

NIST/ITL’s Biometric Application Programming

Interface (BioAPI) Conformance Test Suite (CTS)
Implementation (the BioAPI Test Environment)

Beta Implementation V1.1

February 28, 2006

Overview

National Institute of Standards and Technology (NIST)
Information Technology Laboratory (ITL)

Computer Security Division (CSD)

Fernando Podio
NIST/ITL CSD

Mark Jerde (NIST Guest Researcher)
The Biometric Foundation

2

Table of Contents

Acknowledgements..3
Abstract ..4
Preface..5
Background..6
Development History ...7
Architecture..8
Acronyms...18
Glossary of Terms..18
Annex A - Development Organizations Involved in the BioAPI CTS
Implementation Development..19

3

Acknowledgements

NIST/ITL’s Biometric Application Programming Interface (BioAPI)
Conformance Test Suite (CTS) beta implementation (also known as the
BioAPI Test Environment (BTE)) was developed to help users verify the
conformance of Biometric Service Providers (BSPs) to American National
Standard InterNational Committee for Information Technology Standard (ANSI
INCITS) 358-2002, the BioAPI Specification 1.1. The initial version of the
BioAPI specification was developed by the BioAPI Consortium. The BioAPI
standard defines generic interfaces to a broad range of biometric
technologies.

NIST/ITL BioAPI CTS beta implementation is based on the fourth draft of a
standards conformance testing methodology for ANSI INCITS 358-2002. The
conformance testing methodology standard is under development in INCITS
Technical Committee M1 – Biometrics. The fourth draft (M1/06-0073) can be
downloaded from the NIST/ITL BioAPI CTS web site. The INCITS M1 web
site is: http://www.incits.org/tc_home/m1.htm.

The International Organization for Standardization (ISO) / International
Electrotechnical Commission (IEC) Joint Technical Committee 1 (JTC 1)
Subcommittee 37 (SC 37) completed the development of an international
version of the BioAPI specification (recently approved) and is also developing
the associated conformance testing methodology standard.

NIST/ITL and DoD’s Biometric Management Office co-sponsored the
development of the conformance testing methodology standard under
development in INCITS M1 together with the National Biometric Security
Project (NBSP), Saflink Corp. and the Biometric Foundation.

DoD BMO independently developed a similar BioAPI CTS. NIST and DoD
BMO conducted intensive testing of the CTS implementations to cross-
validate the test results to ensure that these testing tools would derive the
same results while testing the same products. Thanks are due to DoD’s
Biometric Management Office (BMO) for its close collaboration with NIST/ITL
during the cross-validation tests and for its significant contributions to the draft
conformance testing methodology standard under development.

Special thanks are also due to the National Biometric Security Project (NBSP)
for co-sponsoring the development of NIST/ITL BioAPI CTS implementation
through its collaborative agreement with Saflink Corp. and also for supporting
The Biometric Foundation who collaborated with NIST/ITL in performing the
required tests.

4

Abstract

This document provides a background on the NIST Biometrics Standards
program. It refers to American National Standard InterNational Committee for
Information Technology Standards (ANSI INCITS) 358-2002, the BioAPI
specification and the BioAPI conformance testing methodology standard
under development in INCITS Technical Committee M1 – Biometrics. It
discusses the need for conformity assessment efforts in support of the BioAPI
standard and other biometric interoperability and data interchange standards.

The document provides an overview of NIST/ITL’s BioAPI Conformance Test
Suite, its development history, its overall architecture and a description of its
components. A brief reference to the organizations involved in the
development and testing of NIST/ITL BioAPI CTS is also included.

Certain trade names and company products are mentioned in the text or
identified. In no case does such identification imply recommendation or
endorsement by the National Institute of Standards and Technology, nor does
it imply that the products are necessarily the best available for the purpose.

