Reengineering the Optics of Quantum Dots Using Nanomechanical Strain

Garnett W. Bryant, N. Malkova, and J. Sims Atomic Physics Division and JQI, NIST, Gaithersburg, MD

M. Zielinski and W. Jaskolski NRC, Ottawa, Canada and UMK, Torun, Poland

> J. Aizpurua DIPC, San Sebastian, Spain

Introduction

Passive control of quantum dot (QD) optics is achieved by tailoring QD size, shape and composition during growth. *Dynamical control of excitons in QDs is highly desirable.* For QDs embedded in nanomechanical structures, *dynamical control could be obtained by using externally imposed mechanical strain to reengineer the QDs to modify level degeneracies, polarize optical transitions, induce entanglement, or change coupling between closely spaced dots, all capabilities needed to use dots in optical nanodevices and quantum information processing.*

To exploit hybrid nanomechanical/QD devices, an understanding of the coupling between internal strain due to lattice mismatch, externally imposed mechanical strain, and excitons in the QDs in the nanomechanical structure is needed.

To identify the effects of mechanical strain, we present a theory of InAs QDs in a GaAs nanomechanical bridge. The bridge is bent to simulate external strain applied to reengineer the QDs.

Nanomechanically Strained QDs: Summary

- DC Stark field analog
 - Biaxial deformation acts like an electric field E_z
 - Electrons and holes shift the same way
 - Shear bends act like E_x
 - Electrons and holes shift the opposite way
 - Internal relaxation and state distortion is critical
- Excitons
 - Strain reengineers the anisotropic exchange coupling
 - This controls the phase of spin mixing in the exciton, leading to
 - Fine structure level mixing and crossing and polarization rotation
- Coupled dots
 - Strain-induced state crossing and inter-dot transfer

e h

Theory of QDs in nanomechanical oscillators: Results for a pyramidal InAs QD in a GaAs nanobridge

Geometries and applied strain

Manipulating electron energies with nanomechanical strain

Electrons

Biaxial deformation

• "Rigid" shift with fixed level ordering and state symmetries

•Shift: 1-10 meV

•Electron and hole shift the same way

<u>Shear</u>

- Quadratic increase
- •Mixing, pushed into the wetting layer
- •Electron and hole shift the opposite way

"Analog" to DC Stark effect with same or opposite charge for e and h

Manipulating hole energies with nanomechanical strain

Holes

Biaxial deformation

• "Rigid" shift with fixed level ordering and state symmetries

•Electron and hole shift the same way

<u>Shear</u>

•Quadratic decrease

•Mixing

Internal relaxation determines level and charge shifts

Biaxial lattice relaxation in a flat bridge

Distorting the electron and hole states

Strain-induced charge shifts: "analog" to Stark effect with counterrotating e and h

Asymmetric stretching or squeezing

Manipulating inter-dot transfer Example: electrons in a biaxially deformed double dot

Strain-induced charge shifting determines charge transfer in coupled dots

Excitons: biaxial deformation

Exciton energy follows pair ground state

Binding can increase or decrease by bending (charge shifting)

Fine structure: level splittings

 Ex_1 and Ex_2 are dark

Ex₃ and Ex₄...exchange split bright states

 Ex_3 and Ex_4 ...asymmetric exchange

Bend-induced anti-crossing and polarization rotation

Excitons: biaxial deformation

Pair ground state weakly polarized, strain polarizes along y

 $Ex_{3(4)}$ polarized along x-y (x+y) in unbent structure

Polarization rotates to x (y) by bending

Excitons: shear

Exciton energy follows pair ground state

Binding increases by bending (hole squeezing)

Fine structure: level splittings

 Ex_1 and Ex_2 are dark

 Ex_3 and Ex_4 ...exchange split bright states

Ex₃ and Ex₄...asymmetric exchange and strong coupling

Bend-induced anti-crossing and polarization rotation

Excitons: shear

Pair ground state weakly polarized, strain polarizes along x

 $Ex_{3(4)}$ polarized along x-y (x+y) in unbent structure

Rotates to y (x) by bending (reverse of biaxial deformation)

Reengineering excitons: tuning the exchange coupling

Strain-induced tuning of the <u>magnitude</u> of the exchange coupling between $S_z = \pm 1 e/h$ pair states determines the splitting between bright states

Strain-induced tuning of the <u>phase</u> of the exchange coupling between $S_z = \pm 1$ e/h pair states determines the polarization of bright states

