insight
into the effect of various GA control parameters.

This paper makes two main contributions: (1) we define (in Section 4) an
experiment design and analysis method that can be adapted to determine relative
importance and effective settings for control parameters in any evolutionary algorithm,
and (2) for a classic binary-encoded GA we determine (in Section 5) the relative
importance and effective settings for seven control parameters. Our findings are
robust over 60 numerical optimization problems. The GA control settings discovered
using our method proved effective when applied to steer a population of cloud-
computing simulators in search of potential failure scenarios (Mills et al., 2013). Our
method can also be used to discover effective, initial parameter settings for SPO,
when applied to individual evolutionary algorithms used to solve specific problems.
Finding effective starting parameter settings could shorten search time when using SPO.

2 Genetic Algorithm Under Test

GAs are a subclass of evolutionary algorithms (EAs). EAs comprise a collection of
heuristic methods that use techniques, such as mutation, recombination, and selection
(inspired by genetics and biological evolution) to search for optimal solutions to
difficult problems. For our application, we adopted a classic GA (Mitchell, 1998) that
encodes problem variables as fixed-length bit strings, which enable simple crossover and
mutation operations. Some EAs represent problem variables as vectors of floating-point
numbers. To achieve good performance, floating-point encoding requires altering the
typical crossover and mutation operators used by classic GAs (Janikow and Michalewicz,
1991). Ongoing research (Ali et al., 2005; Rahnamayan et al., 2008; Sahin, 2011) in
EAs continues to investigate the best formulation for crossover and mutation operators
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when using floating-point representation.

2.1 Fixed-Length Binary Encoding

The classic GA in our experiments uses simple binary encoding, which can represent
the full range of variable types (Boolean, integer, and floating-point) required for our
cloud-computing simulator. A user first identifies the variables for a problem, and
specifies the minimum and maximum values and precision (or quantization) for each
variable, and then the GA computes the number of bits per variable, and thus the
chromosome (i.e., bit-string) length required to encode all problem variables. The GA
includes a control parameter, precision scaling, which can increase or decrease the
quantization originally specified by a user.

In most of the numerical optimization problems explored in this paper, the GA
generates binary encoding of quantized floating-point variables (some variables are
integers). The number of bits required to encode quantized variables can allow more
values than necessary. In such cases variable values are derived by linear scaling. For
example, 10 values require at least 4 bits (3 bits are too few), which can encode as many
as 16 values. In this example, each binary value encodes 0.625 (10/16) of a real value.

While simple binary encoding can lead to Hamming walls, where single-bit
mutations cannot transform a bit pattern into a neighboring bit pattern, and can thus
contribute to premature convergence in numerical optimization problems, our applica-
tion (searching for failure scenarios in cloud-computing simulations) was not hindered
by such issues because we sought general failure outcomes, rather than specific optimal
numerical values. For that reason, we were not deterred by the fact that our adopted
GA used simple binary encoding instead of Gray encoding, which would eliminate
Hamming walls. We discuss this issue further in Section 4, where we identify addi-
tional GA control parameters that could be studied, using the same method we describe.

2.2 Control Parameters

The GA begins by generating a random population of individuals, where each in-
dividual consists of an appropriate length bit string representing values for every
variable of a problem to be solved. The population size is a control parameter of
the GA. The GA evaluates the fitness of many populations of individuals over time,
where each population is called a generation. The population of individuals for genera-
tion n+1 is created through some transformation of individuals composing generation n.

After completing each generation, the GA considers whether or not the population
should be re-randomized, which involves randomly regenerating all or part of the
next generation. The GA includes a control parameter, reboot proportion, which de-
termines how many generations must be completed before a population is re-randomized.

Whenever the population of individuals is created for an upcoming generation,
some number of the most fit individuals (i.e., the elite) from the previous generation
can be included unchanged. The GA has a control parameter, elite selection percentage,
which defines how many individuals from generation n will be placed unaltered into
generation n+ 1. Such elite individuals can be placed into a population whether or not
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the remaining individuals will be generated randomly or by transforming individuals
from the previous generation.

The GA also includes a control parameter, selection method, that defines the algo-
rithm used to select individuals from generation n for inclusion into a candidate pool,
where some individuals from generation n may be included multiple times, while others
may not be included at all. Given a pair of individuals, chosen randomly from the can-
didate pool, a GA control parameter, number of crossover points, determines how bits
will be swapped (or recombined) among the pair. Subsequently, the GA iterates over
each bit representing each individual in the population of recombined individuals, while
deciding whether or not the bit should be inverted. A GA control parameter, mutation
rate, specifies the probability that any given bit will be inverted.

3 Related Work

We first consulted the seminal investigation (DeJong, 1975) of behavior in classic GAs,
where DeJong studied a small set of numerical optimization problems. In his study,
DeJong reported that the best solutions were obtained when GA control parameters
were set as follows: a population size of 50, a 0.60 probability that pairs of individuals
crossover at a single point, a mutation probability of 0.001, with the most elite
individual surviving to the next generation, while the remainder of the population is
replaced with transformed individuals from the previous generation. Other researchers
(Grefenstette, 1986; Goldberg, 1989; Schaffer et al., 1989; Spears and DeJong, 1992)
soon followed with additional studies of the best settings to adopt. Unfortunately,
the findings of these studies were not always in agreement. For example, Grefenstette
(1986) found that mutation rates above 0.05 were generally harmful, but that failing to
use mutation led to poor performance, while using elitism was helpful and population
size should be kept in the range of 30 to 100. Goldberg (1989) found that mutation
can replace key genetic material that might be lost through crossover, but Tate and
Smith (1993) dispute this view, pointing out that high mutation rates can be disruptive
when most of the population is replaced with each generation. Schaffer et al. (1989)
found an interaction between crossover, mutation rate and population size, specifically
suggesting that small populations are quite sensitive to mutation rate and less sensitive
to crossover rate. Further, they found that with larger populations, low rates of
mutation and crossover proved most effective.

Studies continue (Baeck, 1996; Odetayo, 1997; Digalakis and Margaritis, 2001;
Charbonneau, 2002; Rojas et al., 2002; Boyabatli and Sabuncuoglu, 2004; Nunez-
Letamendia, 2007; Diaz-Gomez and Hougen, 2009; Arenas et al., 2010; Kapoor et al.,
2011) up to the present, and with continued inconsistencies among findings. For exam-
ple, Rojas et al. (2002) found the most important GA control parameters are selection
method, mutation rate, and population size, but that the number of crossover points (1
or 2) did not have much influence, while the probability of crossover did. Arenas et al.
(2010) found that crossover and mutation must be combined to have the best outcomes,
but that mutation rate must remain within a narrow range because too much mutation
prevents convergence to a good solution and too little mutation leads to premature
convergence. Charbonneau (2002) argues that mutation rate should adapt, increasing
with decreasing population diversity and decreasing with increasing diversity. Digalakis
and Margaritis (2001) found that a population size between 200-250 proved optimal,
combined with a crossover rate of 70-75%, and that absence of mutation led to poor
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outcomes, whereas a small mutation rate improved results. Boyabatli and Sabuncuoglu
(2004) report that crossover does not have significant influence on outcomes, while high
mutation rate provides better results. Baeck (1996) agrees with Charbonneau that
mutation rate should be variable, but argues that crossover must be used in order to
find a global optimum. Kapoor et al. (2011) suggest that mutation plays a critical role
for simple problems with few parameters, but that crossover is important for complex
problems. In general, they conclude that one should combine high crossover rate
with low mutation rate and a correctly sized population. Nunez-Letamendia (2007)
found that, while various combinations of crossover and mutation probabilities lead to
optimum solutions for different problems, the best outcomes usually (but not always)
occur when combing high crossover probability with low mutation rate. All in all, the
results reported in the literature provide a rather confusing picture.

We found two retrospective articles (DeJong, 1999, 2007) from the researcher
who initiated investigation of control parameters in GAs. DeJong (1999) reports a
general lack of theory to guide selection of population size, use of selection strategies,
and choice of representation. He observed that a few theoretical models exist in the
evolutionary strategies research community for finding optimal mutation rates, but
that those theories have been unable to explain anomalous results from experiments,
some of which find benefits from adaptation in both mutation rate and recombination
mechanism. In 2007, DeJong took a broader view, considering what was known
with respect to the wider community of evolutionary algorithms (EAs). He observed
that while it appears that adapting mutation rate on-line during execution provides
advantages, most EAs are deployed with a default set of static parameter values
that have been found quite robust in practice. (The method we describe in Section
4 provides a rigorous means to determine effective values to use as default settings
for control parameters.) DeJong also observes that larger population size increases
parallelism, which aids in solving complex problems, but that there is diminishing
return to increasing population size. He reports that choosing a selection method is
difficult due to interactions with population size.

