
A Genetic Programming Ecosystem

Judith Devaney, John Hagedorn, Olivier Nicolas, Gagan Garg, Aurelien Samson, Martial Michel
National Institute of Standards and Technology

Gaithersburg MD 20899-8951, USA�
judith.devaney,john.hagedorn,olivier.nicolas,aurelien.samson,martial.michel � @nist.gov

Abstract

Algorithms are needed in every aspect of parallel com-
puting. Genetic Programming is an evolutionary technique
for automating the design of algorithms through iterative
steps of mutation and crossover operations on an initial
population of randomly generated computer programs. This
paper describes a novel parallel genetic programming (GP)
system inspired by the symbiogenesis model of evolution,
wherein new organisms are generated through the absorp-
tion of different life-forms in addition to the usual muta-
tion and crossover operations. Different organisms are ex-
pressed in this GP system through multiple program repre-
sentations. Two program representations considered in this
paper are the procedural representation (PR) and the tree
representation (TR). Populations of these representations
evolve separately. Individuals in each population migrate
to the other and participate in evolution via representation
change algorithms. Parallelism is achieved through use of
the AutoMap/AutoLink MPI library. The differences in the
locality properties of the representations serve as a source
of new ideas for creating the final algorithm.

1. Introduction

The need for algorithms is ubiquitous in computer and
computational science. A well designed algorithm can
make a difficult problem tractable. However, algorithm de-
sign is a person intensive activity. This dependence upon
people limits the number of projects that can be attempted
in a given time period. Additionally, for specialized disci-
plines such as parallel algorithms, there is a further depen-
dence on domain knowledge. Thus there is another limita-
tion due to the number of people who have the specialized
knowledge to do the design work in the required domain.

It is desirable to automate the design of algorithms, both
to increase their number and to search for better ones. Ge-
netic Programming (GP) [8] [9] [10] is a methodology, in-
spired by Darwin’s Theory of Evolution, to evolve algo-

rithms in the form of computer programs from a high level
statement of the problem. Because the representation is in
the form of a computer program, the output algorithms can
be used from one situation to another. At the end of a run,
one has a method, not just a point solution. Thus GP can be
used to increase the number of algorithms that can be de-
signed by a fixed group of people, as well as to shorten the
time to design the algorithms.

However, representation in Machine Learning methods,
of which GP is one, is critical. In fact Winston [18] states
the following:

Representation Principle:
Once a problem is described using an appropriate
representation, the problem is almost solved.

Of course, finding the appropriate representation is
the critical issue. The whole Machine Learning subfield
of constructive induction [3] [19] strives to modify repre-
sentation spaces to find one that enables a problem to be
solved.

When using genetic programming, one can address the
representation issue by evolving the representation as the
evolution proceeds. Yet this does not remove difficulties
such as insufficient diversity and getting stuck in local min-
ima because of high scoring blind alleys.

Views of scientists on the process of biological evolu-
tion itself provide a source of ideas to address represen-
tation issues. One view of evolution is that it proceeds
throught symbiogenesis. According to its chief propo-
nent, Lynn Margulis, “[Symbiogenesis] is a kind ... of
Lamarckianism (inheritance of acquired traits).” However,
she says “...through symbiogenesis organisms acquire not
traits but entire other organisms, and of course, their en-
tire sets of genes... Symbiosis generates novelty... Symbio-
sis is not a marginal or rare phenomenon. It is natural and
common.”[12]

We borrow from this view by building a parallel genetic
programming environment that attempts to leverage alterna-
tive representation spaces to increase the likelihood of find-

ing solutions and to increase performance. Extending the
biological analogy of genetic programming, we refer to this
approach as a parallel genetic programming ecosystem.

This approach creates a set of separately evolving pop-
ulations each with a distinctly different problem represen-
tation along with sub-populations with the same represen-
tations. These populations evolve within their isolated en-
vironments, but periodically exchange a few highly fit indi-
viduals using the island model [2] [1] [16]. Because these
individuals evolve with different underlying representations
and/or with different evolutionary operations, we expect
that the populations will evolve along distinctly different
lines and that the exchanged individuals will bring informa-
tion into their new populations that is very different from
what was evolved locally.