5

Preface

NIST/ITL’s Biometric Application Programming
Interface (BioAPI) Conformance Test Suite (CTS)
Implementation (the BioAPI Test Environment)

Beta Implementation
V1.0 - January 4, 2006

Biometric technologies are crucial components of secure personal
identification and verification systems. Although for many years biometric
technologies have been used mainly in law enforcement, they can be now
found in all levels of government functions, in national defense applications
and in commercial fields ranging from financial transactions to visitor
authentication in amusement parks. World events in the last few years have
further increased global interest in highly secure personal authentication using
biometrics. National security priorities have led to the use of biometrics in
machine readable travel documents, employee identification badges, and
other secure applications. Deploying new information technology systems for
government and commercial applications require both national and
international consensus standards for biometrics. NIST has been a major
contributor to the development of measurements, standards, and tests for
biometrics for many years. Areas of investigation include fingerprints, face
recognition, iris recognition and speech recognition. NIST supports the
development of voluntary industry standards and the development of
conformance tests, reference implementations, and evaluation procedures to
facilitate the implementation of standards in biometric products.

Responding to legislative, government and market requirements for open-
system standards, NIST is supporting the acceleration of the development of
formal national and international biometric standards and associated
conformity assessment. In order to achieve this goal, NIST works in
coordination with other government agencies, industry, academic institutions
and other research organizations. NIST strongly supports national and
international standards organizations as the best environments for the
development of voluntary consensus standards for biometric technology and
the deployment of standards-based solutions.

NIST’s Biometrics Standards Program, provides leadership to the national
and the international biometric standards development bodies, including
committee officers and technical editors and also provides technical expertise
for critical standards development projects.

6

Background

Conformance Testing Tools in Support of Biometric Standards

Standards-based, high quality conformance testing tools help both developers
and users by validating conformance claims, leading to greatly increased
levels of confidence in products. Testing can also help ensure interoperability
between standards-based products and systems. The implementation of
NIST/ITL’s Conformance Test Suite for the Biometric Application
Programming Interface (BioAPI) also known as the “Biometric Test
Environment (BTE)” was promoted and developed in support of users
requiring or planning to require conformance to the BioAPI specification. It
supports product developers interested in developing products conforming to
voluntary consensus biometric standards by using the same test tools
available to users and also supports the possible establishment of conformity
assessment programs to validate conformance to the BioAPI standard and
other emerging standards.

The BioAPI Specification

American National Standard INCITS 358-2002, the BioAPI Specification, is a
biometric API standard that defines a generic way of interfacing to a broad
range of biometric technologies. This biometric API can work with any type of
biometric application. The standard API allows for easy substitution of
biometric technologies, the use of biometric technology across multiple
applications and easy integration of multiple biometrics using the same
interface.

The original version of the BioAPI specification was developed by the BioAPI
Consortium and completed in March 2001. It was approved by the
InterNational Committee for Information Technology Standards (INCITS) as
an American National Standard in February 2002 (ANSI INCITS 358-2002).
The development of the international version (v 2.0) has been completed by
the International Organization for Standardization (ISO) / International
Electrotechnical Commission (IEC) Joint Technical Committee 1
Subcommittee 37 – Biometrics and it is expected to become an ISO standard
early in 2006. The associated conformance testing methodology standard is
under development in ISO/IEC JTC 1 SC 37.

Previous BioAPI-related implementations developed in support of the national
version of the BioAPI specification (developed and funded by their sponsors)
include the Win32 (Framework Reference Implementation Ver 1.1, 2000)
developed by Intel, SAFLINK, IriScan, and Mytec Technologies Inc., the Linux
Reference Implementation – developed by NIST, the Unix/Solaris Reference
Implementation – developed by IBG, the WinCE Reference Implementation –
developed by Saflink and sponsored by NBSP and a JNI Wrapper –
developed by GenSoft.

7

Several government agencies and programs require conformance to BioAPI
such as Department of Homeland Security TWIC program and Registered
Traveler. BioAPI (1.1) is also included in DoD IT Standards Registry (DISR)
and biometric application profiles approved by INCITS or under development
in INCITS M1.

Conformance Testing Methodology Standard for the BioAPI
Specification

NIST/ITL co-sponsored with other INCITS M1 member organizations a
standards development project within the InterNational Committee for
Information Technology Standards (INCITS) Technical Commmittee M1 –
Biometrics for the development of a Conformance Testing Methodology for
ANSI INCITS 358-2002, BioAPI Specification. Project co-sponsors are the
Department of Defense (DoD) Biometrics Management Office (BMO), the
National Biometric Security Project (NBSP), Saflink Corp., and The Biometric
Foundation (TBF). NIST/ITL BioAPI CTS beta implementation is based on
the fourth draft of the standard under development (document M1/06-0073).

