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In a previous work, Sims and Hagstrom [“Hylleraas-configuration-interaction study of the
1 1S ground state of neutral beryllium,” Phys. Rev. A 83, 032518 (2011)] reported Hylleraas-
configuration-interaction (Hy-CI) method variational calculations for the 1S ground state of neutral
beryllium with an estimated accuracy of a tenth of a microhartree. In this work, the calculations
have been extended to higher accuracy and, by simple scaling of the orbital exponents, to the entire
Be 2 1S isoelectronic sequence. The best nonrelativistic energies for Be, B+, and C++ obtained are
−14.6673 5649 269, −24.3488 8446 36, and −36.5348 5236 25 hartree, respectively. Except for Be,
all computed nonrelativistic energies are superior to the known reference energies for these states.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4881639]

I. INTRODUCTION

Beryllium, with its four electrons and strong mixing of
the 1s2 2s2 and 1s2 2p2 configurations, has long been the sub-
ject of investigation and a test of theories. We recently con-
tributed to this discussion by presenting results from a very
large Hylleraas-Configuration Interaction (Hy-CI) calculation
(over 40000 symmetry adapted expansion functions) of the
beryllium ground 1S state.1 The purpose of this paper is to
extend this calculation to the ground 1S state of all beryllium-
like ions, i.e., to the entire Be 2 1S isoelectronic sequence.
Li−, although a four electron system also, has a decidedly
different electronic structure and is not included in the sub-
sequent discussions.

The importance of the correlation of electronic motion
for an accurate determination of atomic and molecular prob-
lems has long been recognized. From a computational point
of view, the central problem is how to build electron-electron
correlation into wave functions. A measure of the effective-
ness of this correlation is the electron correlation energy,
which has been most commonly defined as the difference be-
tween the exact nonrelativistic (NR) energy of the system and
the Hartree-Fock energy.2, 3 Therefore accurate and depend-
able compilations of nonrelativistic atomic total energies are
useful calibration points for the development of more sophis-
ticated models used in electronic structure calculations.4–8

For example, density functional theory uses correlation en-
ergies (McCarthy and Thakkar9 compute closed-shell atom
correlation energies from Z = 19 through Z = 86) for
the evaluation and parameterization of nonrelativistic density
functionals.9, 10 They are also useful as a starting point for
more electron atoms by giving an accurate 4-electron core. In
addition, the calculation of physical energies of interest, e.g., a
transition energy or familiar chemical ionization potentials or
electron affinities, involves these nonrelativistic energies. So
the nonrelativistic energies need to be calculated accurately
to guarantee the accuracy of the result, and hence can be re-
garded as fundamental atomic data (see, for example, the ex-

cellent recent reviews of their high accuracy work including
corrections for relativistic and QED effects by Adamowicz
and co-workers11, 12 or the recent high accuracy results for Be
of Puchalski, Komasa, and Pachucki13, 14).

The total nonrelativistic, stationary-point-nucleus energy,
E(N, Z), is defined as the exact solution (eigenvalue) of the
nonrelativistic Hamiltonian HNR defined as

HNR =
N∑

i=1

Hi +
N∑

i<j

r−1
ij (1)

in atomic units (the atomic unit of energy, the hartree (h), is
chosen as μe4

¯2 with μ = memN/(me + mN)).
Here Hi = Ti + Vi , Hi being a one electron operator

(electron i) consisting of a kinetic energy part Ti = −1/2∇2
i

and a nuclear attraction part Vi = −Z/ri . N denotes the num-
ber of electrons (N = 4 for beryllium-like ions) and Z the cor-
responding nuclear charge.

For N electrons, the time-independent, nonrelativistic
Schrödinger equation is then

HNR�(r1, r2, . . . rN ) = E(N,Z)�(r1, r2, . . . rN ). (2)

Partitioning the Hamiltonian in Eq. (1) into H0 and H1,
where

H0 =
N∑

i=1

Hi (3)

and

H1 =
N∑

i<j

r−1
ij , (4)

one may show, by treating H1 as a perturbation term and ex-
panding the resulting total nonrelativistic energy, that E(N,
Z)/Z2 can be expanded in a formal Laurent sequence in
Z−13, 5, 15–17 from which one obtains the formal expression

0021-9606/2014/140(22)/224312/7/$30.00 © 2014 AIP Publishing LLC140, 224312-1
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for E(Z),

E(Z) = b2Z
2 + b1Z + a0 + a1Z

−1 + a2Z
−2 + a3Z

−3 + . . .