Note that any property of an evolving population’s pa-
rameter space may alter the search space or search pro-
cedure. Certainly differing program representations will
present us with potentially radically different search spaces.
But other properties of the population environment’s oper-
ating parameters such as mutation and crossover rates, pop-
ulation size, or tournament size also can alter the character-
istics of the search space.

So we are building an ecosystem of evolving popula-
tions. One population may differ from another in its un-
derlying representation of individual programs, or in terms
of the evolutionary pressures that are being applied, such as
mutation rates and methods. In terms of the biological anal-
ogy, the difference in program representation is analogous
to a difference in species and the difference in evolutionary
pressures is analogous to a difference in the environment
(such as temperature or available sources of food).

Of course, when the time comes to exchange individu-
als between populations a difference in program represen-
tations presents us with a substantial problem to overcome.
After all, in biology, different species cannot inter-breed;
we overcome this by using transformation algorithms to
convert between representations, creating opportunities for
symbiogenesis.

The rest of the paper is organized as follows: Section 2
gives a brief description of Genetic Programming and then
describes the two base representations of this paper, as well
as conversion algorithms between them. Section 3 describes
the method of parallelization using the AutoMap and Au-
toLink [5] [7] [13] [14] [15] [17] MPI Data Structure Tools.
Finally, section 4 discusses: 1) ways in which the method-
ology can benefit problem solution, and 2) plans to run the
system.

2. Description of System

The GP algorithm consists of the following set of tasks:
creation of initial population, evaluation of the fitness of the

individuals in the populations by means of a fitness func-
tion, and then creation of the next generation through a set
of evolution operators (such as mutation, reproduction, and
crossover). The evaluation and generation stages are iter-
ated until the problem, as defined by the fitness function, is
solved, or some limit (such as the maximum allowed num-
ber of generations) is reached. This is shown in figure 1.

Fitness Evaluation

Create Initial Population

Stop Run?

Evolve New Population

ExitYes

No

Figure 1. Simplified Algorithm for Genetic
Programming

The GP methodology was originally implemented in
LISP [8] where the use of S-expressions for both data and
functions provides a certain simplicity of implementation.
It is now implemented in a variety of languages. The pro-
grammer decides how much, if any, structure is to be im-
posed on the individual programs; this structure may be
fixed or evolve during a run. Usually the program is a tree
with multiple branches that perform different functions such
as function definition, iteration, and result production. Indi-
vidual trees are usually implemented as fixed length strings
in postfix notation [1]. However, they may also be vari-
able length trees implemented with pointers [4]. We chose
two representations for our multi representation system: a
procedural representation (PR) close to what a programmer
would write, and a tree based representation (TR) imple-
mented with pointers for maximum flexibility.

2.1. Procedural Representation (PR)

A novel feature of this work is the PR representation.
This representation is modeled on conventional procedural
programming languages such as C or Fortran. The program
is structured into routines that make calls to other routines.
Data is conveyed by means of argument lists and local vari-
ables may be used to hold intermediate results. At the bot-
tom of the calling hierarchy are calls to built-in routines that
perform basic operations such as add and subtract.

This PR was adopted for several reasons. First, since

this sort of program structure is useful to human program-
mers, we thought it might prove to be effective for computer
generated programs. Furthermore, the generated programs
might be somewhat simpler for a human reader to under-
stand. Finally, the different characteristics of the search
space might provide an environment in which certain types
of problems may be more easily solved.

Here are some of the salient features of this representa-
tion:

� There are two types of routines:

– Composite routines call other routines

– Atomic routines do not call other routines; these
provide the basic operations of the GP system
(such as addition, subtraction, etc.).

� Each routine has a formal argument list with argu-
ments identified as input, output, or input/output. Use
of these formal arguments always honor these I/O at-
tributes.

� Each formal argument may have a specified data type
or the data type may be left unspecified in which case
at run-time its data type is specified by the data type
of the actual argument that is passed to the routine for
that formal argument.

� Each routine may have local transient variables that are
scoped only within a single invocation of that routine.
Local variables acquire a data type only at run-time,
when the variable is created with the same type as an
incoming argument.

