
Fine Packet Size Tuning with AutoLink

Martial MICHEL

NIST, USA
RÉSÉDAS, France

martial.michel@nist.gov

Judith Ellen DEVANEY

NIST, USA
judith.devaney@nist.gov

Abstract

Using MPI to work with composed data-types, or data-
types using pointers, is not a built-in operation. AutoMap
and AutoLink are two tools that provide those functionali-
ties to the MPI library, as a source-to-source compiler and
as a subset of functions on top of MPI. AutoLink uses buffer-
ing by packets to transfer more than one node of the data-
structure it is traversing, in a time/communication efficient
way. This “Packet” needs to be adapted to the system (cpu,
network) used to be the most suitable possible.

This article presents the “Fine Packet Tuning” tool de-
veloped to provide an easy way to do so.

1 Introduction

Parallel computing using distribution methods is made
easier by using the Message Passing Interface (MPI) stan-
dard. Still, it is not easy to transfer data-types such as graphs
or to create new data-types. An MPI solution called “MPI
data-types tools” containing two tools, AutoMap and Au-
toLink, has been created by the National Institute of Stan-
dards and Technology for this purpose.

AutoMap creates the MPI data-types from the user’s
source code. AutoLink gives the user functions to transfer
such data-types.

But AutoLink, using buffering by packet to hasten trans-
fers, needs its Packet Size adapted to the system it is running
on.

This paper provides an overview of the new addition to
the AutoLink release, called the “Fine Packet Tuning” tool.
Users of MPI desiring to work with AutoLink will obtain
the best performance with the optimal packet size for their
system.

First, we will present AutoMap and AutoLink. Then, we
develop the concept used in the “Fine Packet Tuning” tool.
Finally, we show an small example of use of the new tool.

2 AutoMap and AutoLink

2.1 AutoMap

AutoMap is a source-to-source compiler designed to
read from user data-types definition files, C language
typedef and struct entries. It generates a set of files
containing MPI data-type definition and creation proce-
dures.

AutoMap works by recognizing special directives,
placed inside of C comments, that identify each data-type
definition which is to be used as an MPI data-type. Sub-
types (types that are used by the user type) do not have to
be identified by directive; AutoMap will automatically gen-
erate requested types and sub-types. In addition, two special
directives are used to tell AutoMap when to start and stop
its parsing process.

The procedure created by AutoMap is defined in-
side the file mpitypes.inc that is to be included by
the user main program file (on figure 1, it would be
userprog.c). The procedure, Build MPI Types(),
will generate new data-types to be sent by MPI commands
(such as MPI Send and MPI Recv), where the MPI data-
type name is the user data-type name prefixed by “AM ”.

2.2 AutoLink

AutoLink is a library designed to allow users to send and
receive “dynamic data-types” (data-structures using point-
ers to other data-structures, such as graphs) via MPI. It uses
AutoMap (the generation process can be seen in figure 1)
to parse the user data-types entries and provides some new
high level functions to transfer those data-types.

These functions are :

� AL Send, will send a dynamic data-structure (such as
a graph) starting from its entry point, following each
pointer link in a breadth first traversal, storing data into
“Packets”, and sending them.

1

� AL Recv, will receive all the data sent by AL Send,
store the data, recreate the links between the fields of
the data-structures, and give the user the entry point.

userprog.cstruct.h

is used by

autolink.inc

userprog.o al_internals.o

mpitypes.inc

mpitypes.h

userprog

al_internals.h

is included by

generates

C compilation

optional

AutoMap alone
used files

autolink.h

al_internals.c

al_routines.inc al_common.h

AutoMap

C linker
(with MPI)

logbook.txt

Figure 1. AutoMap and AutoLink files gener-
ation; struct.h is the user type definition
file, useprog.c is the C source that uses the
output of AutoMap/AutoLink

New AutoLink data-type nanmes are built from the user
data-type names by prefixing them with “AL ”.

Some parameters are left to the user to change or
set so that he can fine tune them; examples include the
AutoLink internal data-types sizes, the enabling of trac-
ing/debugging/benchmarking modes for each MPI process,
and specification of the default PacketSize.