This draft standard can be downloaded from the NIST/ITL BioAPI CTS web
site www.nist.gov/biometrics/NISTITLBioAPICTS or through INCITS M1’s
Document Register at www.incits.org/tc_home/m1htm/docs/m1docreg.htm.
Since this version of the NIST/ITL BioAPI CTS implementation is based on a
standard under development, it is possible that changes to the standard
may lead to changes in the CTS software.

NIST/ITL and the Department of Defense (DoD) Biometrics Management
Office (BMO) have been working in close collaboration in the development of
biometric standards and supporting testing tools. For over a year NIST and
DoD BMO have been independently developing implementations of BioAPI
test tools using concepts and principles specified in the draft conformance
testing methodology standard under development in INCITS M1. NIST/ITL
and DoD BMO conducted intensive testing of the initial versions of the test
tools to cross-validate the test results using a number of vendor Biometric
Service providers (BSPs) that claim their products conform to the BioAPI
standard.

Development History

NIST/ITL BioAPI CTS beta implementation was developed in Java. It utilized
a third-party Java Native Interface (JNI) component for interaction with the
BioAPI Reference Implementation, which was written in C. Using the Java
language allowed rapid development of a user-friendly GUI and efficient
processing of XML. The JNI component was required because Java
applications cannot invoke native C code unless specific JNI entry points have
been defined in the code. The third-party JNI interface to BioAPI provided

8

access to only a small subset of the functions provided in the BioAPI
specification. Since the source code for the third-party JNI interface was not
available, development began on a new and more comprehensive JNI
interface to BioAPI. This new JNI interface supports the BTE application and
also provides a platform for other Java applications to use BioAPI, thus
encouraging increased industry development of BioAPI compliant
applications.

As development progressed, it became apparent that in certain instances, the
behavior of native code invoked from within the Java Virtual Machine
environment is not identical to the behavior of the same code when invoked
from a native process. It was decided to mitigate the impact of this issue by
retaining the existing Java components and adding a Native Execution Server
component to the BTE. This component executes BioAPI functions and
BioSPI functions from a native context, eliminating the restrictions of the Java
Virtual Machine environment. Additionally, several modifications to the
BioAPI Framework were implemented to support testing of error conditions
that the framework is designed to prevent.

Architecture

Overall Architecture

The BioAPI Test Environment (BTE) is a Conformance Test Suite
implementation composed of:

• a Java application that provides a Graphical User Interface (GUI) for
selecting Biometric Service Providers to test, running tests, and
displaying results.

• an Assertion Processor / Test Engine that processes XML assertions.
• a Java Native Interface Layer for interaction with native C code.
• a Native Execution Server for invoking BioAPI and BioSPI functions.
• a Native Execution Monitor for controlling the Native Execution Server
• a customized implementation of the BioAPI Framework.

These software tools were designed to test Biometric Service Providers for
conformance to the American National Standard INCITS 358-2002, the
BioAPI 1.1 specification.

Component Descriptions

Component: Graphical User Interface
Language: Java

Purpose: Provide a user-friendly environment to support testing BSPs
for conformance to the BioAPI Specification.

9

Description: At startup the GUI populates the list of assertions by
examining the assertion files stored on disk. After the user
selects one or more assertions to run, the GUI invokes the
Assertion Processor / Test Engine for each assertion
selected by the user and displays the results. As the
Assertion Processor completes each assertion, the GUI
reads the log and displays the test result to the user. Each
invocation of the Assertion Processor executes in a separate
Java Virtual Machine to prevent assertions from interfering
with each other or the GUI.

Package: com.saflink.BSPTest

Key Classes: TestPanel, LogDialog, TimeoutDialog, CheckNode,
CheckRenderer

Component: Assertion Processor / Test Engine
Language: Java

Purpose: Execute assertions and generate log files containing the test
results.