� Each composite routine calls a sequence of other rou-
tines. Each call must specify an actual argument list
that corresponds to the formal argument list of the
called routine. Each actual argument is either a for-
mal argument in the calling routine, a local variable of
the calling routine, or a constant.

� Data type conversions are performed automatically
whenever necessary and feasible.

� User-supplied code can be incorporated into the sys-
tem in the form of additional atomic routines.

Here is a text representation of a simple program. It is
presented in a C-like syntax, but it is important to remember
that this is not intended to be compilable C code. Note that
formal arguments and local variables are declared ��� ����� .
This indicates that the actual data types of these items are
determined only at run-time. Some comments have been
added to clarify the program.

void PN0001 (
void * arg000 , /* IN */
void * arg001 , /* IN */
void * arg002 , /* IN */
void * arg003 /* OUT */
)

{
void * lv000 ; /* Like arg 2 */
/* end of local variable list */

add (arg000, arg001, arg003);
mult (arg000, arg003, arg001);
PN0002(arg001,arg003,arg002,arg003,lv000);

} /* end of PN0001 */

void PN0002 (
void * arg000 , /* IN */
void * arg001 , /* IN */
void * arg002 , /* IN */
void * arg003 , /* OUT */
void * arg004 /* OUT */
)

{
/* end of local variable list */

sub (arg000, arg001, arg004);
div (arg001, arg002, arg003);
add (arg003, 3.900000, arg004);

} /* end of PN0002 */

Clearly this program representation presents a variety of
issues within the context of a genetic programming sys-
tem. The most important issues occurs during crossover.
For crossover, a branch of the calling hierarchy is easily se-
lected, but when branches are moved from one program to
another, the formal argument lists of the removed branch
and the inserted branch may differ. These differences must
be reconciled for the resulting program to be valid. The
crossover procedure adapts the actual argument list of the
removed routine to conform to the formal argument list of
the newly inserted routine.

2.2. Tree Representation (TR)

In TR a program is viewed as a tree structure. A tree
is composed of nodes with children (operators) and leaves
(childless nodes). The children of a node are the operands
of the operator at that node. A leaf node represents a value
such as a constant or a variable. For example, the following
program: �
	����� � ��������� will be seen as the tree shown in
figure 2.

This representation has many advantages among which
are:

� Ease and speed of implementation

*

+ -

5 3 8 4

Figure 2. Example of a tree

� Ease of evolution of new programs (crossover, muta-
tion)

� Speed of evaluation

� Ease of code maintenance

� Flexibility of user supplied code

User supplied code can be incorporated into the system
in the form of new operators. The standard system provides
operators for many common (and possibly uncommon) op-
erations, but sometimes a new one will be required for a
particular problem. The system gives the user facilities for
providing code to perform the desired operation. The sys-
tem then uses the operation in TR programs just as it uses
any of the built-in operators.

2.3. Algorithms for Representation Conversion

The two representations described above share many fea-
tures. They both represent an ordered sequence of opera-
tions performed on a set of incoming operands. Operands
are either variables or constants. For the purpose of this pre-
sentation we will assume that a program (in either tree or
procedural representation) has a single starting point (root
node) and produces a single result. The algorithm conver-
sion process consists of translating the sequence of opera-
tions specified in one representation into the other represen-
tation.

2.4. Procedural Representation to Tree Represen-
tation

The conversion of a PR program to a TR program is done
by a recursive algorithm that starts at the top-level routine in
the PR program. As the algorithm constructs the TR repre-
sentation of that routine, it will encounter calls to lower-
level composite routines. Sub-trees for each lower-level

routine are generated as needed by recursively applying the
conversion algorithm.

The basic approach of the PR to TR conversion algo-
rithm is to scan the PR program backward to find all of the
operations that contribute to the final value of the output
argument of the top-level routine. As these operations are
found, sub-trees are constructed and incorporated into the
final TR program tree.

The conversion algorithm makes use of a data structure
that is referred to as a search-variable-set. This is a list of
variables whose values are known to contribute to an output
result. As a tree representation is being constructed, this is
the set of variables whose values or derivations are currently
unresolved in the partially constructed tree.