2.3 PacketSize

As explained before, AutoLink uses Packets. Its notion
of Packet is that of a buffer; AutoLink —reducing the num-
ber of communications required to send the entire dynamic
data-type— stores some elements of each required data-
type in a “to send” buffer and only sends the buffer when
it is full.

The PacketSize is given in bytes so that each buffer
is close to MPI message sizes. The buffer size is calculated
to possess a number of possible elements such as (if BE
represents the number of elements to be stored in the Packet
for this element) :

����� �
PacketSize ���
	 ElementSize if � 1�

otherwise

Entry 1 Example of data-type definition
typedef struct _fields fields;

struct _fields {
char keyshortcut;
char title[36];
fields* next;

};

typedef struct _menu {
char title[72];
char comment[256];
fields* thefields;

} menu;

The user dynamic data-type menu in entry 1 is of size
660 (considering a char on 2 bytes1 and a pointer on 4
bytes). If the user keeps the PacketSize at the AutoLink
default value of 4096, the number of possible elements in
the Packetwould be 6, using an actual buffer size of 3960
bytes. In like manner for the struct fields, this would be
52 elements (of 78 bytes) defining a buffer of 4056 bytes.

During the send process, should the full data-type con-
tain less than 52 fields (considering that menu is the
entry data-type) it will be sent only after the full traversal
is completed. Otherwise, it will be sent in more than one
packet.

3 PacketSize tuning

3.1 Concept

To find the best PacketSize, a fine tuning test case
has been added to the AutoLink web page. The test case is
composed of four components :

1. Structure definition and C program to perform the
benchmark log,

2. A log extractor to extract pertinent data

3. A multiple run analyzer

4. A script to automate the run

3.2 C program

The test case works with the data-type defined in entry
2, defining a single linked list of nodes containing 16 char
(the tests were run on a system where a char is 1 byte and a
pointer 4 bytes).

1to code JIS (Japanese Industrial Standard) characters for example

The test program will run with the MPI processes con-
nected in a ring; the MPI process with rank 0 will start the
ring, and finish it. The simplified version of the algorithm
is described in entry 3 (on page 3) for rank 0, and entry 4
(on page 3) for all other ranks. Since we are using a ring
topology, the previous rank of rank 0 is the last rank, and
the next rank of the last rank is rank 0.

Since the algorithm uses specific data
as PacketSizeMIN, PacketSizeMAX,
PacketSizeINC, and LinkedListSIZE, it is possible
to provide them via the command line as arguments to the
program, for specific fine tuning.

The algorithm sends and receives the same content
in a ring, the Linked List of LinkedListSIZE el-
ements, starting with a PacketSize (in bytes) equal
to PacketSizeMIN, up to PacketSizeMAX (de-
fault value is calculated as ����� �����	� �
� ���������� ��� �����
� ���
����� �!�"� �$# �&%'�&�" � , so that the last packet contains the
entire Linked List), each time increasing the PacketSize
by PacketSizeINC.

Entry 2 PacketSize tuning used data-type
typedef struct _AL_LL_Test AL_LL_Test;

struct _AL_LL_Test
{
char content[16];
AL_LL_Test *next;

};

Entry 3 Simplified algorithm for Fine PacketSize Tuning
(rank 0)
|Fill Linked List of SIZE elements
|Initialize MPI for AutoLink
|PacketSize = PacketSizeMIN
|While PacketSize (PacketSizeMAX
| |MPI Send PacketSize to next rank
| |Set PacketSize
| |AL Send LinkedList to next rank
| |MPI Recv PacketSize from previous
rank
| |AL Recv LinkedList from previous
rank
| |PacketSize += PacketSizeINC
|Send Stop Value to next rank
|Recv Stop Value from previous rank

3.3 Extracting data

AutoLink provides the user with an internal log if asked.
In this log —depending of the debug level— are stored in-

Entry 4 Simplified algorithm for Fine PacketSize Tuning
(all ranks but rank 0)
|Initialize MPI for AutoLink
|While not received Stop Value from
prev. rank
| |MPI Recv PacketSize from previous
rank
| |Set PacketSize
| |AL Recv LinkedList from previous
rank
| |MPI Send PacketSize to next rank
| |AL Send LinkedList to next rank
|Send Stop Value to next rank

formation that a script can use to extract time relevant data,
such as sending time and receiving time.