(5)

where, since N = 4 for all of the ions in this study, the depen-
dence of E on N is suppressed.

In earlier studies, Rayleigh-Schrödinger perturbation
theory Z−1 expansions, which are a special case of the
more general infinite series representation of E(Z) given by
Eq. (5), have been used to evaluate the energies of two-
electron ions by Dalgarno and co-workers (for a review, see
Ref. 18). Three-electron ions have been treated by Yan, Tam-
basco and Drake,16 who discuss two different perturbation
procedures for determining the energy coefficients in Eq. (5)
and give nonrelativistic energy results for the Li ground 2S
state for Z = [15, 50] which have an estimated accuracy rang-
ing from 6 decimal places (Z = 15) to 7 decimal places (for
Z = 50). At the four-electron level, the studies of various
members of the four-electron isoelectronic sequence include
the work of Watson and ONeill,19 who do a perturbative treat-
ment to obtain energy expansion coefficients through order
10. However, the eigenvalues obtained with their equations
understandably do not compete with the more refined cal-
culations of Chung, Zhu, and Wang20 and Clementi and co-
workers.21 The renormalization procedure of Kais, Sung, and

Hershbach,22 while not as accurate as the more refined cal-
culations (see Table I), has proven useful in providing trial
energies needed by our inverse iteration eigensolver, as will
be discussed later.

Instead of perturbative expansion techniques which have
not been particularly successful (certainly not in the 4 elec-
tron case), Frolov and Wardlaw17, 23 and Davidson and co-
workers (who have done the most extensive work4–7) use
least squares fits to obtain some or all of the coefficients
of the powers of Z in Eq. (5). Frolov and Wardlaw’s treat-
ment is the most accurate previous treatment of a small part
of the sequence (Z = [3, 12]) using explicitly correlated
Gaussians (ECGs), but it is nowhere as extensive or accu-
rate (their accuracy is 4-5 decimals) as the present treatment
which covers the full range of Z from 4 to 113. The focus
is on Z = [4, 48] with [49, 113] mostly of academic inter-
est. In the case of Be, Chakravorty et al.5 have pointed out
that the leading coefficients of the complete-active-valence-
space multiconfiguration Hartree-Fock (MCHF) expansion
will give the correct b2 and b1 in the energy expansion
Eq. (5). Using the Chakravorty et al. b2 and b1 values, we cal-
culate a suitable number of E(Z) values and predict/interpolate
the rest using a suitable least squares derived fitting poly-
nomial in 1/Z (see Eq. (5)) to obtain rather accurate non-
relativistic total energies for the entire Be 2 1S isoelectronic
sequence.

TABLE I. Hy-CI results for the Be isoelectronic sequence ground state energies in hartrees (see Ref. 25 for the orbital exponents used). All energies in
column 3 are variational using the 38,253 term CSF basis in Table I in Ref. 25.