This algorithm is presented below in a pseudo-code form
as a single recursive procedure. This procedure takes a sin-
gle PR routine and generates a list of TR trees, one for each
output argument of the PR routine. All of the terminals of
the generated TR trees are formal arguments of the PR rou-
tine or constants. Note that the top-level routine of a PR
program is assumed to have only one output argument, so
this procedure will generate a single tree when given that
top-level PR routine.

BEGIN PR-TR-Convert (INPUT: PR routine,
OUTPUT: list of TR trees)

Set each output tree to be a single node tree:
one for each output argument of the PR routine

Set the current-search-variable-set to the set
of output variables of the current PR routine

LOOP over calls in current PR routine IN REVERSE
ORDER

IF current call is to an atomic routine then
Make subtree(s) corresponding to this call

ELSE
Invoke PR-TR-Convert (PR sub-routine,

list-of-subtrees)
(This recursive call makes a list of
sub-trees corresponding to this call, one
for each output arg of the called routine.)

Substitute actual arguments in current call
for the formal arguments in the generated
sub-tree(s).

ENDIF

FOR each search-variable in
current-search-variable-set

IF there is a sub-tree corresponding to
search-variable

Substitute sub-tree for corresponding
node in the output list of TR trees

Remove search-variable from
current-search-variable-set

END IF
END FOR

Add each variable that is used as an input
argument to the current call to the

current-search-variable-set

END LOOP over calls

END PR-TR-Convert

We are converting only that part of the whole program
to a tree in TR which contributes to the output argument of
the top-level procedure. This may lead to some loss of data
in the sense of introns (i.e. code that does not participate
in creating the final result), but it won’t lead to any loss
of information since the program as a whole has only one
output argument.

2.5. Tree Representation to Procedural Represen-
tation

Conceptually, the translation from TR to PR is simple.
When the tree representation is evaluated, nodes are tra-
versed and a sequence of operations is performed. The
translation process simply has to determine that sequence of
operations and express each operation as a PR call. There
are, however, several issues that must be considered.

Each operation in TR is represented as part of a tree; in
PR it is represented as the call of a function. In TR, the tree
shown in figure 3 can be converted as:

add(a,b,output);

Or it can be converted as:

add(a,b,tmp0);
assign(tmp0,output);

For ease of implementation, this last conversion has been
adopted.

ba

+

Figure 3. Simple Tree Representation (TR)
program.

There are some nodes regarded as leaf nodes in our TR
programs that are most appropriately treated as operators
in our PR programs. A prime example of such a node is���

which reads and returns memory location zero. Such
a leaf node in TR will be represented in PR as a function
with operand(s) that are derived as appropriate for the type

of operation. For example, the TR node
���

will be rep-
resented as ����� � � �	� � � � in PR. To convert a program in
TR to PR, it is necessary to know which leaves in a tree are
true terminals, such as integers and input values, and which
leaves are implied operators, such as

���
. Leaf nodes that

are to be handled as operators will be referred to as L-OP
nodes.

The TR to PR conversion algorithm is presented below
in pseudo-code. Nodes in the tree are traversed in the same
order that they are traversed during execution. As each TR
node is examined, the node is tagged with the name of a
PR variable name (representing the value at that node). If
that node is an operation, a PR call is created to carry out
that operation. Declaration of local variables are added to
the PR routine as they are needed. The L-OP nodes require
a small amount of special handling. The conversion algo-
rithm consists of the following steps:

BEGIN TR-PR-Convert (INPUT: TR tree, OUTPUT: PR routine)

Initialization:
Assign tree inputs to the names arg_0, arg_1,
... arg_n

Assign tree output to the name arg_{n+1}

Convert tree:
LOOP over nodes in left-to-right,
bottom-to-top order

IF node is a true terminal
(i.e. leaf is not an L-OP)

Tag leaf with name assigned
during initialization

ELSE IF the node is a basic operation or L-OP
Generate PR call with the following elments:

PR routine that corresponds
to the TR operation

PR input arguments:
Non-L-OP node: Use the PR variable
names at the TR child nodes

L-OP node: Derive appropriate PR
variable name(s) or constant(s)
as appropriate for this L-OP.