DeJong (2007) also notes a promising approach involves periodic restarts of an EA
search, using historical information to adapt control parameters in a type of meta-search
to find the best control parameters that yield optimal outcomes for individual problems.
Bartz-Beielstein et al. (2005) define a specific method, sequential parameter optimiza-
tion (SPO), for conducting such a meta-search. Despite the existence of methods
such as SPO, DeJong believes that EAs pre-tuned with default parameter values for
particular problem classes will continue providing better performance than EAs that
attempt to dynamically adapt too many control parameters for specific problems. So,
even after 30+ years of research, the question of best settings for EA and GA control
parameters has no widely agreed answer.

A critical review of the previous research into GA control parameters suggests some
reasons that might underlie the current state of uncertainty. First, published studies
examine performance of GAs only under a small number of numerical optimization
problems, ranging from one (Boyabatli and Sabuncuoglu, 2004) to 14 (Digalakis and
Margaritis, 2001) problems. These represent an unacceptably small sample, providing
little robustness in results. This shortcoming does not appear in studies (Ali et al., 2005;
Rahnamayan et al., 2008; Sahin, 2011) that compare the effectiveness and efficiency of
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different proposed EAs. EA comparison studies typically use more than 50 problems,
and those problems are drawn from the same set (Adorio, 2005) of difficult numerical
optimization problems. Second, published GA studies examine different sets of control
parameters over different ranges of values. Most studies also examine more values for
some control parameters than for others, which can lead to unbalanced results. Third,
since 1990, very few GA studies attempt to replicate the results of prior studies. Fourth,
only one study (Arenas et al., 2010) uses analysis of variance (ANOVA) to determine
the statistical significance of each control parameter studied.

Kleijnen (2010) describes the state of the art in design and analysis of computer
experiments, where the main concepts are derived from the statistical design of
experiments (Box et al., 2005). Bartz-Beielstein (2006) embodies those concepts in
a three-phase approach to find optimal parameter settings for EAs, when applied to
solve specific optimization problems. Phase one uses highly-fractionated (resolution III)
two-level experiment designs to identify the most important set of control parameters
from among a potentially large set. Phase two uses less fractionated (resolution IV
and V) two-level experiment designs to assess interactions among important control
parameters and to identify regions of the parameter space that might be fertile areas
over which to seek optimal settings. Phase three uses SPO, sequential parameter
optimization (Bartz-Beielstein et al., 2005), to search for optimal settings for control
parameters, when applied to solve some specific optimization problem. SPO amounts
to a meta-search for optimal control-parameter settings that yield the best performance
on some specific optimization problem. SPO meta-searches must be undertaken for
each new optimization problem of interest.

We also adopt fundamental concepts from statistical design of experiments, but
we use only the equivalent of the second phase of the Bartz-Beielstein approach. In
particular, we use high-resolution designs to simultaneously identify relative importance
of control parameters, to assess interactions among control parameters, and to find the
most-effective control-parameter settings (from among those considered). We adopt
this one-phase approach because: (1) we are performing screening/sensitivity analysis
instead of optimization, (2) sequential parameter optimization is not feasible in our
intended application, as the cloud-computing simulators we plan to investigate require
significant computation time, and (3) the GA we investigate has only a handful (k =
7) of control parameters.

We use four levels per control parameter instead of two levels, as typically used in
statistical experiment designs. For the GA we investigate, which has only seven control
parameters, using four levels enables us to search across 16,384 parameter combinations,
rather than the 128 combinations possible with a two-level design. Further, while we
cannot directly investigate the GA in the context of our intended cloud-computing
application, we do investigate the performance of the GA across a large variety and
number of test problems. Exploring substantially more parameter combinations across
a wide variety and large number of test problems somewhat offsets our inability to use
SPO. On the other hand, the specialized analysis methods typically used with two-level
experiment designs cannot always be applied directly to four-level designs. Thus, as
described in Section 4 and Section 5, we introduce several analysis innovations that
enable us to extract essential information from our experiment results.
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In the next section, we outline an experiment design and analysis method that
can be used to obtain statistically significant results robust over many numerical
optimization problems. Our method can be used to identify effective default parameter
settings for EAs, enabling good performance on many search problems. Our proposed
method is intended to complement, rather than replace, SPO. Specifically, our method
can be used for applications, such as ours, where SPO meta-search is infeasible.
When compared with the two (pre-SPO) phases of the Bartz-Beielstein approach,
our one-phase method considers substantially more parameter combinations across a
wide variety and number of test problems. For this reason, where SPO meta-search is
feasible, our method could be used to identify effective starting values for EA control
parameters. Next, we discuss our proposed experiment design and analysis method in
the context of a classic GA, but the method appears general enough to be applied to
study and tune control parameters of other search algorithms.

4 Experiment Design and Analysis Method

Robust and rigorous statistical experiments naively require full factorial designs, which
examine each parameter under study at every possible value and then analyze the
influence of the parameters on outcomes. For most experiments, a full factorial design
proves impractical because even a handful of parameters can encompass an infeasible
space of possibilities. For example, suppose (as in our case) a system under study is
controlled by seven parameters. Assuming each parameter can be represented within a
32-bit integer, the space of possibilities is of O(1067).

A natural first step to reduce the search space is to limit the number of values at
which to examine each parameter. For example, in our case, we examine each parameter
at only four values (i.e., levels), which reduces the search space to 47. Restricting
parameters to take on a reduced set of values has obvious limitations: only a small
number of parameter values are explored, and extrapolating from the results assumes
a model behaves monotonically in the range between chosen values. On the other
hand, adopting a reduced-level design provides some advantages (Box et al., 2005):
(1) requires relatively few runs per parameter, (2) identifies promising directions for
future experiments (and may be augmented with thorough local explorations), (3) fits
naturally into a sequential strategy (such as SPO), and (4) forms the basis for further
reduction in parameter combinations through use of fractional factorial designs.

Even using only a few levels, a full factorial design can still be prohibitively expen-
sive. For example, in our case, a full factorial exploration of 47 parameter combinations
for 60 numerical optimization problems requires about a million executions of the GA,
and we intend to run each GA execution through 500 generations, thus we would need
to execute over 60 billion function evaluations (assuming an average population size)
to complete a full factorial experiment. To further limit the number of experiment
executions, one can adopt orthogonal fractional factorial (OFF) experiment designs, or
the geometrically equivalent orthogonal Latin hypercube (OLH) designs. (Box et al.,
2005).

OFF and OLH experiment designs sample a full factorial design space in a
balanced and orthogonal fashion. Balance ensures good effect estimates by reducing
an estimator’s bias and variability. Orthogonality ensures good estimates of two-term
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interactions. Balance is achieved by ensuring that each level of every factor occurs
an equal number of times in the selected sample. Orthogonality is achieved by
ensuring that each pair of levels occurs an equal number of times across all experiment
parameters in the selected sample. OFF and OLH designs exhibit good space-spanning
properties, which aid screening, sensitivity, and comparative analyses. On the other
hand, highly fractionated OFF or OLH designs can have poor space-filling properties,
which are necessary for optimization analyses. As explained below, we adopt a 47−2

OFF design, which achieves a reasonably space-filling (1/16th) sample of our full 47

experiment space. If the number of factors and levels were to increase significantly,
then we would need to increase the number of experiment runs, or else adopt some
alternate experiment design method. For example, Cioppa and Lucas (2007) describe
an algorithm for generating ”nearly” orthogonal Latin hypercube designs that exhibit
improved space-filling properties, but at the cost of inducing small correlations, which
can complicate the analysis.

By ensuring balance and orthogonality, OFF designs achieve two desirable
properties, given the limits of the selected sample size. First, main effects estimates
are representative of main effects that would be found in a full factorial experiment.
This means that a list of experiment parameters, ranked by main effects, tends to
be close to the true ordering that would result from a full factorial experiment.
Second, main effects estimates exhibit an uncertainty as small as possible, given
the sample size. More specifically, running an OFF experiment design provides
an estimate of main effects with uncertainty on the order of σ

√
2/(n/v), where n

is the number of experiment runs, v is the number of values used per parameter,
and σ is the standard deviation among the underlying observations. This formula
simply adapts the standard uncertainty estimate for main effects in two-level OFF
experiment designs (Box et al., 2005) to account for the fact that our design uses
v levels per factor, which means there are n/v observations at each level rather than n/2.

Using OFF principles as a basis, we defined an experiment design and analysis
method encompassing seven steps: (1) factor identification and level selection, (2)
problem-set selection, (3) OFF experiment design, (4) experiment execution and data
collection, (5) per-problem factor analysis, (6) per-problem factor-interaction analysis,
and (7) results summarization. We explain each step in turn, using exemplary details
from our study of the GA that was outlined in Section 2.

The first step entails identification of the experiment factors (i.e., control parame-
ters) to investigate, along with selection of levels (i.e., values) at which each factor will
be examined. In our case, as experiment factors, we used the seven control parameters
from a classic GA, as identified in Section 2, and we selected four levels for each factor,
as shown in Table 1. We selected population sizes (factor x1) between 50 and 200
because those values encompassed the range found to provide good performance in
previous studies, as recounted in Section 3.