Interface: Command line parameters. Disk files.

Description: This component opens the XML file that defines the
assertion, parses the assertion language, and invokes the
related commands. The test results are stored in a file on
disk for the GUI to retrieve.

Package: com.saflink.BSPTest

Key Classes: RunAssertion, TestEngine, BSPInterface, XMLLog

Component: Java BioAPI Interface
Language: Java

Purpose: Provide a Java interface for BioAPI and BioSPI commands.

Interface: Java methods

Description: The Java BioAPI interface provides Java methods and data
types for invoking BioAPI and BioSPI functions. The Win32
class encapsulates the Java code used to invoke native C
functions. The classes in this interface also perform initial
translations of parameters and data types.

Package: com.saflink.bioapi

Key Classes: Win32

10

Component: Java Native Interface Layer
Language: C

Purpose: Translate Java method calls to C function calls.

Interface: Native C functions based on Java method signatures

Description: The JNI Layer implements special native C functions that
are callable from Java. The JNI Layer translates the
parameters from Java data types to the appropriate C data
types, and uses shared memory to transmit the commands
and parameters to the Native Execution Server. Once the
Native Execution Server finishes performing the commands,
the JNI Layer translates the results from C data types back
to Java types and returns them to the Java BioAPI Interface.

Project: h_layer

Key Source Files: bioapi_jni.c, bioapi_memfile.c

Component: Customized BioAPI Framework
Language: C/C++

Purpose: Provide BioAPI Framework functionality without preventing
testing of BSP’s.

Interface: C functions

Description: The Customized Framework is based on the BioAPI
Reference Framework and the majority of the code is
identical. The Customized Framework includes
modifications to allow incorrect parameters to pass through
the Framework to the BSP. These modifications enable the
BTE to test error conditions that the original Reference
Framework is designed to prevent.

Project: h_layer

Key Source Files: bioapi_api.c, addmgr.c

Component: Native Execution Server
Language: C

Purpose: Execute BioAPI / BioSPI Functions.

Interface: Shared Memory

Description: The Native Execution Server executes BioAPI / BioSPI
functions. The Native Execution Server is a separate
process that executes BioAPI and BioSPI functions. The

11

Native Execution Server allows BioAPI and BioSPI functions
to execute without the memory restrictions that exist when a
native function is invoked from within a Java Virtual
Machine. Once BioAPI / BioSPI functions complete, the
results are returned to the JNI Layer.

Project: BTEServer

Key Source Files: BTEServer.cpp

Component: Native Execution Monitor
Language: C

Purpose: Start and monitor the Native Execution Server and restart it
as needed.

Description: The Native Execution Monitor starts the Native Execution
Server and restarts it when an assertion completes. This
ensures that each assertion runs in a clean execution
context.

Project: BTEMonitor

Key Source Files: BTEMonitor.cpp

Graphical User Interface and Assertion Processor / Test Engine

The Java package com.saflink.BSPTest contains the GUI code for the
application. It also contains code for interpreting assertion files and
generating test logs.

Java package: com.saflink.BSPTest

Class Description
StartTest Main entry point for the application.

TestPanel Application GUI. Provides controls for the user to enter
selections and run assertions. Invokes assertions via the
CommandRunner class. Reads log files and displays results
to the user.

CommandRunne
r

Runs a single assertion in a separate Java Virtual Machine.

RunAssertion Main entry point and command-line parser for execution of a
single assertion.

TestEngine Assertion executor. Invokes BioAPI and BioSPI functionality

12

via the BSPInterface class.

SwingWorker Utility class for starting a new application thread.

PackageLog Data structure for recording the results of an assertion.

ActivityLog Data structure for recording the results of an activity.

XMLLog Log writer for temporary files.

InputLog Data structure for recording the values of input variables.

ReturnLog Data structure for recording the return values of functions.

BSPInterface Encapsulates the functionality of the com.saflink.bioapi
package for use by classes in the com.saflink.BSPTest
package. This module reduces the impact of any changes to
the com.saflink.bioapi package on the com.saflink.BSPTest
package.

CheckNode Represents a node within a tree control.

CheckRenderer Renders a node within a tree control.