PR output argument: use an available
PR local variable name lv_j

Add declaration of lv_j to PR
Tag the current node with the PR variable

name lv_j
ENDIF

END LOOP

END TR-PR-Convert

This TR to PR conversion algorithm results in a PR pro-
gram that consists of a single composite routine at the top
level that contains a series of calls to atomic routines.

3. Parallelization with AutoMap and AutoLink

3.1. Overview

Parallelizing the GP algorithm depicted in Figure 1 is
conceptually straightforward. We used the Asynchronous
Island Approach [1] [2]. This method is very efficient,
sometimes reaching super-linear speed-up. The concept
is to consider several populations (one per processor), and
to evolve each population separately except for occasion-
ally sending/receiving asynchronously a small number of
individuals to/from each other. When generating the next
population in an iteration, if the receive buffer contains
a sub-population, then the programs composing this sub-
population participate in the evolution process.

This was very easily done with the help of two Message
Passing Interface (MPI) data-type tools that we developed:
AutoMap and AutoLink [5] [7] [13] [14] [15] [17]. Au-
toMap is a tool that automates the process of creating data-
types for use with MPI. AutoLink uses the MPI data-types
generated by AutoMap; it enables sending composed data-
types containing pointers using MPI via simple library calls.
The work done by AutoMap and AutoLink on parallelizing
the Genetic Programming process is equivalent to develop-
ing packing and unpacking methods for sending and receiv-
ing sub-populations. Equivalent, except that the whole pro-
cess is automated. One does not have to develop and change
code related to modifications of data structures from prob-
lem to problem.

In this approach, each process executes the algorithm
shown in figure 4.

3.2. MPI Issues

The Message Passing Interface (MPI) is offered by all
major computer vendors; there is also a standard for interop-
erability [6] among MPI implementations. Message passing
is used widely on distributed memory parallel machines and
clusters of computers. The MPI standard defines an easy
way to work with concepts such as point-to-point and col-
lective communications, process groups, and communica-
tion contexts. But composed data-types, such as C structs,
can only be sent and received once they are described to the
MPI library through a rather long and cumbersome series of
calls. Furthermore, for dynamic data-types, it is left to the
user to resolve memory references on remote processors.
AutoMap and AutoLink are built on top of the MPI library
to provide automated solutions to these problems.

3.3. AutoMap and AutoLink

AutoMap is designed to simplify the MPI user’s task
when creating composed data-types. It is a source-to-source

Fitness Evaluation

Create Initial Population

Stop Run? Exit

Evolve New Population

Send/Receive Sub-populations
 To/From Other Processes

Yes

No

Figure 4. Simplified Algorithm for Parallel Ge-
netic Programming

compiler designed to read from user C data-types definition
files typedef and struct entries, recognizing special
directives (placed inside of C comments) and generating a
set of files containing MPI data-type definition and creation
procedures.

AutoLink is a library extension to MPI, designed to
allow users to transfer dynamic data-types such as trees,
graphs, lists, etc. via MPI. It uses AutoMap to parse the
user data-type entries, then it provides the high level func-
tions to transfer them.

The public transfer operations are based on the MPI
functions of the same name, and are preceded by AL
(AL Send for example).

AutoLink breaks dynamic data structures into Packets
for sending. A tuning tool enables optimal choice of packet
size for a given communications environment. The specific
algorithms developed for AutoLink are:

� Send :

1. Graph traversal (marked)

2. Address conversion (absolute to relative)

3. Data transfer (using packets)

� Receive :

1. Data reception (and memory creation)

2. Graph links recreation (reverse address conver-
sion)

Hence, the graph is flattened and broken into packets for
sending, then reconstituted with valid references on the re-
ceiving processor. Thus GP programs are sent and received
with simple AutoLink calls. The needed data structures are
created by AutoMap at run initialization.

4. Discussion and Future Work

The automatic translation of arbitrary programs between
these two program representations is straightforward be-
cause there are many similarities in the two representations.
However, as in symbiogenesis, the benefits of combining
the representations into a single system are derived from
their differences. Genetic programming can be thought of
as a technique for searching a solution space for an opti-
mum. The different program representations result in dif-
ferent solution spaces. The program translation process can
be thought of as a transformation between these spaces.