The GA included only two selection methods (factor x2), stochastic universal
sampling (SUS) (Baker, 1987) and paired tournament (also known as 2-tournament)
with replacement (T) (Mitchell, 1998), and so we investigated both. The stochastic
universal sampling algorithm contained no tunable parameters. In 2-tournament, a pair
of evaluated individuals is drawn randomly (uniform distribution) from the previous
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Factor Level 1 Level 2 Level 3 Level 4
x1

Population Size 50 100 150 200

x2

Selection Method SUS T(r=.60) T(r=.75) T(r=.90)

x3

Elite Selection % 0 2 4 8

x4

Reboot Proportion 0 0.1 0.2 0.4

x5

# Crossover Points 0 1 2 3

x6

Mutation Rate Adaptive 0.001 0.0055 0.01

x7

Precision Scaling 1/2 1 2 4

Table 1: Seven factors (control parameters) and four levels (parameter values) per factor
investigated in the experiment.

generation, and then with some probability r the more fit of those individuals is
selected for inclusion in the recombination and mutation processes that will form the
next generation. The lesser fit individual in the pair is selected otherwise. As shown
in Table 1, we used three values for r. Had the GA included other available selection
methods (e.g., q-tournament selection, roulette wheel selection or rank selection), then
we could have included two of them (in place of T with multiple values for r), as
additional parameter values in our experiment. Had we been able to explore such a
larger set of selection methods, then a subsequent experiment iteration could have been
designed to explore any tunable parameter values associated with the best performing
selection method. (Experiment iteration leverages the ability of OFF designs to support
thorough local explorations.) Since specific GA selection methods are likely to have
different tunable parameters, exploring them when exploring heterogeneous selection
methods would be impractical.

To probe the utility of elitism, we varied elite selection percentage (factor x3) from
0 to 8% of the population size. Including a value of 0 allows elite selection to be disabled,
which permits us to investigate findings, described in Section 3, that elitism is one key to
GA success. By exploring a range of other elite selection percentages, we can establish
whether too much elite selection impairs the ability of a GA to converge to good solu-
tions. Subsequent experiment iterations could be conducted to search more precisely for
effective elite selection percentages, starting from the best value found in our experiment.

To investigate the influence of population re-randomization, we ranged reboot pro-
portion (factor x4) from 0 to 0.4 of the generations executed. When reboot proportion
is set to 0, the population chromosomes are randomized only once, at initiation of
the GA. When reboot proportion is set to 0.1, chromosomes for non-elite members of
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the population will be randomized 9 more times after the initial randomization, once
after incremental completion of each 10% of the total number of generations. Similarly,
when reboot proportion is set to 0.2 (or 0.4), non-elite members of the population
will be randomized 4 (or 2) times subsequent to the initial randomization, i.e., after
incremental completion of each 20% (or 40%) of the total number of generations.

For crossover (factor x5) we specified different numbers of crossover points,
ranging from 0 to 3. When the number of crossover points was 0 no crossover
occurred; otherwise, for each pair of recombining individuals, the locations of the
specified number (1, 2, or 3) of crossover points were selected randomly and then
the indicated bits were swapped. While the GA did allow a probabilistic crossover
threshold, to avoid overweighting investigation of crossover techniques, compared with
other factors, we did not complicate crossover by adding a probabilistic threshold,
nor by considering uniform crossover, where each bit has some probability of being
swapped. If desired, these more complicated schemes could be investigated in a sub-
sequent OFF experiment, where other factors are fixed to the best levels discovered here.

For mutation rate (factor x6) we specified three levels with rates ranging from
small (0.001) to high (0.01). We reserved the remaining level for an adaptive algorithm
(Charbonneau, 2002) that adjusts the mutation rate between 0.001 and 0.1, lowering
the rate when a population exhibits a wide spread in fitness values and raising the
rate when the spread is narrow. Adopting these settings enabled us to investigate the
various conflicting findings about mutation, as recounted in Section 3.

We also investigated the influence of problem-variable discretization on GA
performance by varying precision scaling (factor x7) from 1/2 to 4, including the value
of 1. Precision scaling of 1 means the GA performs a search with variable granularity as
determined by the user when specifying the encoding for a problem. A precision scaling
value of 1/2 means variable granularity is set to be twice as coarse (requiring fewer
chromosome bits) as specified by the user, while values of 2 and 4 mean that variable
granularity is set two or four times, respectively, as fine (requiring more chromosome
bits) as the user specified. Investigating this factor allowed us to evaluate whether
increasing or decreasing the size of a search space would improve the performance of
the GA.

Readers familiar with GAs will note that, while we explored a wide range of GA
control parameters, there are other such parameters that could have been investigated.
In some cases, our investigation was restricted by the range of available parameters
in the GA. For example, as discussed above, the GA offered only two of the possible
selection methods sometimes available in GAs. Similarly, GAs often offer Gray encoding
to forestall Hamming cliffs, as we discussed in Section 2.1, or other encoding methods,
such as permutation encoding or real value encoding. The GA used only simple binary
encoding. In other cases, we chose to limit the specific control parameters investigated
in order to maintain a balanced experiment that did not place too much emphasis on
any particular control parameter. For example, as discussed above, the GA offered the
possibility of setting a threshold for comparing against a uniformly sampled random
variate to determine whether or not crossover would take place for specific pairs of
individuals. We elected to design our experiments so that crossover always took place,
unless crossover was disabled. Had additional experiment factors (control parameters)
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been of interest, OFF experiment design techniques provide suitable means to include
them. One means to expand the number of control parameters in an experiment would
simply be to include them within the experiment factors. For example, had the GA
offered them, additional selection methods could have been added as parameter values
(levels), replacing the multiple r values we used for 2-tournament selection.

In cases where particular control parameters identify algorithms with tunable
variables, OFF experiment design can be applied sequentially. For example, various
selection methods have unique tunable variables. To establish appropriate settings
for those variables, an experimenter can first run an OFF experiment design, fixing
selection method, to determine which other control parameter values yield best
performance on a set of test problems. Subsequently, an experimenter can design OFF
experiments to explore a range of tunable values for each selection method, while
fixing other control parameters to values determined in a preceding experiment. A
similar approach can be used to investigate potential unbalanced control parameters.
For example, an experiment can first set the crossover threshold so that crossover
(if enabled) will always occur, and then run a subsequent experiment that varies the
crossover threshold, while fixing other parameters to the values that performed best in
a preceding experiment. Similarly, an experimenter can follow up any OFF experiment
with a related experiment that increases the range of parameter settings investigated for
each control parameter. The second experiment will establish whether or not the results
from the first experiment are robust (the same) over the increased range of value settings.

Step two in our method selects a set of numerical optimization problems to evaluate
when the GA is configured with various combinations of level settings for the seven
factors identified in Table 1. A full factorial (47) exploration of all combinations would
require executing the GA 16,348 times for each selected problem. Perhaps this explains
why previous studies were limited to 14 or fewer problems? To increase the robustness
of our results, we aimed for around the same number (55-58) of problems used in recent
studies comparing various EA algorithms, as outlined in Section 3. We selected 53 test
problems from that set, where problems ranged from relatively simple (two parameters)
to complex (100 parameters). We chose seven additional problems, two from the search
literature (Ingber, 1993; Brent, 2002) and five from the statistics literature (Box and
Bisgaard, 1996; Box et al., 2005; Saltelli et al., 2004), bringing the total number of
test problems to 60 (see Appendix A for a specific list with sources). Using 60 test
problems extends the scope of our results substantially, compared to previous studies
of GA control parameters that we found in the literature.

Step three applies OFF design to reduce significantly the number of required
experiment runs. We chose a 47−2 OFF design, reducing the number of parameter
combinations per GA run to 1024, which, assuming an average population size, requires
about 64 million function evaluations for each test problem and just over 3.8 billion for
all 60 problems. Using a 47−2 OFF design yields good estimates of main effects, with
an uncertainty of 0.088 σ, while expending only 6.25% of the computational resources
required for a full factorial experiment. (See Appendix B for a comparison of results
from a 47−2 OFF design against results from a full factorial design for three of our test
problems.)

Step four executes the OFF design against each test problem, and collects the
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resulting data. For each problem, the GA is run once under each of the 1024 parameter
combinations identified by the OFF design. For a given parameter combination, the GA
is executed for 500 generations and the output (y) is recorded as the maximum value
discovered by the GA. Let n (= 1024) be the total number of parameter combinations,
k (= 7) be the number of factors and nℓ (= 4) be the number of levels within each
factor. The output for each problem is a table containing n rows, where each row
includes k + 1 columns: a level setting ℓj |j=1,2,...ℓn for each of the factors xi|i=1,2,...k

and the resulting y value.