Z System Energy Reference Reference 4 Reference 5

4 Be − 14.6673 5640 7951 −14.6673 5649 4913

5 B+ − 24.3488 8438 1902 −24.3488 8444 641

6 C++ − 36.5348 5228 5202 −36.5348 5233 842

7 N3 + − 51.2227 1261 6143 −51.2227 08344 − 51.2228 2 − 51.2228 4
8 O4 + − 68.4115 4165 7589 −68.4115 35344 − 68.4117 0 − 68.4117 1
9 F5 + − 88.1009 2767 6354 −88.1009 18844 − 88.1011 4 − 88.1011 3
10 Ne6 + − 110.2906 6107 0069 −110.2906 6045 − 110.2909 2 − 110.2908 9
11 Na7 + − 134.9806 2460 4257 −134.980922 − 134.9809 2 − 134.9808 8
12 Mg8 + − 162.1707 4790 6692 −162.171122 − 162.1710 8 − 162.1710 2
13 Al9 + − 191.8609 8633 8262 −191.861322 − 191.8613 5 − 191.8612 7
14 Si10 + − 224.0513 1029 8012 −224.051722 − 224.0517 0 − 224.0516 0
15 P11 + − 258.7416 9942 7160 −258.742122 − 258.7421 2 − 258.7420 0
16 S12 + − 295.9321 3928 8646 −295.932622 − 295.9325 8 − 295.9324 4
17 Cl13 + − 335.6226 1937 5075 −335.623122 − 335.6230 8 − 335.6229 3
18 Ar14 + − 377.8131 3186 6050 −377.8130 9345 − 377.8136 1 − 377.8134 4
19 K15 + − 422.5036 7082 6658 −422.504222 − 422.5041 7 − 422.5039 8
20 Ca16 + − 469.6942 3167 5265 −469.694722 − 469.6947 4 − 469.6945 5
21 Sc17 + − 519.3848 1082 1074 − 519.3851 3
22 Ti18 + − 571.5754 0541 1671 − 571.5757 2
23 V19 + − 626.2660 1315 3662 − 626.2663 3
24 Cr20 + − 683.4566 3218 2920 − 683.4569 5
25 Mn21 + − 743.1472 6096 9064 − 743.1475 8
26 Fe22 + − 805.3378 9824 5040 − 805.3382 2
27 Co23 + − 870.0285 4295 1686 − 870.0288 6
28 Ni24 + − 937.2191 9419 9135 − 937.2195 1
30 Zn26 + − 1079.1005 1340 7098 −1079.100121

36 Kr32 + − 1564.7445 6819 8454 −1564.744121
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II. VARIATIONAL CALCULATIONS

The Hy-CI wave function for four electron states is

� =
N∑

K=1

CK�K, (6)

where

�K = �

(
r

νK

ij

4∏
s=1

{φKs
(rs)}�K

)

= OasOL,ML
OS,MS

(
r

νK

ij

4∏
s=1

{φKs
(rs)}�K

)
(7)

denotes the Kth antisymmetrized spin and angular momen-
tum projected configuration state function (CSF) (term in the
wave function). OL,ML

and OS,MS
are idempotent orbital and

spin angular momentum projection operators of the Löwdin
type24 for a state of total quantum numbers L, ML, S, MS

(Russell-Saunders (LS) coupling is assumed). In practice, it
is sufficient to take νK equal to 0 or 1, with νK = 0 the CI
case. �K is a primitive spin product function for term K and
φKs

(rs) represents the sth basis orbital in the Kth term. The ba-
sis orbitals are taken to be un-normalized Slater-type orbitals
(STOs) which are defined in the supplementary material.25

Oas is the idempotent antisymmetry projection operator. For
four-electron singlet states there exist two linearly indepen-
dent primitive spin functions �1 = αβαβ and �2 = ααββ.
It is possible to converge on the exact wave function using
only the �1 = αβαβ product. Similar observations have been
made by Larsson26 and by Sims and Hagstrom27 for Li, and
by Sims and Hagstrom28 for Be. Cencek and Rychlewski29

have given the general proof that only one primitive spin func-
tion is needed to ensure convergence of eigenvalues to the
exact root of the Hamiltonian. As has been pointed out by
King,30 the second spin function can be important for com-
puting precise values of properties other than the energy, like
hyperfine coupling constants26, 31–33 and spin-dependent ex-
pectation values like the Fermi contact term.26, 34, 35 This issue
has been extensively studied recently by Wang et al.36

The coefficients CK in Eq. (6) are found by solv-
ing the generalized eigenvalue problem HC = λSC, where
HKL = 〈�K |H|�L〉 and SKL = 〈�K|�L〉, using the familiar
inverse iteration method. The nonrelativistic Hamiltonian H
is given by Eq. (1). Quadruple precision is used in this work,
and as in previous recent work,1, 27, 37–39 the Message Passing
Interface Standard (MPI)40 is used to parallelize the code.