The spaces contain the same set of potential solutions,
but they differ in their locality properties. The idea of local-
ity in such a space refers to how easy it is to move from one
point (program) in the space to another point in the space.
In a genetic programming system a program is transformed
via the genetic operations such as mutation and crossover.
We think of two programs as being near each other in the
solution space if it takes few such operations to transform
one into the other and if the required operations are rela-
tively likely. If the operations are particularly unlikely or
if very many of them are required, then we regard the two
programs as being distant from each other in the solution
space. This notion of distance and locality is altered by us-
ing a different program representation.

These differences in locality result in several differences
in the course of evolution in the two systems. The location
of local optima will be different and the paths of easy or
likely progression toward a satisfactory solution will also be
quite different. One of the greatest benefits that we see for
this approach is that the each of the two representations will
help to prevent the other from becoming trapped at local
optima. Similarly, each representation may help the other
to find portions of the search space that might otherwise be
difficult to enter. To use a different analogy, each represen-
tation will provide ideas that the other representation would
never have thought of on its own.

As mentioned above, the benefits of using multiple rep-
resentations is derived from the differences among them.
The greater the differences are, the greater are the potentials
for benefit. But the greater the differences are, the greater
are the difficulties in translation. The practical difficulties
in translation of more diverse representations could require
translations that are not precise. Information may have to be
altered or lost during the translation process, if only for the
reason that the translation would be otherwise impractical.

Yet such translations can still serve the purpose of moving
potentially valuable ideas between program representations
within a genetic programming system.

This work was partially inspired by an observation that
was made during the development of our GP systems. We
were implementing some of the problems that appear in the
GP literature as a way of testing our software. We imple-
mented the Artificial Ant problem as described by Koza [9].
In this problem, we try to evolve a program that optimizes
the food-seeking behavior of a simple ant. Koza presents
a straightforward approach that uses automatically defined
functions (ADFs). The artificial ant problem and the dif-
ficulties and obstacles to its solution are analyzed in great
detail by Langdon [11].

Because our system was only partially implemented at
the time, we implemented the problem within a finite state
machine model rather than the model described by Koza.
Somewhat to our surprise, we found that our system gener-
ally solved the problem quickly and did not experience the
types of difficulties described by Langdon. This highlighted
the fact that the ease of finding a solution to a problem is
dramatically influenced by how the problem is represented.
This focussed our attention on the issue of problem repre-
sentation.

The general problem of translating between problem rep-
resentations that are as diverse as these two representations
of the artificial ant problem is a rather difficult one. Cer-
tainly we cannot expect to have an automated translation
process that will work for a variety of problems and repre-
sentations. This caused us to try to solve the more limited
problem of automatic translation of relatively similar repre-
sentations.

The work described here is still in its early stages. As of
this writing, the two representations have been implemented
and are functioning independently, however their integra-
tion via the translation process described above is only par-
tially complete. But different results observed from the
tree representation and the procedural representation sug-
gest that each has its particular strengths and weaknesses.
Furthermore, parallelization even of a single representation
has yielded very promising results. So we anticipate that
combining these representations will provide a system that
will perform better in speed and effectiveness than either of
the stand-alone systems. In the future, we also hope to ad-
dress the harder translations of more diverse representations
with problem-specific translation procedures.

5. Disclaimer

Certain commercial products are identified in this paper
in order to adequately describe work related to connecting
software. Such identification is not intended to imply rec-
ommendation or endorsement by the National Institute of

Standards and Technology, nor is it intended to imply that
the identified products are necessarily the best available for
the purpose.

References

[1] Andre, D., Koza, J. R., ”A parallel implementation
of genetic programming that achieves super-linear per-
formance”, In Hamid R. Arabnia, editor, Proceedings
of the International Conference on Parallel and Dis-
tributed Processing Techniques and Applications , vol-
ume III, pages 1163-1174, Sunnyvale, 9-11 August
1996. CSREA.