The Perl script used, extracts an output file per MPI rank
number, the real time since the beginning of AutoLink, the
PacketSize, and the time required to complete one send
or receive operation.

3.4 Analyzing data

To choose an optimal PacketSize for one environ-
ment, analyzing the extracted data on a certain number of
run is a simple method.

A Perl script integrated into the AutoLink release is de-
signed to extract such data in two ways :

1. Showing the most suitable PacketSize for the send-
ing and receiving part of each MPI rank.

2. Storing some reference usable files for each MPI rank
for graphing the send or receive time as a function of
the PacketSize.

We use up to four different analysis parameters :

1. Min, will extract the minimum value for each
PacketSize

2. Max, will extract the maximum value for each
PacketSize.

3. Mean, will calculate the average value taken for send-
ing of receiving for each PacketSize.

4. Median, will take from the data the center value.

3.5 Automating the analysis

A shell script is provided with the AutoLink release, so
that one can automate the fine packet tuning process; its
simplified algorithm is detailed in entry 5.

There are also entries detailing the way the user wants
the analysis performed with entries such as :

� number of processors to run on,

� number of runs to perform and process,

� command line to run the MPI program,

� arguments of the MPI program (mostly to be able to
use the specific command line arguments),

� mode in which to run the data analysis script

Entry 5 Fine PacketSize tuning automation algorithm
Phase1:
|While more run to do
| |Execute the MPI program
| |Extract data for this run
| |Store it for future analysis

Phase2:
|Analyze all the run

4 Use study

4.1 Configuration

4.1.1 System used

This analysis was performed on 5 SGI dual 225 MHz
R10000 processor Octanes with 384 Mb memory running
IRIX 6.5. The systems were also used by other processes
during the tests.

The network connecting the workstations is a 10/100 Mb
Ethernet, using the same switch.

4.1.2 MPI version

The analysis ran using the SGI MPI, which implements the
MPI 1.2 standards.

4.2 Test parameters

The test was run for 100 times on the 5 octane cluster
using 1 processor per system, and using the following pa-
rameters for the MPI program :

� LinkedListSIZE = 25000

� PacketSizeMIN = 0

� PacketSizeMAX = ((LinkedListSIZE + 1) *
SizeOfOneElement)

� PacketSizeINC = 1000

4.3 Results

The tests ran for more than 41 hours, generating 5 output
files per run from which were extracted data to perform the
phase 2 analysis.

The results for phase 2 analysis concern the best
PacketSize for all modes on each processor; these are
shown in Table 1. In it, one can see that since the sys-
tem was not running these MPI processes alone, the values
found for such concrete operators as Min and Max are not
strong enough values to be used. Mean calculations are al-
ready more accurate, but still some values are not precise
enough to allow a concrete use. Median presents some
very precise values.

MPI rank 0 1 2 3 4

Min
Send 241000 488000 492000 487000 29000
Recv 11000 13000 11000 8000 11000

Max
Send 11000 487000 453000 249000 275000
Recv 48000 15000 17000 40000 31000

Mean
Send 14000 487000 13000 487000 14000
Recv 14000 15000 15000 17000 17000

Median
Send 14000 8000 15000 8000 15000
Recv 7000 11000 8000 8000 8000

Table 1. Result for 100 runs on 5 MPI ranks

It is easy to see the median curve gives the most reli-
able measurement after seeing the figure 2 showing the time
spent sending the entire Linked List (we are not showing
the entire PacketSize range —that goes up to 500,000
bytes— for after 50,000 the values are quite similar).

Note also that the —minimal— value for PacketSize
equal to 0 (similar to sending each element just after travers-
ing it) is 7.43 seconds.

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
(s

ec
on

ds
)

PacketSize (bytes)

Min
Max

Medium
Median

Figure 2. Rank 0, Send

Figure 3, presenting the median send plot for all ranks,

indicates that a value for PacketSize between 5000 and
15000 would suit this environment.

Figure 4, presenting the median receive plot for all ranks,
confirms it : a value for the PacketSize between 5000
and 15000 best fits this particular run environment.

The default AutoLink PacketSize value of 4096 was
not the best value for this environment.