Step five analyzes the results for each test problem. This requires computing for
each factor: the absolute (Ei) and relative (REi) effects, and statistical significance
(Fcdfi). A multidimensional factor-analysis plot (e.g., Figure 1) reveals the relative factor
importance, and the most effective setting for each factor. Computing (Ei) requires
determining yij , the average y values for factor xi at level setting ℓj . Let S be the set
of all OFF parameter combinations and Sij = {x ∈ S|xi = ℓj},

yij =

∑
d∈Sij

yd

|Sij |
(1)

computes the average value of y when xi = ℓj , and then Ei = max{yij} - min{yij}.
REi = 100 · Ei/y, where

y =

∑n
d=1 yd
n

. (2)

To measure statistical significance we used analysis of variance (ANOVA) by computing
Fcdfi = P (Fstati ≤ Fν1,ν2), where Fν1,ν2 is the reference F distribution with ν1 = nℓ − 1
and ν2 = n− nℓ degrees of freedom and

Fstati =

∑n/nℓ

r=1

∑nℓ

j=1(yrj − y)2/(nℓ − 1)∑n/nℓ

r=1

∑nℓ

j=1(yrj − yij)
2/(n− nℓ)

. (3)

After computing Ei, REi, and Fcdfi for each factor, we plot the results, as shown
for example in Figure 1 for numerical optimization problem #2. The figure plots 28
points: mean yij for each level (ℓj) of each factor (xi). The dashed horizontal line

reports y. The bottom of the plot (just above the x-axis) reports the Ei, REi, and
Fcdfi for each factor.

The factor exhibiting largest Ei has most influence on GA success for the problem.
We highlight this factor, mutation rate (x6), with a dashed rectangle in Figure 1.
Ordering Ei values from high to low reveals the relative importance of each factor, as
we indicate by labeling the rank-ordered factors from 1 (most important) to 7 (least
important) in Figure 1. Where Ei values are tied, we order the ranking based on visual
inspection of the plot.

Large effects are not necessarily statistically significant, but the Fcdfi values
adjudicate that question. We scaled Fcdfi to a percentage, which means that the
probability of type I error is p < 0.05 when Fcdfi > 95 and p < 0.01 when Fcdfi > 99.
On our plots, we mark p < 0.05 with a * symbol and p < 0.01 with a ** symbol beneath
Fcdfi values associated with statistically significant factors. In Figure 1, statistically
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Figure 1: Factor-analysis plot for numerical optimization problem #2: maximizing the
percentage of non-defective springs.

significant factors include: population size (x1), reboot proportion (x4), number of
crossover points (x5), mutation rate (x6), and precision scaling (x7).

The plot also identifies the best setting for each factor, as represented by the
maximum yij . In Figure 1, we circle the best yij for each factor: population size (200),
selection method (2-tournament, r=0.60), elite selection % (0), reboot proportion (0),
number of crossover points (3), mutation rate (adaptive), and precision scaling (1/2 as
fine).

Step six of our method computes two-term interactions for all pairs of experiment
factors for each test problem. We computed (6 x 7 =) 42 two-term interactions for each
of the 60 test problems. Figure 2 shows four cells extracted from the upper left corner
of a 7x7 matrix containing a per-factor interaction analysis for numerical optimization
problem #1: maximizing chemical yield. Each row of the matrix corresponds to one
factor and contains seven columns. One column in each row (the cell appearing on
the matrix diagonal) identifies the factor for which two-term interactions are analyzed,
while the six remaining columns show the interaction of that factor with each of the
other six factors. The extracted submatrix shows interaction analyses for population
size (x1) and selection method (x2).

The cell in the upper right of Figure 2 shows five curves. The first curve is the
main effects plot for population size. Each data point is the average of 256 experiment
data points, where population size is set to each of its four levels. Each data point
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Figure 2: Four cells extracted from the upper left corner of a 7x7 matrix containing a per-
factor interaction analysis for numerical optimization problem #1: maximizing chemical
yield. Two of the cells contain two-term interaction analysis plots for population size
(x1) and selection method (x2). The upper-left cell establishes the y-axis scale for the
interaction analysis plots. The upper-right cell plots five curves. The first curve is the
main effects plot for x1. Each additional curve reports the effect of varying x1 while
holding x2 constant, first at level 1, then level 2 and so on to level 4. The number under
each curve reports the related effect. The number in the upper right hand corner of the
cell is the overall interaction effect, computed by subtracting the smallest of the four
interactions from the largest. The lower-left cell depicts the interaction analysis plots
when varying x2 while holding x1 constant at each of its four levels.

on the second curve gives the average of only 64 data points, where population size
varies across its four levels, while holding selection method to its first level. Curves
three through five vary population size, while holding selection method to its second,
then third, and finally fourth level. The numbers below each curve report the size
of each interaction effect. The number in the upper-right corner of a cell represents
the overall interaction effect (IEij), which is computed by subtracting the smallest of
the four interactions from the largest. Note that interaction effects are not necessarily
symmetric for pairs of factors. For example, Figure 2 reports an interaction effect of
0.044 for x1|x2 and of 0.027 for x2|x1.

The seventh, and final, step in our method summarizes and analyzes results across
all test problems. We describe and demonstrate this step in the next section.

5 Results and Discussion

Given Ei, REi, Fcdfi , IEij , and related factor-analysis and factor-interaction plots rep-
resenting GA performance on each of the 60 test problems, we summarized the analysis
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Figure 3: Factor-significance matrix with 420 cells, one row for each of 7 factors and one
column for each of 60 test problems, where cells in black indicate the identified factor
had significant effect (p < 0.01) for the identified problem. The problems are identified
by number, name, type, and dimension, all of which key to more complete problem
descriptions given in Appendix A. A 61st column gives the percentage of test problems
on which each factor was statistically significant (p < 0.01).

results using five main techniques: (1) factor-significance matrix, (2) main-effects-rank
histograms, (3) results-summary table, (4) factor-rank/most-effective-level table, and
(5) factor-interaction summary. We describe each of these in turn, illustrating them
with data collected from our experiment, and we discuss the findings revealed by these
techniques.

Figure 3 shows a factor-significance matrix for the 60 test problems solved by
the GA. A visual scan of the matrix reveals that factors x1, x4, x5, and x6 had
most statistically significant influence on GA success. Factors x2, x3, and x7 had less
influence. The last column in Figure 3 provides a quantitative verification of these
visual impressions by reporting the percentage of test problems on which each factor
was statistically significant (p < 0.01).

We note that GAs attempt to balance two competing processes: exploitation and
exploration. Exploitation leverages good problem solutions in a given generation by
selecting them as the basis for solutions forming the next generation, and by adding (op-
tionally) the very best (elite) solutions unchanged to the next generation. Exploration
expands the scope of a search by transforming the best solutions in a given generation
into recombined and mutated variants, and by occasionally re-randomizing an entire
population, except for any elite solutions from the previous generation. Each generation
can explore a population of solutions in parallel, thus larger population sizes appear
likely to increase the ability of a GA to exploit good solutions, as well as to explore
mutated and recombined variants. The factor-significance matrix shown in Figure 3
suggests that exploration (i.e., crossover, mutation, and population re-randomization)
has more influence on GA success than does exploitation (i.e., selection and elitism).
Further the matrix also indicates that population size somewhat influences GA success.

The 60 test problems can be categorized using the scheme from Jamil and Yang
(2013), which classifies optimization functions based on continuity, differentiability,
scalability, separability, and modality. Over ninety-three percent (56) of the test
functions are continuous and differentiable; only the three Step functions and the
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Corana function are discontinuous and non-differential. Just over half (35) of the test
functions are scalable, though we did not make use of this property in our experiments.
Sixty percent (36) of the problems are non-seperable and sixty-five percent (39) are
multimodal. For each problem the type field in Figure 3 reports separability and
modality, using two bit positions. The first bit position denotes separability (separable
= 1) and the second bit position denotes modality (uni-modal = 1). Examining
Figure 3 closely reveals no specific pattern with respect to problem type or number of
dimensions. This means that the significance of factor influence applies across the 60
test problems, regardless of function type or dimension.

The factor-significance matrix in Figure 3 also shows that no factors (or only one)
significantly influenced GA performance for three problems: #36 Multi-mod (Mm: 30
variables), #47 Goldstein-Price (Gp: 2 variables) and #54 Deckkars and Aarts (Dk: 2
variables). To gain more insight, we consulted the factor-analysis plots for each of these
problems.