The configuration state functions (CSFs) given by Eq. (7)
can be written as

�K = �(FK (r1, r2, r3, r4)�K ) (8)

in terms of spatial and spin functions FK (r1, r2, r3, r4) and
�K. Only one spin function �K = �1 = αβαβ is used
in this work and the spatial part of the wave function
FK (r1, r2, r3, r4) is given by a particular choice of rij factor
and Hartree orbital product

FK (r1, r2, r3, r4) = r
νK

ij

4∏
s=1

{φKs(rs)}, (9)

where νK is either 0 or 1. Table I in Ref. 25 lists the CSF basis
used in the initial calculations in this work. This CSF basis is
based on previous work on the beryllium ground state;1 the
38,253 s, p, d, f rij CSF wave function used here was chosen
to give the beryllium ground state energy to 7 decimal places
(see Table I in Sec. III for reference energies). The STO or-
bital exponents used in this work for the Be ground state are
given in Ref. 25. For the rest of the isoelectronic sequence
orbital exponents were obtained by Z/4 scaling, a procedure
which works quite well, as will be shown.

Parallel processing is an important aspect of these cal-
culations, with the number of processors used varying from
128 to 256 with 192 being typical. This is not large by cur-
rent standards and scaling to more processors with the current
code would be feasible on a routine basis provided one can
be assured of adequate resources per process. For Be the gen-
eration of the matrices H and S takes much longer than the
solution of the secular equation due to the existence of a very
large number of four-electron integrals. For large expansion
lengths N the ratio of matrix element build to eigenvalue solve
times was typically about 20 to 1 using an efficient solver
(inverse iteration) but relatively inefficient integral and ma-
trix element packages. Inverse iteration scales as expected. In
the previous work,1 matrix element build scaled rather poorly
due to the use of column partitioning of the H and S matri-
ces rather than a more efficient block partitioning used in this
work. In this work, the computation of all blocks is timed, and
then in subsequent runs this information may be used to effect
an optimal assignment of blocks to the various processors to
equalize the load on each processor as much as possible (and
hence to load-level). In this way, armed with knowledge of
the computational cost of the different types of blocks, it is
possible to efficiently distribute the load and achieve almost
perfect theoretical scaling for the matrix element build part of
the calculation (e.g., speedups of 127 on 128 processors were
routinely predicted).

III. BERYLLIUM ISOELECTRONIC SEQUENCE

Table I shows the 38,253 term computed result for the
ground state of Be and compares it with the recent high ac-
curacy determination of Pulchalski, Komasa, and Pachucki13

using ECGs, a result of nanohartree accuracy. From this com-
parison, it can be seen that the 38,253 term wave function has
achieved 7 decimal place accuracy. The energies of the next
two members of the Be isoelectronic sequence, B+ and C++,
are computed simply by scaling all orbital exponents by Z/4
(the ratio of nuclear charges since Z = 4 for Be) and using
the same 38,253 terms in the wave function. Comparing the
results in column 3 to the high quality results of Adamowicz
and co-workers41, 42 in column 4 shows that simply scaling all
orbital exponents by Z/4 again results in an error of at most 1
in the seventh decimal place. Next the remaining members of
the Be isoelectronic sequence listed in Table I were computed
by the same procedure. Computed energies listed in column
3 are compared with reference values listed in columns 4–6,
from which it is clear that the computed energies (except for
the first three) are already superior to the known reference en-
ergies for these states.
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One complication is that using inverse iteration to solve
the generalized eigenvalue problem requires an estimate of
the desired eigenvalue. Reference values listed in columns
4–6 are of sufficient accuracy for this work. However, to con-
tinue on to higher Z, fairly accurate starting values are needed.
These can be obtained by least squares fitting the known en-
ergy values over some specified Z-range, then extrapolating to
estimate the energy E(Z) for some Z value outside the Z-range
used to obtain the fitting polynomial. Calculate the new E(Z)
and add it to the list of known energies and repeat the least
squares fit, thus bootstrapping up to higher Z. This process
is readily automated. E(38,253) values given in Table IV of
Ref. 25 for Z ≥ 28, �Z = 5 were obtained in this way.
Although not shown here, a total of 66 different NR ener-
gies were calculated to effectively cover the entire range of
Z = [4, 113] at the 38,53 expansion level, which were not
particularly big calculations with the current code. Our least
squares data fitting was done using QR factorization (subrou-
tine DQRLS43). After least squares fitting, the predicted ener-
gies match the computed energies (data points) to much better
than 7 decimal places, as expected.