FunctionLog Data structure for recording details about a function call.

LogDialog Displays the XML log.

TimeoutDialog Displays the settings for capture timeout, verify timeout, etc.
and allows the user to update the values.

test Supports testing and debugging.

Java BioAPI Interface

The Java package com.saflink.bioapi provides a Java representation of
BioAPI / BioSPI functions and the required data types.

Java package: com.saflink.bioapi

Class Description
BioAPIData Java equivalent of BioAPI_DATA.

BioAPIRuntimeExcepti
on

Represents runtime exceptions generated in native
code.

Bir Java equivalent of BioAPI_BIR.

BirBiometricDataForm
at

Java equivalent of BIR_BIOMETRIC_DATA_FORMAT.

BirDataTypes Defines constants for raw, intermediate, processed,
signed, and encrypted data types.

13

BirHandle Java equivalent of BioAPI_BIR_HANDLE.

BirHeader Java equivalent of BioAPI_BIR_HEADER.

BirPurposes Defines constants for verify, identify, enroll, enroll for
verification, enroll for identification, and audit purposes.

BspSchema Java equivalent of BioAPI_BSP_SCHEMA.

ByteArrayHolder Data structure for storing a byte array.

Errors Defines constants for BioAPI error conditions.

IModuleEventHandler Defines an interface for objects to implement in order to
receive notification of BioAPI module events.

InputBir Java equivalent of BioAPI_INPUT_BIR.

InputBirForms Defines constants for database, full BIR, and BIR
handle input.

ModuleEvent Java equivalent of BioAPI_MODULE_EVENT.

ModuleHandle Java equivalent of BioAPI_HANDLE.

Result Java equivalent of BioAPI_RETURN.

Version Java equivalent of BioAPI_VERSION.

Win32 Defines Java equivalents for BioAPI and BioSPI
function calls. Invokes JNI entry points defined in a
customized version of bioapi100.dll.

Customized BioAPI Framework

The BioAPI Framework included with BTE is based on the Reference
Implementation. However it includes a number of customizations. The
following table summarizes the changes that were made to the BioAPI
Framework Reference Implementation. A JNI Layer has been added to
support invocation from Java. The framework code has also been modified to
allow testing of error conditions that the framework is designed to prevent.

Visual Studio Project: h_layer, Output: bioapi100.dll

Source File Description
com_saflink_bioapi_Win32.h
(new)

Declares JNI entry points for invocation from
Java code. This header is generated from the
Win32 class using the javah.exe utility. It
defines the entry points used by the Win32
class.

bioapi_jni.h (new) Declares utility functions implemented in

14

bioapi_jni.c that are not JNI entry points.

bioapi_jni.c (new) Implements JNI entry points and associated
utility functions. This module converts the Java
datatypes from JNI function calls into their native
equivalents. After it converts the parameters are
they are written to shared memory for execution
by an independent native process
(BTEServer.exe).

bioapi_memfile.h (new) Declares constants and functions associated
with transferring BioAPI / BioSPI parameters to
and from shared memory.

bioapi_memfile.c (new) Implements functions for transferring BioAPI /
BioSPI parameters to and from shared memory.

biospi_test.h (new) Declares variables and functions for managing
UUID's and ModuleHandles.

biospi_test.c (new) Implements functions for managing UUIDs and
ModuleHandles. These functions allow the
Framework to use correct values internally, while
presenting invalid values to BSPs as needed.

addmgr.h (modified) Declares functions for managing BSPs. The
declaration for
bioapi_CleanInternalAttachRecord has been
updated to return BioAPI_RETURN instead of
void.

addmgr.c (modified) Implements functions for managing BSPs,
including loading, unloading, attaching, and
detaching BSPs. The custom version of this
module allows the BTE to pass invalid
ModuleHandles and UUIDs to BSPs. It also
allows the BTE to perform multiple invocations of
BioSPI_ModuleUnload for the same BSP. The
function bioapi_CleanInternalAttachRecord has
been updated to return the result code
generated by the call to the BSP's
BioSPI_ModuleDetach function.

bioapi_api.c (modified) Implements functions for invoking biometric
functions in BSPs. The custom version of this
module allows the BTE to pass invalid
ModuleHandles to BSPs.