For the Multi-mod problem, three levels of each factor successfully found the
theoretical best solutions, while one level for each factor did not. Because three levels
in each factor led to successful solutions, the factors could not be distinguished as
statistically significant; however, no crossover performed worse than crossover (at any
level) and the lowest level of fixed mutation rate performed worse than higher mutation
rates (including adaptive mutation). For the Goldstein-Price problem, only population
size (x1) exceeded the higher significance threshold (p < 0.01), while precision scaling
(x7) exceeded the lower threshold (p < 0.05). The smallest population size (50) led to
poor solutions, as did the finest (four times) precision scaling. The exploration factors
(re-randomization point, crossover, and mutation rate) each exhibited Fcdfi > 80%,
suggesting influence, but not establishing statistical significance. For the Deckkars and
Aarts problem, elite selection percentage (x3) exceeded p < 0.05, with no elite section
performing worst. Population size, selection method, and crossover exhibited influence,
but not to the level of statistical significance. This analysis reveals that altering factor
levels did influence GA success on these problems, but not sufficiently to pass our
chosen level (p < 0.01) for statistical significance. We concluded that there was nothing
particular about these three problems that prevented the GA control parameters from
influencing the success of the GA. Examining these problems in detail reinforced our
decision to establish p < 0.01 as the threshold for statistical significance.

Figure 4 shows main-effects-rank histograms for each of the seven control param-
eters across the 60 test problems. A scan of the histogram reveals that crossover (x5)
had low relative influence on main effects for very few problems; in contrast, precision
scaling (x7) had high relative influence for very few problems. The relative influence of
mutation rate (x6) and population size (x1) varied more evenly across the problems,
with mutation rate exhibiting moderate relative influence (rank of 3) among a cluster
of problems. Similarly, the relative influence of selection method (x2) varied fairly
evenly across the problems, while showing increased influence (rank of 2) among a
cluster of problems. The relative influence for reboot proportion tended to clump in
the middle (ranks 3 and 4) for most problems, exhibiting high relative influence on
very few problems. For one problem (#36 Multi-mod), all factors exhibited the same
ranking. The reason for this was discussed above.
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Figure 4: Seven main-effects-rank histograms (one for each of the 7 factors), where the 7
cells in each histogram represent the frequency with which the factor exhibited most (1)
to least (7) influence on main effects across the 60 test problems. The factor histograms
are presented ordered, top to bottom, by average rank from highest (3 for factor x5,
crossover) to lowest (5.3 for factor x7, precision scaling).

The test problems can be divided roughly into three categories, based on problem
dimensionality: (1) 31 low (≤ 10) dimensional problems, (2) 22 moderate (≤ 30)
dimensional problems and (3) 7 high (> 30) dimensional problems. The relative
influence of crossover, mutation rate and population size tended to moderate on the
highest (100) dimensional problems, while the influence of elite selection percentage
(and to some degree selection method) increased for those problems. Analysis of the
main-effects-rank histograms, while providing only relative information, suggests that
(if possible) a future iteration of a set of test problems would benefit from extension
to include about 10 additional problems with high dimensionality. Readers should
bear this information in mind when considering our findings. In general, analysis of
the main-effects-rank histograms supports our argument in Section 3 that conflicting
conclusions from previous studies of GA control parameters likely arose (in part)
because those studies considered an insufficient number of problems (at most 14 and
usually many fewer). Further, our analysis also suggests the need to increase the
number of high dimensional problems included in the set of numerical optimization
problems often used to evaluate evolutionary search algorithms.

The average ranks of the seven factors, shown by vertical lines in Figure 4, indicate
their influence on main effects, i.e., the degree to which the factor influences the
ability of the GA to find good numerical solutions. First, factors x5 (crossover) and x6

(mutation rate) most influenced the main effects produced across the test problems.
These two factors also proved among the most statistically significant factors, as
identified from Figure 3. Second, factor x3 (elite selection percentage) showed next
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most influence on main effects. Examining x3 on the factor-analysis plots for each
problem revealed that the main effects of this factor arose when comparing a positive
elite selection percentage against no elite selection. From this, we infer that including
some amount of elite selection has a large influence on the ability of the GA to find
good solutions to numerical optimization problems. On the other hand, as discussed
previously when considering Figure 3, the influence of elite selection percentage is
statistically significant in just over half of the problems. Third, factors x1, x2, and x4

showed comparable (i.e., average rank of about 4) levels of influence on main effects.
While x1 (population size) and x4 (reboot proportion) were also among the must
statistically significant influences on GA success (see Figure 3), x2 (selection method)
was not. Examination of x2 on the factor-analysis plots for each problem showed
that the main effects arose when comparing 2-tournament selection with r=.60 and
r=.75 against SUS and 2-tournament selection with r=.90. From this, we inferred
that 2-tournament selection with insufficient selection pressure (i.e., r probabilities
that are too low) hampered the ability of the GA to find good solutions to numerical
optimization problems. Third, factor x7 (precision scaling) appeared to have least
influence on the ability of the GA to find good solutions.

Comparing Figure 3 (statistical significance) to Figure 4 (size of effect) gives a
different ordering of factors influencing GA success. For this reason, we decided to rank
factors based on a combination of statistical significance and relative effect. Next, we
present and discuss quantitative summaries encompassing both these characteristics,
leading to a relative ranking of factor importance.

Table 2 provides a quantitative summary of relative effect, statistical significance,
and most effective setting, across all 60 test problems, for each factor. The quantitative
measures of significance (p < 0.01) provide a precise ranking of factors from most to
least influential: number of crossover points (x5), mutation rate (x6), reboot proportion
(x4), population size (x1), elite selection percentage (x3), selection method (x2), and
then, least influential, precision scaling (x7).

Table 2 also reports the average, standardized, relative effect, S(RE), for each
factor across all test problems. Recall (Section 4) that relative effect measures how
much difference a factor makes in the best outcome found for individual numerical
optimization problems. This measure, which is independent of statistical significance,
gauges the influence of a factor on effective outcomes.

To compute S(RE) for a given factor i, we first standardized REi. Let N (= 60) be
the number of test problems and K (= 7) be the number of GA control parameters. For
each numerical optimization problem f (= 1..N) we can define the set, Ef , of relative
effects for each GA control parameter k, where Ef = {REk ∈ Ef |k = 1..K}. We then
standardized REi

S(REi)f =
REi −min{REk ∈ Ef}

max{REk ∈ Ef} −min{REk ∈ Ef}
. (4)

Subsequently, we averaged S(REi)f over all N test problems

S(REi) =

∑N
f=1 S(REi)f

N
. (5)
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Table 2: Results-summary table reporting for each factor the average, standardized,
relative effect, S(RE), and the number (and percentage) of 60 test problems on which
the factor significantly (p < 0.01) influenced GA success. Also, for each level of each
factor, the number (and percentage) of test problems on which the level led the GA to
the best answer. Note that in some cases more than one level led the GA to the best
answer (|yixi=lj −yixi ̸=lj | ≤ 0.0001), thus the related percentages can sum to more than
100.

When computed for each factor, this yields the values shown in the S(RE) column of
Table 2.

The S(RE) values in Table 2 quantify the influence of each factor on the ability
of the GA to achieve the best outcomes over all the test problems. As Table 2 shows,
crossover (x5), population size (x1), and mutation rate (x6) have most influence on
relative effect, followed by elite selection percentage (x3) and reboot proportion (x4).
Precision scaling (x7) and selection method (x2) have relatively little influence. Com-
paring the statistically significant influence of factors (column labeled p < 0.01) against
their influence on relative effect (column labeled S(RE)) finds general agreement,
though population size ranks second on relative effect but only fourth on statistical
significance, and reboot proportion ranks third on statistical significance but only fifth
on relative effect.

Finally, Table 2 identifies the most effective level settings found for each factor:
population size = 200, selection method = SUS, elite selection percentage = 8%, reboot
proportion = 0.4, number of crossover points = 3, mutation rate = adaptive and
precision scaling = 1/2 as fine as specified by the user. Differences in the percentages
for each level setting for a given factor provide a measure of how much changing the
level influenced GA performance.

Summary data from Table 2 can be extracted to produce a factor-rank/most-
effective-level table (Table 3), which answers the two main questions addressed by
our experiment design and analysis: (1) What is the relative importance of the GA
control parameters evaluated? and (2) What is the most effective level setting (among
those examined) to use for each control parameter? Table 3 reports factor rank and
most effective level setting for each GA control parameter. Because rankings differed
somewhat when based solely on either statistical significance or relative effect, we chose
to rank the factors on D, the Euclidean distance of each factor from an ideal outcome,
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Table 3: Factor-rank/most-effective-level table ordering GA control parameters by in-
creasing distance (D) from ideal (see Figure 5) and then partitioning them into four
groups based on relative differences in D. The table also reports for each factor: the
fraction of 60 test problems on which the factor had statistically significant (p < 0.01)
influence on GA success, the average relative effect (S(RE)) and the most effective level
(setting).

which is the point (1,1) on a Cartesian plot of X := p < 0.01/100 against Y := S(REi).
Using the data from Table 3, we illustrate such a plot as Figure 5.