To improve the results, the (Be) wave function was ex-
tended to 52,405 terms. This was accomplished by expanding
the atomic orbitals (AOs) to both include higher powers, e.g.,
9pK and 9pL, and a different orbital exponent in the case of
the pK2 AOs, and by changing the threshold used to deter-
mine which term types to include in the final wave function.
In our earlier work,1 the threshold was 5 nanohartrees. In this
work, the threshold has been lowered to 0.25 nanohartrees,
with many more smaller energy improvement blocks included
in the 52,405 term expansion than in the 38,253 term case. An
additional improvement introduced in this work was the treat-
ment of degenerate states. In this work, all CSF types which
give rise to only 1S states are separately entered and projected,
but only the ones greater than the 0.25 nh threshold were in-
cluded in the final expansion, thereby keeping the overall size
of the expansion down. The 52,405 term expansion given in
Table II of Ref. 25, the net effect of all these changes, is a
57 nh improvement over the 38,253 term expansion and a
54 nh improvement over our best previous Be result.1 The
computed energy values for 26 values of Z are shown in
Table IV of Ref. 25 and compared with the corresponding
38,253 term results.

In Table IV of Ref. 25, there are five 52,405 term en-
ergies which are labelled predicted energies. These entries
are all ones for which energies have been computed for all
expansion lengths but 52,405. One can form the energy dif-
ference for all systems for which both a 52,405 term expan-
sion and a 38,253 term expansion exists, and then perform a
least squares fit of the energy differences to come up with pre-
dicted energy differences for the Z values which are missing
a 52,405 term calculated energy. Adding these differences to
the 38,253 term energies gives “predicted” E(52,405,Z) val-
ues marked (P). The agreement between these “predicted”
values and the least squares interpolated values is very good,
sub-nanohartree accuracy being achieved.

Next the (Be) wave function was extended to 79,137
terms by lowering the cutoff to 0.025 nh (and in some cases
raising r-sum to 20). The 79,137 term expansion is given in

Table III of Ref. 25, and the computed energy values for 16
values of Z are shown in Table IV of Ref. 25 and compared
with the corresponding 52,405 term results. Due to a basis
set limitation which has forced us to add the gg terms in as
a border at the end of the calculation, we ended up with sep-
arate 79,137 term and 80,073 term results. We are currently
working on removing this restriction in our code.

To generate the final energies in Table IV of Ref. 25, cal-
culated and predicted, the procedure used was the same one
used for 52,405 energies, with one exception. The computed
Ne6+ energy, −110.2906 6112 2441 nh, caused problems
with the 79,137 − 52,405 expansion difference set. So we
did not use it in predicting the extra 79,137 data points. We
then interpolated from the resulting 79,137 data points (all of
them) to obtain the interpolated Ne6+ data point in the ta-
ble (the Ne6+ problem proved to be particularly vexing and
remains under investigation). 80,073 − 79,137 expansion en-
ergy differences were then computed for all the data points
in the table, including the interpolated data point, to give the
“predicted” E(80,073,Z) values marked (P). Again these “pre-
dicted” values are very close to what one gets by interpolation
of the 80,073 data points themselves.

Our previous 41,871 term result1 was fully 75
nanohartrees above the best ECG result at the time, that of
Stanke et al.46 Our current best 80,073 expansion result is 15
nanohartrees below the Stanke et al.46 calculation, and is bet-
tered only by the recent ECG result of Puchalski, Komasa,
and Pachucki13 which is 2.3 nh better than our 80,073 ex-
pansion result (we compare with their computed variational
upper bound to the NR energy, rather than their extrapolation
based on convergence estimates given in the table in this ref-
erence as well as in their later publication14). We stopped at
the 80,073 expansion level because of computer code basis
set limitations and long computation times. Doing substan-
tially better will require greater flexibility in the atomic or-
bital basis, including adding hh and possibly ii blocks, better
CSF filtering to reduce the expansion lengths, and extensive
experimentation to find the best combination of CSFs and or-
bitals on which to base a much larger so-called “full complete
(benchmark) calculation.”