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
(s

ec
on

ds
)

PacketSize (bytes)

Rank 0
Rank 1
Rank 2
Rank 3
Rank 4

Figure 3. Median values for Send on all ranks

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
(s

ec
on

ds
)

PacketSize (bytes)

Rank 0
Rank 1
Rank 2
Rank 3
Rank 4

Figure 4. Median values for Receive on all
ranks

A second run was done, on the same workstations, 100
times, changing the MPI program settings to :

� LinkedListSIZE = 25000

� PacketSizeMIN = 5000

� PacketSizeMAX = 15000

� PacketSizeINC = 200

The median results for all ranks for send and receive
show that the value 8000 for PacketSize gives the most
suitable value for this environment. This value should
be used as the new default value (it can be changed
in the al common.h file, by setting the value in the
Makefile.base provided with AutoLink, or by using
the AutoLink command AL SetPacketSize()).

5 Conclusion

In this article, we presented AutoMap and AutoLink, two
MPI data-types tools, designed to help MPI programmers
wotk with user defined data-structures. We also presented
the “Fine Packet Tuning” tool that one can use with Au-
toLink to specify a PacketSize that will fit best the en-
vironment used. We saw that in some cases, the default
PacketSize provided for AutoLink is not the best, that
changing it would improve the performance of the tool.

New transfer methods are being added to the AutoLink
tools and further improvements will give users a powerful
tool to work with data-types.

HTTP references

� MPI data-type tools :
http://www.nist.gov/itl/div895/auto/

� NIST :
http://www.nist.gov/

� RÉSÉDAS :
http://www.loria.fr/equipes/resedas/

� SASP :
http://www.nist.gov/itl/div895/sasg/

References

[1] Message Passing Interface Forum, MPI : A Message-
Passing Interface Standard.

[2] “MPI: A Message Passing Interface Standard,” HTML
document, 1994, http://www.mcs.anl.gov/
Projects/mpi/index.html.

[3] William Gropp, Ewing Lusk, and Anthony Skjellum,
Using MPI: Portable Parallel Programming with the
Message-Passing Interface, The MIT Press, Cam-
bridge, MA, 1994.

[4] K. H. J. Vrielink, E. C. Baland, and J. E. Devaney, “Au-
toLink: An MPI Library for Sending and Receiving

Dynamic Data Structures,” in International Conference
on Parallel Computing. University of Minnesota Super-
computer Institute, october 3-4, 1996.

[5] Judith Ellen Devaney, Martial Michel, Jasper Peeters,
and Koen Vrielink, “AutoLink: An MPI C Library
For Sending and Receiving Dynamic Data Structures,”
Tech. Rep., NIST, April 1997, http://www.itl.
nist.gov/div895/sasg/parallel/.

[6] Judith Ellen Devaney, Martial Michel, Jasper Peeters,
and Eric Baland, “AutoMap: A Software Tool for the
Automatic Creation of MPI Data Structures From User
Code,” Tech. Rep., NIST, April 1997, http://www.
itl.nist.gov/div895/sasg/parallel/.

[7] Delphine Stéphanie Goujon, Martial Michel, Jasper
Peeters, and Judith Ellen Devaney, “Automap and au-
tolink : Tools for communicating complex and dynamic
data-structures using mpi,” Lectures Notes in Computer
Science, vol. 1362, 1998, Presented at CANPC’98.

[8] Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, second edition, Prentice Hall
PTR, Englewood Cliffs, NJ, 1988.

Disclaimer

Certain commercial products may be identified in order
to adequately specify or describe the subject matter of this
work. In no case does such identification imply recommen-
dation or endorsement by the NATIONAL INSTITUTE OF

STANDARDS AND TECHNOLOGY, nor does it imply that
the products identified are necessarily the best available for
the purpose.

License statement regarding AutoMap and
AutoLink

This software was developed at the NATIONAL INSTI-
TUTE OF STANDARDS AND TECHNOLOGY by employees
of the Federal Government in the course of their official du-
ties. Pursuant to title 17 Section 105 of the United States
Code this software is not subject to copyright protection and
is in the public domain.

AutoMap and AutoLink are experimental systems. NIST
assumes no responsibility whatsoever for their use by other
parties, and makes no guarantees, expressed or implied,
about their quality, reliability, or any other characteristic.

We would appreciate acknowledgement if the software
is used.