Figure 5 shows a grouping of three factors–crossover (x5), mutation (x6) and
population size (x1)–closest to the ideal point (1,1). The next closest factor appears to
be reboot proportion (x4), which is followed by another grouping of three factors–elite
selection percentage (x3), precision scaling (x7) and selection method (x2)–that appear
farthest from the ideal point. Computing the Euclidean distance between each factor
and the ideal point yields the values reported under the column labeled D in Table 3,
which we used to rank the influence of each factor, across all 60 test problems, in order
of increasing distance from (1,1).

The D values in Table 3 identify a clear ranking: (1) number of crossover points
showed most influence, followed by (2) mutation rate and (3) population size, and
then by (4) reboot proportion and (5) elite selection percentage. Selection method
and precision scaling proved least influential. Evidently, two of the exploration control
parameters (crossover and mutation rate) had large statistical significance and also
substantial influence on relative effect. The other exploration parameter (reboot
proportion) had a statistically significant influence on 80% of the test problems, but
the relative effect of the parameter was not large. Population size, which affects
both exploration and exploitation, influenced GA outcomes substantially, and was
statistically significant on about two-thirds of the problems. The exploitation control
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Figure 5: Cartisian plot of p < 0.01/100 (x axis) against S(REi) (y axis) for each of the
seven GA control parameters, and for the ideal point (1,1).

parameters (elite selection percentage and selection method) exhibited only modest
influence on relative effect, and were statistically significant on only about half of the
problems.

Figure 6 shows a factor-interaction summary, which plots interaction effects,
standardized and averaged across all test problems, for each of the 42 two-term
interactions. For each two-term interaction (i, j), we standardized the interaction effect
(using the same method shown above in equation (4), but substituting IEij for REi)
to compute S(IEij) for each of the test problems. We then averaged those 60 values

– using the method shown in equation (5) – to give S(IEij), representing the average
interaction effect for (i, j) across the entire set of test problems.

We plot these values on the y axis of Figure 6 against the factor-pair identifier
(i, j) on the x axis, which is sorted from largest to smallest S(IEij). The plot identifies
two groups: largest interactions and smallest interactions, highlighted within labeled
rectangles in Figure 6. The group of largest interactions can be divided into three
subgroups, highlighted in Figure 6 within ovals. We extract the numeric values
for S(IEij) in the group of largest interactions and report them in a sparse matrix
in the upper right of Figure 6. Since those 14 values correspond to seven pairs of
pairs – {(i, j), (j, i)} – we average the S(IEij) and S(IEji) for each of these pairs of
pairs, and then report those seven averages, in the lower left of Figure 6, as a sorted table.

In comparing the seven values representing (S(IEij) + S(IEji))/2 in Figure 6

to the S(REi) values in Table 3, we see that the S(REi) values for the three largest
main effects (x5, x1, and x6) exceed the values for the largest standardized interaction
effects. This implies that those main effects are more influential on GA success than
two-term interactions. On the other hand, the seven two-term interactions exceed the
main effects values for the other factors. For that reason, we decided to examine those
seven two-term interactions in detail by reviewing the per-factor interaction analyses
for those interactions across the test problems.

The largest two-term interaction occurs between selection method (x2) and elite
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Figure 6: S(IEij), standardized relative interaction effect for each of 42 two-term pairs
of factors, plotted on the y axis against pair identifiers (i, j) on the x axis. The x axis
pair identifiers are sorted from largest to smallest S(IEij). Two rectangles highlight
the smallest and largest interaction effects. Ovals identify three subgroups among the
largest interactions. A sparse matrix reports numeric values for the 14 largest S(IEij).

Pairs of two-term interactions are averaged – (S(IEij) + S(IEji))/2 – and reported in a
table of seven values, sorted from largest to smallest.

selection percentage (x3). In about two-thirds of the test problems, combining no elite
selection with 2-tournament (T) selection when r=0.6 leads to poor outcomes. This
implies that elite selection can compensate somewhat for the low selection pressure of T
(r=0.6), while lack of elite selection allows the low selection pressure to cause the GA
to perform poorly. The importance of this interaction is low because SUS performed
better than 2-tournament selection with any value for r.

The next three largest two-term interactions involve precision scaling (x7) combined
with reboot proportion (x4), mutation rate (x6), and number of crossover points (x5).
In general, each of these interactions arise on about half the test problems. The
precise nature of these interactions is somewhat muddled, as they vary with problem
(but not dimension) and also among specific combinations of levels. For example,
re-randomizing frequently (10% of the time) combined with precision scaling of 1 and
re-randomizing somewhat frequently (20% of the time) combined with precision scaling
of 2 (twice as fine) both seem to be combinations that can yield bad GA outcomes,
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depending on problem type. On the other hand, re-randomizing never or infrequently
(40% of the time) and coarsening (1/2 as fine) or highly increasing (four times as fine)
precision scaling seem to mute this interaction. Similarly, low or moderate mutation
rates combined with increases in precision scaling yielded poor results on specific
problems. On the other hand, coarsening the precision scaling combined with having
less than three crossover points led to bad outcomes on specific problems. Using three
crossover points appeared to compensate somewhat for coarsening precision scaling.
We concluded that these interactions were not particularly important because: (1)
the nature of the interactions varied, (2) the interactions appeared on only about half
the test problems, and (3) the interactions varied on specific problems rather than by
problem dimension.

On about half the problems, two other two-term interactions arose for some
combinations of reboot proportion (x4) with mutation rate (x6) or number of crossover
points (x5). A combination of frequent re-randomization (after every 50 generations)
and moderate mutation rate (0.0055) yielded bad outcomes on specific problems.
Similarly, on selected problems, a combination of no re-randomization and one or two
crossover points led to poor GA outcomes. For some problems, three crossover points
compensated for lack of re-randomization. We concluded that these interactions were
not particularly important, as the specific interactions varied, they appeared on only
about half the test problems, and they were limited to specific problems rather than to
particular problem dimensions.

The final large two-term interaction concerned number of crossover points (x5)
and mutation rate (x6). We found that the combination of one crossover point with
adaptive mutation performed poorly on 21 of the test problems. The importance of
this interaction is low because three crossover points performed best on 77% of the test
problems.

In summary, there were only seven parameter interactions that showed somewhat
large effects, when averaged across the test problems. For the reasons outlined above,
we concluded that none of the interactions was particularly important, and that the
success of the GA was driven primarily by number of crossover points, mutation
rate, and population size. Earlier work by Schaffer et al. (1989) found an interaction
among crossover, mutation rate, and population size. While our experiments found an
interaction between crossover and mutation rate, we found no significant interactions
between population size and any other control parameter for the 60 problems we
examined. Interactions between population size and crossover, or between population
size and mutation rate, did appear in our experiments, but the size of those interactions
was small.

Next, we consider the four right-most (Level 1 to Level 4) columns in Table 2, which
provide additional insights about specific GA control parameters. First, note that the
GA performed much better when the population re-randomized after 200 generations
(best level on 77% of the problems) or when there was no population re-randomization
(best level on 40% of the problems) than when population re-randomization occurred
every 50 or 100 generations. While showing that population re-randomization can
improve GA performance, this result also indicates that re-randomizing a population
too frequently destroys the ability of the GA to converge to good problem solutions.
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This raises the question of determining the best re-randomization frequency, which
remains for investigation in a future expansion of this experiment, where reboot
proportion might be set to levels 0, 0.4, 0.5, and 0.6. If such experiments reveal no
additional insights, then perhaps the GA had already converged to good solutions
somewhere between 100 and 200 generations, so that re-randomization points occurring
at or beyond 200 generations would have no effect on GA performance. Investigating
this question would require future experiments where reboot proportion would be set
to levels 0, 0.25, 0.3, and 0.35.

Second, the highest percentage value (8%) we used for elite selection yielded
substantially better GA performance than lower percentages (2% and 4%), which
performed indistinguishably from no elite selection. While Grefenstette (1986) also
found elitism to be useful, his study moved only a single elite individual to the next
generation. Our results suggest few benefits accrue from moving only a single elite indi-
vidual from one generation to the next. In fact, our results suggest that a substantially
larger proportion of elite individuals is required for a GA to reap significant benefits.
On the other hand, the degree of exploration may decrease as elite selection percentage
increases, leading to diminishing returns and to less effective outcomes. This raises the
question of determining the best elite selection percentage, which remains for future
investigation, where elite selection percentage might be set to levels 0, 8%, 10%, and 12%.

Third, the data provide some evidence that coarsening parameter discretization
can improve GA success rate. Specifically, a precision scaling of 1/2 (as fine as specified
by the user) was the best level setting on 42% of the test problems. Apparently, for
these problems, coarsening parameter discretization reduces the search space, which
can aid the ability of a GA to converge to a higher fitness value. This result might,
however, be due to the fact that the maximum or minimum values were integers for 36
of the test problems. Also, this finding might not hold for GA applications outside the
domain of numerical optimization. Other coding questions could also be investigated.
For example, additional experiments could be conducted to compare the effectiveness
of simple binary encoding against other encoding methods, e.g., Gray encoding,
permutation encoding, and real-value encoding; however, including additional encoding
methods would require extending the GA, which currently supports only simply binary
encoding.