[2] Bennett, F. H. III, Koza, J. R., Shipman, J., Stiffel-
man, O., 1999, ”Building a parallel computer system
for $18,000 that performs a half peta-flop per day”,
In Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E.,
Garzon, Max H., Honavar, Vasant, Jakiela, Mark, and
Smith, Robert E. (editors). 1999. GECCO-99: Proceed-
ings of the Genetic and Evolutionary Computation Con-
ference, July 13-17, 1999, Orlando, Florida USA. San
Francisco, CA: Morgan Kaufmann. Pages 1484 - 1490.

[3] Bloedorn, E., Michalski, R. S., ”Data-Driven Con-
structive Induction”, IEEE Intelligent Systems, 30-37,
March/April, 1998.

[4] Devaney, J. E. ”Experience with MPI: ’Porting pvm-
make to mpimake’ and ’Parallel Genetic Program-
ming’”, MPI Developers Conference, June 22-23,
1995, Notre Dame, IN.

[5] Devaney, J.E., Michel, M., Peeters, J., Vrielink, K.,
”AutoLink: An MPI C Library For Sending and Re-
ceiving Dynamic Data Structures”, technical report,
April, 1997, http://www.itl.nist.gov/div895/savg/auto/.

[6] George, W. L., Hagedorn, J. G., Devaney, J. E., ”IMPI:
Making MPI Interoperable”, with appendix I by IMPI
Steering Committee, ”IMPI: Interoperable Message-
Passing Interface”, Protocol Version 0.0, January, 2000,
http://impi.nist.gov/IMPI/, Journal of Research of the
National Institute of Standards and Technology, May-
June 2000.

[7] Goujon, D., Michel, M., Peeters, J., Devaney, J.E., ”Au-
toMap and AutoLink: Tools for Communicating Com-
plex and Dynamic Data-structures Using MPI”, Lecture
Notes in Computer Science, Volume 1362, pp 98-109,
1998, Springer-Verlag.

[8] Koza, J. R., ”Genetic Programming”, MIT Press, Cam-
bridge, MA, 1992.

[9] Koza, J. R., ”Genetic Programming II”, MIT Press,
Cambridge, MA, 1994.

[10] Koza, J. R., ”Genetic Programming III”, Morgan
Kauffman, Cambridge, MA, 1999.

[11] Langdon, W. B., Poli, R., ”Why ants are hard”, Pro-
ceedings of the Third Annual Genetic Programming
Conference, University of Wisconsin, Madison, Wis-
consin, July 22-25, 1998.

[12] Margulis, L., ”Symbiotic Planet: A New Look at Evo-
lution”, Basic Books, New York, 1998.

[13] Michel, M., Devaney, J. E., ”A Generalized Approach
for Transferring Data-Types with Arbitrary Communi-
cation Libraries”, Proceeding of the Workshop on Mul-
timedia Network Systems (MMNS’2000) at the 7th In-
ternational Conference on Parallel and Distributed Sys-
tems (ICPADS ’2000), July 4-7, 2000, at Iwate, Japan.

[14] Michel, M. Schaff, A., Devaney, J. E., ”Managing
data-types: the CTRBA approach and AutoLink, an
MPI solution”, Proceedings of the Message Passing In-
terface Developer’s and User’s Conference, March 10-
12, 1999, Atlanta, GA.

[15] Michel, M., Devaney, J. E., ”Fine Packet Size Tun-
ing with AutoLink”, Proceedings of the International
Workshop on Parallel Computing (IWPP ’99), Septem-
ber 21-24, Aizu, japan.

[16] Tanese, R., ”Distributed Genetic Algorithms for Func-
tion Optimization”, PhD Dissertation, Department of
Electrical Engineering and Computer Science, Univer-
sity of Michigan, 1989.

[17] Vrielink, K. H. J., Baland, E. C., Devaney, J. E. ”Au-
toLink: An MPI Library for Sending and Receiving
Dynamic Data Structures”, International Conference on
Parallel Computing, University of Minnesota Super-
computer Institute, october 3-4,1996.

[18] Winston, P. H., ”Artificial Intelligence”, Addison-
Wesley, Reading, MA, 1993.

[19] Wnek, J. Michalski, R. S., ”Hypothesis-Driven Con-
structive Induction in AQ17-HCI - A Method and Ex-
periments”, Machine Learning, 14:(2), 139-168, Feb.,
1994.