15

Native Execution Server

The Native Execution Server (BTEServer.exe) invokes BioAPI and BioSPI
functions when requests arrive via a shared memory area. Once the module
receives a request, it invokes the requested function using the parameters
submitted, and returns the results to shared memory. This component allows
the BTE to execute BioAPI and BioSPI calls from a pure native process
without the memory constraints of a Java Virtual Machine.

Visual Studio Project: BTEServer, Output: BTEServer.exe

Source File Description
BTEServer.cpp Implements functions to read BioAPI / BioSPI parameters

from shared memory, invoke the corresponding functions,
and return the results to shared memory.

Native Execution Monitor

The Native Execution Monitor starts the Native Execution Server and restarts
it each time an assertion completes. This ensures that assertions that
terminate abnormally or invalidate memory structures do not alter the results
of subsequent assertions.

Visual Studio Project: BTEMonitor, Output: BTEMonitor.exe

Source File Description
BTEMonitor.cpp Starts the Native Execution Server and restarts it when an

assertion completes.

16

Architecture

The diagram shown below illustrates the overall structure of the BTE.

Essentially, execution occurs in the following manner:

• The user executes a batch file to start the BTE.
• The batch file invokes BTEMonitor.exe to start the Native Execution

Monitor.
• BTEMonitor.exe invokes BTEServer.exe to start the Native Execution

Server.
• The batch file starts the application GUI in a new Java Virtual Machine.
• The user selects a BSP and one or more assertions to test.
• The user presses the "Run Test" button to start the test.
• The application GUI starts the Assertion Processor/Test Engine in a

new Java Virtual Machine.
• The Assertion Processor/Test Engine parses the assertion file. For

each BioAPI/BioSPI function invocation defined in the assertion, the
Assertion Processor/Test Engine invokes the corresponding method in
the Java BioAPI Interface.

• The Java BioAPI Interface performs an initial translation of data types,
and invokes the required function in the Java Native Interface Layer.

• The Java Native Interface Layer translates Java data types to C data
types and transfers the function call request to shared memory.

• The Native Execution Server retrieves the function call request from
shared memory and invokes the required function in the Customized
BioAPI Framework.

• The Customized BioAPI Framework performs any processing required
of the framework and invokes the required BioSPI function in the BSP.

• The BSP executes the BioSPI function and displays a user interface
and/or communicates with a biometric device if necessary. The BSP
returns the results to the Customized BioAPI Framework.

• The Customized BioAPI Framework returns the function results to the
Native Execution Server.

• The Native Execution Server transfers the function results to shared
memory.

• The Java Native Interface Layer retrieves the function results from
shared memory, and translates C data types to Java data types.

• The Java Native Interface Layer returns the results to the Java BioAPI
Interface.

• The Java BioAPI Interface performs final translations of data types and
returns the results to the Assertion Processor/Test Engine.

• The Assertion Processor/Test Engine interprets the results, assesses
compliance, and logs the results to an XML file.

17

• After the Assertion Processor/Test Engine finishes invoking the
functions defined in the assertion, the Native Execution Server
terminates.

• The Native Execution Monitor starts a new instance of the Native
Execution Server.

• The Assertion Processor/Test Engine terminates.
• The application GUI reads the test log and displays the result.
• If the user selected additional assertions, the application GUI starts the

Assertion Processor/Test Engine to process the next assertion.
• Once the selected assertions have completed, the user can review the

results, save them to a file, and/or perform additional tests.
• The user closes the BTE.
• The Native Execution Server terminates.
• The Native Execution Monitor terminates.

18

Acronyms

BSP - Biometric Service Provider

BTE - BioAPI Test Environment

GUI - Graphical User Interface

Glossary of Terms

BioAPI Framework - A standard application programming interface and
service provider for biometric technologies.

BioAPI Framework, Enhanced Version - The BTE uses an enhanced
version of the BioAPI framework. The framework has been extended in two
ways.
 1. Miscellaneous bugs have been fixed.
 2. The framework has been extended to return values required by the

BTE.

biometric data
The extracted information taken from a user’s biometric sample that is used to
build an encrypted reference template. The reference template can then be
used to create an enrollment or to match against a user’s existing enrollment
for authentication purposes.