Returning to Eq. (5),

E(Z) = −5/4Z2 + 1.5592 7420 8401 256Z + a0 + a1Z
−1

+ a2Z
−2 + a3Z

−3 + . . . . (10)

Our final result for the Be 1S ground state isoelectronic se-
quence is given both as a single polynomial and as a three
polynomial piece-wise fit in Table II where the powers Z−n

and the coefficients an are given for the polynomials making
up both the single polynomial and the piece-wise fit (the data
used for the fits is the 80,073 column in Table IV in Ref. 25).
The coefficients in the table are given to the number of dig-
its needed to reproduce the input data points to a few units in
the 10th decimal place (Table VI in Ref. 25 gives the same
table with all coefficients to full precision). The predictions
obtained using these formulas are excellent (to a few tenths
of a nanohartree when comparing with what one gets when a
data point is dropped), unless the dropped point is for Z = 4,
5, or 6 where the differences are at the nanohartree level. A
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TABLE II. Coefficients for several piecewise Z−1 least square polynomial fits (see Eq. (10)) for the 80,073 CSF
energy values in Table IV of Ref. 25. Rmax is the maximum Residual.

Z = [4, 113] Z = [4, 18] Z = [18, 48] Z = [48, 113]
n an an an an

0 −0.8771 1915 78 −0.8771 1949 34 −0.8771 1919 353 −0.8771 1914 341
1 −0.0423 7633 89 −0.0423 4710 9 −0.0423 7082 −0.0423 8063 1
2 −0.1799 0117 −0.1809 9525 1 −0.1802 323 −0.1794 4031
3 −0.2069 4606 −0.1838 4291 −0.1972 96 −0.2279 2379
4 −0.3269 205 −0.6304 2234 −0.4645 8
5 −0.8248 732 +1.7497 245
6 +1.7840 76 −12.3336 573
7 −16.9370 66 +31.3668 028
8 +47.0175 21 −46.6461 677
9 −78.4839 48

Rmax 0.88 × 10−10 0.62 × 10−10 0.74 × 10−10 0.10 × 10−9

detailed look at how things vary in this range is an avenue for
future research to determine whether this is due to the shell
structure, distribution of the correlation energies, or perhaps
the “double cusp.”

Table III gives both calculated nonrelativistic energies
and predicted energies for Z ranges [4, 18] and [18, 48] (the
whole Z range [4, 113] is given in Table VII in Ref. 25). By
inspecting the table, one can see both the data points and the
gaps for these two ranges. Using subroutine DQRLS, a best
fit is obtained by varying the range and the order of the Z−1

expansion. The particular measure of the goodness of the fit
used here is just the maximum Residual (maximum Differ-
ence in the table), which is better than 10−9 hartree for all the
fits.

The 80,073 term results given in the last column of
Table IV of Ref. 25 and by the piece-wise fit given by
Eq. (10) with the coefficients tabulated in Table II are esti-
mated to be good to 8 or probably 9 decimal places. The con-
sistency of the fits is much better than 8 decimal places, but
how accurate the energies are ultimately depends on how ac-
curate the Be energy is. We are within 2.3 nh of the ECG
best value of Pulchalski, Komasa, and Pachucki.13 Those au-
thors estimate that they are within 3 nh of the exact NR en-
ergy, but to really estimate this error will require a so-called
“full, complete” expansion. However, it should be clear that
the prescription that we have detailed has produced nonrela-
tivistic energies for the whole isoelectronic sequence good to
10 nanohartrees or better.

Additional support for the 10 nanohartree accuracy claim
comes from an additional final optimization of the Be AO or-
bital basis at the 79,137 term expansion level. We gained ap-
proximately −2.372 nh by an additional tedious optimization
of the exponents of Be(79,137). Using these optimized orbital
exponents and a slightly larger expansion (83,598), our best
result for the Be ground state is −14.6673 5649 269 h, which
is within 2.3 nh of the best ECG value. Using these new expo-
nents, we scale to get a C++ energy. This then was optimized
further to pick up an additional −1.488 nh of energy, giving
an improved C++ ground state energy of −36.5348 5236 25
hartree. The new orbital exponents corresponding to the best
Be and C++ results are given in Ref. 25. So simple scaling

of the orbital exponents of the optimized Be calculation is
not sufficient for all Z, but the error is small (on the order of
1–2 nh).