Finally, while the study reported here encompasses 60 test problems, we caution
readers not to over interpret our results. Our findings hold only for the GA algorithm
described in Section 2, and only for the range of levels investigated in our experiments,
and only for the 60 numerical optimization problems on which we evaluated the GA.
Within these bounds, we observe that our results suggest some general findings with
respect to control parameters for a classic binary-encoded GA applied to numerical
optimization.

We found crossover and mutation most influential in GA success. This suggests
that GA control parameters associated with exploration have more influence on GA
success than control parameters associated with exploitation. Further, we found that
crossover is an essential element for successful GA performance, as disabling crossover
exhibited poor GA success in our experiments. Three crossover points yielded much
better GA success than fewer crossover points. We suspect that increasing the number
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of crossover points will yield diminishing returns at some point, because collections
of bits representing key genetic material would be sliced up and lost. Determining
the threshold for diminishing returns requires additional experimentation. More
experiments are also needed to determine the influence of crossover probability on GA
success, because our experiments used probabilities of only 0 and 1. In addition, further
experiments could be conducted to compare the effectiveness of uniform crossover
against slicing crossover; however, including uniform crossover would entail extending
the GA, which currently supports only slicing crossover. Finally, as argued by Baeck
(1996), Charbonneau (2002), and DeJong (2007), we found adaptive mutation, when
compared to fixed mutation rates, led to substantially better GA performance.

Regarding population size, we observed that 200 individuals led to much better
GA success than lower population sizes. This confirms the findings of Digalakis and
Margaritis (2001), the researchers who investigated GA control settings over 14 different
numerical optimization problems. As suggested by DeJong (2007), we suspect that
increasing population size further will lead to diminishing returns, but confirming this
(and establishing a threshold) requires additional experimentation.

We also observed that re-randomizing a population too frequently can destroy
the ability of a GA to converge to good solutions. Our experiments found that
re-randomizing after 40% of the intended number of generations led to better GA
success than more frequent re-randomization, but more experiments are needed to
determine the effects of higher and intermediate re-randomization thresholds.

Considering selection method, we observed that stochastic uniform sampling (SUS)
led to much better GA success than a 2-tournament selection algorithm, regardless of
the r value. Overall, we found selection method to be less important to GA success
than number of crossover points, mutation rate, re-randomization point, and population
size. These findings conflict somewhat with those of Rojas et al. (2002), who studied
six test problems and three selection methods (roulette wheel, elitist roulette wheel
and deterministic) and reported selection method among the most important GA
control parameters. We suspect that SUS is a robust selection method that provides
reasonable utility in classic GAs, though further experiments comparing SUS to
q-tournament selection (q > 2) and other proposed selection methods might prove
informative. Conducting such comparisons would require extending the GA, which
currently provides only two selection methods: SUS and 2-tournament.

6 Conclusions and Future Work

We defined an experiment design and analysis method to determine the relative
importance and most effective setting (among those studied) for each control parameter
in a GA. The method is general enough to adapt and apply to determine the same
information for a wide variety of search techniques. The method can also be used to
determine effective starting parameter values for use in meta-search techniques, such as
sequential parameter optimization. We demonstrated the method applied to a classic
binary-encoded GA, evaluated against 60 numerical optimization problems, providing
findings spanning four times as many problems as any previously reported study of
GA control parameters. We confirmed some findings from previous studies in the
literature, and we raised questions about others. We found that two exploration control
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parameters (i.e., crossover and mutation) most significantly influence GA success,
followed by population size and population re-randomization points, while exploitation
control parameters (i.e., elitism and selection method) showed less influence. We
determined that adapting mutation rate based on population diversity provided better
GA success than selecting a fixed mutation rate.

Based on our experiment, we identified the need for further study of various
forms of crossover, including crossover probability and uniform crossover. We also
outlined future experiments to investigate whether GA success would be improved
by re-randomizing a population more frequently. We noted that future experiments
might focus on determining the population size at which improvement in GA success
begins to level off, as well as comparing additional selection and encoding methods.
The experiment design and analysis method we defined can be used to conduct such
follow-on studies.

Elsewhere (Mills et al., 2013), we applied the GA described in Section 2 to
search for failure and performance-degradation scenarios in a parallel population of
cloud-computing simulators. In that application, we used the findings reported in
this paper to select settings for six GA control parameters: population size = 200,
selection method = stochastic uniform sampling, elite selection percentage = 8%,
reboot proportion = 0.4, number of crossover points = 3, and mutation rate = adaptive.
(We decided to set precision scaling = 1, since that parameter had least influence on
GA success.) While the cloud-computing search problem differed substantially from the
numerical optimization problems we used to calibrate the GA control parameters, the
parameterized GA proved quite effective at finding failure and performance-degradation
scenarios in a cloud-computing simulator.

7 Appendix A: List of Numerical Optimization Problems

We provide four tables, each listing 15 of the 60 numerical optimization problems used
in this experiment. For each problem, we give the numerical identifier (ID) we assigned,
the function name (and an abbreviation), the number of parameters (Dim) in the
problem, the problem type (encoding explained below), the theoretical maximum (or
minimum) value (where known), the best value found by the GA, and the source for the
problem. The overwhelming majority (56) of the test-set problems are continuous and
differentiable; only the three Step functions and the Corana function are discontinuous
and non-differentiable. Using the scheme from Jamil and Yang (2013), we further
classify the test problems in the type column, using two bit positions. The first bit
position denotes separability (separable = 1 and non-separable = 0) and the second
bit position denotes modality (uni-modal = 1 and multimodal = 0). A mathematical
description for many of these problems can be found at Adorio (2005).
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Table 4: Test problems #1-#15: problem name (and abbreviation), number of dimen-
sions (i.e., problem variables), type (separability and modality), maximum (or minimum)
value, the best value discovered by the GA, and the problem source.

Evolutionary Computation Volume x, Number x 27



K.L. Mills, J.J. Filliben, and A.L. Haines

Table 5: Test problems #16-#30: problem name (and abbreviation), number of dimen-
sions (i.e., problem variables), type (separability and modality), maximum (or minimum)
value, the best value discovered by the GA, and the problem source.
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Table 6: Test problems #31-#45: problem name (and abbreviation), number of dimen-
sions (i.e., problem variables), type (separability and modality), maximum (or minimum)
value, the best value discovered by the GA, and the problem source.

Evolutionary Computation Volume x, Number x 29



K.L. Mills, J.J. Filliben, and A.L. Haines

Table 7: Test problems #46-#60: problem name (and abbreviation), number of dimen-
sions (i.e., problem variables), type (separability and modality), maximum (or minimum)
value, the best value discovered by the GA, and the problem source.
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8 Appendix B: Comparing Results from a 47−2 Orthogonal
Fractional Factorial Experiment Against Results from a Full
Factorial Experiment for Three Test Problems

Earlier in this paper, we stated that orthogonal fractional factorial (OFF) experiment
designs sample a subset of the parameter combinations from a full factorial (FF)
experiment. We also stated that OFF designs give estimates for main effects, where
estimate accuracy is influenced by the number of samples (n), the number of levels
(ν), and the variance (σ) in the underlying observations. Main-effect estimates
directly determine the relative rank among factors, as well as the best level for each
factor, thus the accuracy of such estimates will influence findings and conclusions
from OFF experiments. Further, uncertainty in main-effect estimates generated
by OFF experiments also influence the computation of statistical significance using
ANOVA. This latter point stands to reason, because ANOVA compares variation within
groups of data points against variation among groups. Sampling methods typically
exhibit increased variance over measurements taken over an entire population. This
variance increase directly influences the computation of ANOVA statistics. In this
appendix, we provide some data, from our experiments, regarding the effects of uncer-
tainty arising when applying a 47−2 OFF experiment to sample from a 47 FF experiment.

We selected three of the 60 test problems on which to compare results from
the OFF design against results from a FF experiment. We chose a problem from
each of the complexity categories among our numerical optimization problems: (1)
problem #3 – Chemical Reactor (Cr: 5 dimensions), (2) problem #11 – Axis Parallel
Hyper Ellipsoid (Ax: 30 dimensions), and (3) problem #24 – Michalewitz (Mz: 60
dimensions). For each factor of each problem, we compared the estimated effect
(Ei)–including the derived factor ranking and most-effective level–and the ANOVA
statistic (Fcdfi). Our comparison demonstrates that: (1) OFF experiment designs
do indeed produce estimates, (2) the main-effect estimates are fairly accurate, as are
the derived factor rankings and best levels, and (3) the Fcdfi estimates are somewhat
less accurate, because for statistically significant factors in a FF experiment the Fcdfi

measures converge toward 100 due to decreased variance among the data points used
to compute main effects. As we will demonstrate, this decrease in variance leads to
increased statistical significance, even for small differences in main effects.