Biometric Service Provider (BSP) module
A BSP is a software algorithm that extracts a user’s biometric sample from a
biometric hardware device and translates it into an encrypted numeric
representation of that sample. That extracted information is known as
biometric data.

19

Annex A - Development Organizations Involved in the BioAPI CTS
Implementation Development

National Institute of Standards and Technology

Founded in 1901, NIST is a non-regulatory federal agency within the U.S.
Commerce Department's Technology Administration. NIST's mission is to
develop and promote measurement, standards, and technology to enhance
productivity, facilitate trade, and improve the quality of life. NIST carries out its
mission in four cooperative programs:

- the NIST Laboratories, conducting research that advances the nation's
technology infrastructure and is needed by U.S. industry to continually
improve products and services;

- the Baldrige National Quality Program, which promotes performance
excellence among U.S. manufacturers, service companies, educational
institutions, and health care providers; conducts outreach programs and
manages the annual Malcolm Baldrige National Quality Award which
recognizes performance excellence and quality achievement;

- the Manufacturing Extension Partnership, a nationwide network of local
centers offering technical and business assistance to smaller manufacturers;
and

- the Advanced Technology Program, which accelerates the development
of innovative technologies for broad national benefit by co funding R&D
partnerships with the private sector.

In FY 2005, NIST had an operating budget of about $858 million and operates
in two locations: Gaithersburg, Md., (headquarters - 234-hectare/578-acre
campus) and Boulder Colo., (84-hectare/208-acre campus). NIST employs
about 3,000 scientists, engineers, technicians, and support and administrative
personnel. About 1,800 guest researchers complement the staff. In addition,
NIST partners with 1,400 manufacturing specialists and staff at affiliated
centers around the country.

NIST/Information Technology Laboratory (ITL)

ITL is one of the measurement and standards laboratories of NIST. ITL works
with industry, research, and government organizations to make information
technology more usable, more secure, more scalable, and more interoperable
than it is today. ITL develops the tests and test methods that both the
developers and the users of the technology need to objectively measure,
compare and improve their systems. For many years, ITL has been mandated
by legislation to provide computer security standards and guidelines to federal

20

agencies for the protection of sensitive unclassified information in their IT
systems and networks.

News and general information about NIST programs and services are
available on the World Wide Web at http://www.nist.gov, or by calling General
Inquiries at (301) 975-NIST (975-6478), TTY (301) 975-8295 or e-mail:
inquiries@nist.gov.

National Biometric Security Project (NBSP)

The National Biometric Security Project is a not-for-profit test, research and
analysis organization focused entirely on the application of biometrics to
improve the security of the U.S. civil infrastructure. NBSP services are
available to government agencies at the federal, state, and local level and
private sector agencies responsible for maintaining key components of the
national infrastructure.
http://www.nationalbiometric.org/

The Biometric Foundation

The mission of The Biometric Foundation is to advance the use of biometric
technologies to accomplish personal verification and identification, to protect
privacy, to secure infrastructures that are critical to the nation’s economic
success, and to prevent identity theft. Under the guidance of industry leaders
and experts, the Foundation will conduct and sponsor technology-neutral
research, evaluation, and educational programs. These programs are
intended to increase understanding of how biometrics work, examine social,
economic, and legal issues that affect widespread use of biometrics, and
provide authoritative data to support public and private commitment to
biometric solutions. The Foundation is committed to standards and practices
that ensure it will be a premier independent resource for scientists,
policymakers, and citizens who are seeking accurate, reliable information
about biometric technologies and their uses.
http://www.biometricfoundation.org/

SAFLINK Corp.

SAFLINK Corporation, a leading provider of integrated enterprise security
systems, provides cost-effective software solutions that verify individual
identity, protect intellectual property, secure information assets, and eliminate
passwords. These solutions are designed to safeguard and simplify access to
computer networks, applications, and physical facilities. For more information,
please see the Company's website at www.saflink.com or call 800-762-9595.