We have previously discussed the Hy-CI restriction of
one rij per CSF. For Li,27 it has been shown that odd power
linked product terms (rij products with one index in common)
are unimportant at the nanohartree level, and by inference
probably not a problem in the four electron case either. The
unlinked rijrkl (no indices in common) term types, which first
occur in the four electron case, are expected to be more impor-
tant, however, with r12r34 expected to be the most important.
In Hy-CI, this effect can hopefully be effectively represented
using a superposition of normal Hy-CI term types. One can
reason that the r12r34 double cusp leads to two convergence
problems, sKsK × r12 × [L-shell cluster] and [K-shell cluster]
× sLsL × r34. In both cases, the cluster is basically a linear
combination of pair functions ss + pp + dd + ff + gg + . . . .
Reasoning from our experience with He37 the convergence of
each cluster can be very slow as it goes like 1/l2. And is very
likely the reason for the relatively long expansions and slow
convergences in the present calculations. In this connection,
generalization of Hy-CI to include odd power unlinked rijrkl

products (no indices in common, a “double-unlinked Hy-CI”)
would settle the issue, but at the cost of greatly complicating
the calculation of matrix elements. Note that Be is the perfect
test case for this since there is only one double-unlinked pair
product of likely importance, r12r34.

To test how well the convergence of the r12r34 term type
(“double cusp problem”) is treated in Hy-CI, the calculations
presented in Table V in Ref. 25 were done.

Compared to the slow, cusp-connected convergences in
typical CI calculations, this is fast convergence, suggesting
that this correlation type can be accurately, albeit slowly,
represented within the Hy-CI model. Modifying the Hy-CI
model to include unlinked rijrkl products (no indices in
common, a “double-unlinked Hy-CI”) is an avenue for future
research. In addition there is another problem. Just because
the energy contributions get small does not mean one can
get by with fewer terms in the pair expansions. This was
a surprise in He where the CI calculation was done out to
l=20 terms. Five and six orbitals of each l-type were needed
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TABLE III. Calculated 80,073 CSF nonrelativistic energy values and pre-
dicted energy values obtained from least squares fits for the piecewise ex-
pansions of the Z ranges [4, 18] and [18, 48]. Energies are in hartrees, energy
differences are in nanohartrees. Maximum residual for [4, 18] is 0.62 × 10−10

and for [18, 48] is 0.74 × 10−10.

Z System Data E(Z) Predicted E(Z) Difference

4 Be − 14.6673 5649 0770 − 14.6673 5649 0756 − 0.014
5 B+ − 24.3488 8446 3615 − 24.3488 8446 3613 − 0.002
6 C++ − 36.5348 5236 1036 − 36.5348 5236 1034 − 0.002
7 N3 + − 51.2227 1268 5352 − 51.2227 1268 5362 − 0.010
8 O4 + − 68.4115 4172 0832 − 68.4115 4172 0808 −0024
9 F5 + − 88.1009 2773 4599 − 88.1009 2773 4609 − 0.010
10 Ne6 + − 110.2906 6112 4111 − 110.2906 6112 4158 − 0.047
11 Na7 + − 134.9806 2465 4977 − 134.9806 2465 4915 − 0.062
12 Mg8 + − 162.1707 4795 4568
13 Al9 + − 191.8609 8638 3868 − 191.8609 8638 3877 − 0.009
14 Si10 + − 224.0513 1034 1733 − 224.0513 1034 1763 − 0.030
15 P11 + − 258.7416 9946 9346
16 S12 + − 295.9321 3932 9531 − 295.9321 3932 9504 − 0.027
17 Cl13 + − 335.6226 1941 4807
18 Ar14 + − 377.8131 3190 4835 − 377.8131 3190 4842 − 0.007
18 Ar14 + − 377.8131 3190 4835 − 377.8131 3190 4834 − 0.001
19 K15 + − 422.5036 7086 5000
20 Ca16 + − 469.6942 3171 2927
21 Sc17 + − 519.3848 1085 8044
22 Ti18 + − 571.5754 0544 8027
23 V19 + − 626.2660 1318 9454 − 626.2660 1318 9500 − 0.046
24 Cr20 + − 683.4566 3221 8406 − 683.4566 3221 8332 − 0.074
25 Mn21 + − 743.1472 6100 4233 − 743.1472 6100 4272 − 0.039
26 Fe22 + − 805.3378 9827 9818
27 Co23 + − 870.0285 4298 6446
28 Ni24 + − 937.2191 9423 3518 − 937.2191 9423 3468 − 0.050
29 Cu25 + − 1006.9098 5126 6204
30 Zn26 + − 1079.1005 1344 1099
31 Ga27 + − 1153.7911 8020 6092
32 Ge28 + − 1230.9818 5108 4933 − 1230.9818 5108 4986 − 0.053
33 As29 + − 1310.6725 2566 4884 − 1310.6725 2566 4911 − 0.027
34 Se30 + − 1392.8632 0358 6175
35 Br31 + − 1477.5538 8453 4008
36 Kr32 + − 1564.7445 6823 1785
37 Rb33 + − 1654.4352 5443 5447
38 Sr34 + − 1746.6259 4292 8910 − 1746.6259 4292 8854 − 0.056
39 Y35 + − 1841.3166 3351 9929
40 Zr36 + − 1938.5073 2603 7400
41 Nb37 + − 2038.1980 2032 8079
42 Mo38 + − 2140.3887 1625 4533
43 Tc39 + − 2245.0794 1369 3116 − 2245.0794 1369 3125 − 0.009
44 Ru40 + − 2352.2701 1253 2325
45 Rh41 + − 2461.9608 1267 1270
46 Pd42 + − 2574.1515 1401 8523
47 Ag43 + − 2688.8422 1649 0998
48 Cd44 + − 2806.0329 2001 3026 − 2806.0329 2001 3032 − 0.006