Table 8 compares results for main effects estimates (Ei), Fcdfi , factor rank, and
best level for the Chemical Reactor problem when using a 47−2 OFF design and a
FF experiment. Tables 9 and 10 provide similar results for two other problems: Axis
Parallel Hyper Ellipsoid and Michalewitz.

Table 8 shows that most main-effect estimates from the OFF experiment are fairly
close to the FF results for the Chemical Reactor problem. An exception is the estimate
for factor x4 (reboot proportion), where the OFF design indicates a substantially larger
effect than the FF experiment. This difference also leads to some differences in factor
rankings, which are derived from relative differences in main effects. The top two factors
(x5 and x6) remain the same, but the difference in main effects estimate for x4 leads to
reordering in the ranking of three factors. The OFF and FF experiments produced the
same best level setting for all but one factor, x2 (selection method). Finally, in the FF
experiment, the Fcdfi values are at or near 100% for all factors, while factors x2 and x3

are nearer 50% in the OFF experiment. We explore these differences more thoroughly
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Table 8: Problem #3 – Chemical Reactor (Cr: 5 dimensions) comparison for each factor
(x1 through x7) of main effects (Ei), statistical significance (Fcdfi), rank, and best level
from a 47−2 OFF experiment against a 47 FF experiment.

later in this appendix.

Table 9 shows that most main-effect estimates from the OFF experiment are close
to the FF results for the Axis Parallel Hyper Ellipsoid problem. Results from the
OFF experiment report somewhat higher estimated effects for two factors: mutation
rate (x6) and precision scaling (x7). Small differences in main-effect estimates lead to
factors x4 and x6 swapping ranks 3 and 4. The OFF and FF experiments produced
the same best level setting for all but one factor, population size (x1), where the OFF
experiment reported the size of 150 to be best, while the FF experiment found 200 to
be best. Most of the Fcdfi values were near 100%, except for x1 and x7. In the case
of x1, the variance in the data from the OFF design was sufficient to lower Fcdfi . In
the case of x7, the estimated effect for the FF experiment was sufficiently low that the
Fcdfi rightly reflects a lack of statistical significance.

Table 10 shows that most main-effect estimates from the OFF experiment are
quite close to the FF results for the Michalewitz problem. In fact, the OFF and FF
experiments produced identical rankings and best levels for each of the seven factors.
As typically the case, the FF experiment reported Fcdfi values at 100%, while the
variance in the data acquired from the OFF experiment design led to lower Fcdfi values
for two factors: x4 and x7.

The reader should bear in mind that the comparisons we discussed above consider
only three of the 60 test problems. The overall analysis averages data from all 60 test
problems. Such averaging tends to allow minor estimate errors in individual problems
to offset each other (unless there is some hidden bias in the procedure). This is another
justification for ensuring that EA algorithms are evaluated on a sufficiently large sample
of search problems.

To better understand the reasons underlying differences in main-effect estimates
between an OFF and FF experiment, we delve more deeply into the Chemical Reactor
problem (#3). Recall that uncertainty in main-effect estimates is a function of the
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Table 9: Problem #11 – Axis Parallel Hyper Ellipsoid (Ax: 30 dimensions) comparison
for each factor (x1 through x7) of main effects (Ei), statistical significance (Fcdfi), rank,
and best level from a 47−2 OFF experiment against a 47 FF experiment.

number of samples (n), the number of levels (ν), and the variance (σ) in the underlying
observations. For our experiments, n and ν are fixed, which yields an uncertainty
estimate of 0.088 σ. This implies that uncertainty in main-effect estimates will be driven
by σ, which is unknown for our experiment. Though σ is unknown, the confidence
intervals around the main-effect estimates for our experiments may give some indication
of the relative nature of σ.

Figure 7 shows a factor-analysis plot from the OFF experiment for the Chemical
Reactor problem. The plot contains the same type of information we described
when discussing Figure 1, but here we added vertical bars through the estimated
mean yij for each level (ℓj) of each factor (xi). The vertical bars indicate the 95%
confidence interval, which implies that there is a small chance that the true mean
falls outside the interval. The larger the interval, the greater the uncertainty in
the data used to make the estimate. Figure 8 shows a factor-analysis plot (includ-
ing 95% confidence intervals) from the FF experiment for the Chemical Reactor problem.

Recall Table 8, which shows that the main-effect estimates produced by the OFF
experiment varied somewhat from the results of the FF experiment. For example, the
estimated effect found by the OFF experiment for factor x4 was substantially larger
than the effect shown by the FF results. The large variance associated with the OFF
data for that factor indicates the main-effect estimate would tend to be more uncertain.
Comparing Figures 7 and 8, and their associated confidence intervals, reveals why
the main-effect estimates from the OFF experiment differed from the FF results. For
example, the mean value for x4 level 3 was much lower when estimated from the data
sampled in the OFF experiment than was the case when computed from the FF data.
Further, mean values from the FF results exhibited much less uncertainty.

The uncertainty in main-effect estimates produced by an OFF design cannot be
eliminated by simply iterating the OFF design, while varying the random number seed
so as to generate independent samples that can be averaged. To demonstrate this,
we iterated the 47−2 OFF experiment 16 times for the Chemical Reactor problem,
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Table 10: Problem #24 – Michalewitz (Mz: 60 dimensions) comparison for each factor
(x1 through x7) of main effects (Ei), statistical significance (Fcdfi), rank, and best level
from a 47−2 OFF experiment against a 47 FF experiment.

producing 16,384 datasets, which is equivalent in number to the 16,384 datasets
produced by the FF experiment. Subsequently, for each factor, we averaged the
main-effect estimates, Fcdfi values, and ranks across the 16 OFF experiment iterations,
and we took the mode of the best levels from the 16 iterations. We then compared (see
Table 11) these results against the FF results.

As Table 11 shows, the main-effect estimates and ranks for each factor taken from
the averaged OFF experiment results differ somewhat from the FF results. Similarly,
though there is largely agreement in the best levels for each factor, the best level for
factor x4 differs. This difference is of no consequence because, as we discuss in the main
body of the paper, levels 1 and 4 for factor x4 yield comparable effectiveness across the
60 test problems.

Figure 9 provides an overview of changes in factor rankings across the 16 iterations
of the OFF design for the Chemical Reactor problem. Mutation rate (x6) is consistently
top ranked on all iterations, while selection method (x2) and elite selection percentage
(x3) are consistently among the lowest ranked. The ranks of other factors fluctuate
across the iterations, as dictated by relative changes in main-effect estimates. This
example provides some insight into how results from OFF experiments can lead to
differences in factor ranking, when compared with FF results. Further, the example
suggests that OFF designs provide confident estimates of the most and least influential
factors for any specific problem, while introducing uncertainty about the true ordering
of factors exhibiting intermediate influence. Analyzing factor rankings across a large
set of problems allows uncertainty on individual problems to be averaged, leading to
reasonably confident factor rankings.

The main conclusions from this limited comparison of results from a 47−2 OFF
design against FF results are: (1) OFF experiment designs do indeed produce estimates,
(2) the main-effect estimates are fairly accurate, as are the derived factor rankings and
best levels, and (3) the Fcdfi estimates are somewhat less accurate, because in a FF
experiment Fcdfi measures converge toward 100 due to decreased variance among the

34 Evolutionary Computation Volume x, Number x



GA Sensitivity Analysis

Figure 7: Factor-analysis plot from 47−2 OFF experiment for numerical optimization
problem #3: maximizing the output of a chemical reactor process. The 95% confidence
intervals are given by vertical bars through each estimated mean yij for each level (ℓj)
of each factor (xi).

data points used to compute main effects. We also demonstrated that OFF designs
produce confident rankings of the most and least influential factors for individual test
problems. Confidence in the rankings of factors with intermediate influence relies on
averaging results across a large collection of varied test problems.
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Figure 8: Factor-analysis plot from 47 FF experiment for numerical optimization prob-
lem #3: maximizing the output of a chemical reactor process. The 95% confidence
intervals are given by vertical bars through each estimated mean yij for each level (ℓj)
of each factor (xi).

Table 11: Problem #3 – Chemical Reactor (Cr: 5 dimensions) comparison for each factor
(x1 through x7) of main effects (Ei), statistical significance (Fcdfi), and rank averaged
across 16 iterations of a 47−2 OFF experiment against a 47 FF experiment. The best
level for each factor of the 47−2 OFF experiment was determined by taking the mode
from across the 16 iterations.
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Figure 9: Main-effect estimates (y axis) for the seven genetic algorithm control param-
eters on 16 iterations (x axis) of Problem #3 – Chemical Reactor (Cr: 5 dimensions).
For each iteration, the parameter identifiers (1 for x1 to 7 for x7) are sorted from largest
(top) to smallest (bottom) main effect (Ei).
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