to pick up the contribution for a given l. Another g orbital
as well as 4 h orbitals and perhaps i orbitals may be needed
to get nanohartree accuracy. Thus it appears that while 10
nanohartree accuracy can be achieved without any difficulty,
the remaining difficulty with Be can be explained as poor
convergence of the r12r34 double cusp which can only be
explored further rigorously with hh and ii terms, etc.

IV. CONCLUSION

The ability of Hy-CI calculations to achieve 10
nanohartree accuracy for the beryllium ground state isoelec-
tronic sequence is shown in this work. The convergence of
r12r34 term types has been investigated, and Hy-CI appears to
accurately represent this term type, although more research
is needed on this point. Rather ambitious variational calcula-
tions are combined with a fitting polynomial of the sort given
by Eq. (5) to achieve 10 nanohartree or better accuracy for the
entire beryllium ground state isoelectronic sequence. The cal-
culations exemplify the level of accuracy that is now possible
with Hy-CI in describing not only the ground state of Be, but
also excited states (S and non-S, singlet and triplet) as well as
Be-like ions. Such calculations are currently in progress.

ACKNOWLEDGMENTS

We are indebted to William George for MPI support;
William Mitchell for Fortran support; and Chris Schanzle,
Carl Spangler, Michael Strawbridge, and Denis Lehane (all
at NIST) for system support. J.S.S. would like to thank Judith
Devaney Terrill for supporting this endeavor.

1J. S. Sims and S. A. Hagstrom, “Hylleraas-configuration-interaction study
of the 1S ground state of neutral beryllium,” Phys. Rev. A 83, 032518
(2011).

2P. O. Löwdin, “Correlation problem in many-electron quantum mechanics
I. Review of different approaches and discussion of some current ideas,”
Adv. Chem. Phys. 2, 207–322 (1959).

3J. Linderberg and H. Shull, “Electronic correlation energy in 3- and 4-
electron atoms,” J. Mol. Spectrosc. 5, 1–16 (1961).

4E. R. Davidson, S. A. Hagstrom, S. J. Chakravorty, V. M. Umar, and C.
Froese Fischer, “Ground-state correlation energies for two- to ten-electron
atomic ions,” Phys. Rev. A 44(11), 7071–7083 (1991).

5S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C.
Froese Fischer, “Ground-state correlation energies for atomic ions with 3
to 18 electrons,” Phys. Rev. A 47, 3649–3670 (1993).

6E. R. Davidson, “Configuration interaction wave functions,” in Relativistic
and Electron Correlation Effects in Molecules and Solids, edited by G. L.
Malli (Plenum Press, New York, 1994).

7S. J. Chakravorty and E. R. Davidson, “Refinement of the asymptotic ex-
pansion for the ground-state correlation energies of atomic ions,” J. Phys.
Chem. 100, 6167–6172 (1996).
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