
1. Introduction

This is the third in a series of articles [1, 2] that
describe, through examples, how the Scientific
Applications and Visualization Group (SAVG) at the
National Institute of Standards and Technology (NIST)
has utilized high performance parallel computing, visu-
alization, and machine learning to accelerate scientific
discovery. In this article we focus on the use of high per-
formance computing and visualization for simulations of
nanotechnology.

Research and development of nanotechnology, with
applications ranging from smart materials to quantum
computation to biolabs on a chip, has the highest nation-
al priority. Semiconductor nanoparticles, also known as

nanocrystals and quantum dots, are one of the most
intensely studied nanotechnology paradigms. Nano-
particles are typically 1 nm to 10 nm in size with a thou-
sand to a million atoms. Precise control of particle size,
shape and composition allows one to tailor charge distri-
butions and control quantum effects to tailor properties
completely different from the bulk and from small clus-
ters. As a result of enhanced quantum confinement
effects, nanoparticles act as artificial, man-made atoms
with discrete electronic spectra that can be exploited as
light sources for novel enhanced lasers, discrete compo-
nents in nanoelectronics, qubits for quantum information
processing and enhanced ultra-stable fluorescent labels
for biosensors to detect, for example, cancers, malaria or
other pathogens, and to do cell biology.
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Semiconductor nanoparticles come in two kinds.
Nanocrystals are small crystallites, 1 nm to 6 nm in
dimension, typically made with colloidal chemistry, and
containing up to 100 000 atoms [3]. Such nanoparticles
are ideal for biosensor applications because they can be
conjugated to be made soluble for in vivo and
in vitro studies and can be functionalized to bind to
specific biological structures [4]. At the same time, these
nanocrystals can be used as the building blocks, linked
together by coordinating ligands, to form nanoarchitec-
tures for nanoelectronics, quantum computing and spin-
tronics [5]. Larger semiconductor quantum dots can be
formed by controlled epitaxial growth, typically using
molecular beam epitaxy, to grow a low bandgap wetting
layer and pyramidal or hemispherical dot, often InAs,
embedded in a high bandgap material, usually GaAs.
These dots are typically 10 nm to 20 nm wide and a few
nm high with 100 000 to 1 000 000 atoms. These
nanoparticles have compelling interest because they can
be grown and integrated into current microelectronic
devices for use in optoelectronics and electronics.

Initially, nanoparticles were modeled by continuum,
effective mass theories, essentially treating the con-
fined electrons and holes as “particles-in-a-box” with
sophisticated models for the particle mass. Such
approaches are easy to implement and work well
enough for large systems where the atomic-scale details
do not matter. More recently, atomic-scale theories,
such as tight-binding theory and ab initio theory, have
been used to model nanoparticles. These approaches

are much more difficult to implement computationally, 
because all atoms must be included. However, in con-
trast to continuum models, these atomistic models can
be used to develop precise models for quantum dot
surfaces with defects, lattice relaxation, partial passiva-
tion, imperfect interfaces between core quantum dots
and capping layers, dots passivated with molecular
ligands, and molecularly linked dot arrays. All of these
features must be accounted for in the precision model-
ing tools that are needed to design and implement
nanoparticles in specific applications. Hence large-
scale implementations of atomistic models for complex
nanosystems are essential.

We study the electrical and optical properties of
semiconductor nanocrystals and quantum dots such as
the pyramidal dot shown in Fig. 1, as well as more
complex nanocrystal structures with the nanocrystal
coordinated with capping molecules and functionalized
with linker molecules, and nanodevice architectures
formed by linking together complex dot structures, also
shown in Fig. 1.

We use an atomistic approach that allows us to
explicitly account for all atoms in the nanoparticles as
well as all atoms in any conjugating ligands, linkers
and surrounding material. In the most complex struc-
tures this entails modeling structures with on the order
of a million atoms. Highly parallel computational and
visualization platforms are critical for obtaining the
computational speeds necessary for systematic, com-
prehensive study of these structures.
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(1 a) (1 b)

Fig. 1. A pyramid structure and a double pyramid structure of InAs quantum dots embedded in GaAs. The surrounding matrix of GaAs is not
shown, but would be included in calculations. Coupling between InAs dots is done through the intervening GaAs matrix.



2. The Tight-Binding Method and
Electronic States of Quantum Dots

Two approaches are now being used to explicitly
account for all atoms in a structure. More ab initio
theories directly calculate the full electronic states of the
system, typically calculating the contribution of each
atom to the electronic potential self-consistently within
density functional or pseudopotential theory (see for
example A. J. Williamson and A. Zunger [6]). This pro-
vides the most detailed picture of nanoparticle states but
becomes computationally prohibitive for large structures
with up to a million atoms. A simpler approach is the
tight-binding method.

The tight-binding model [7] is based upon the Linear
Combination of Atomic Orbitals (LCAO) method and is
both accurate and easy to implement [8, 9]. It finds the
electronic states of a quantum dot by assuming that the
electronic state can be represented near a given atom by
a few atomic orbitals (typically the s and p orbitals, but in
more complete calculations the s, p, and d orbitals) local-
ized to that atom. This assumption makes the calculation
significantly simpler than the more ab initio theories but
still explicitly accounts for all atoms. The Hamiltonian
matrix that describes the coupling between orbitals on
neighboring atoms is usually found empirically by
adjusting those matrix elements to ensure that bulk band
structures are correctly reproduced. Thus there is no need
to find an atomic-scale electronic single-particle poten-
tial self-consistently. This simplification also greatly
speeds up the calculations. Even with these simplifica-
tions, the tight-binding theory provides a full atomic-
scale theory of complex nanoparticles with monolayer
variations in composition capable of accurately describ-
ing the structures [9].

Any structure can be studied once the atomic positions
are defined. For a nanoparticle that retains the bulk
crystal structure, we can start with a large cube of bulk
material and throw away all atoms not inside the
nanoparticle. Once the position of an atom is determined,
its neighbors can be identified. In a tight-binding
approach, the orbitals on an atom only couple to its
nearest neighbor atoms and possibly to the next nearest
neighbors. The short range of the coupling greatly
simplifies the computations because the Hamiltonian is
sparse. Atomic relaxation away from the bulk positions
can also be included, usually with a valence force-field
model. Once atomic positions and neighbors are deter-
mined for the relaxed lattice, the Hamiltonian coupling
matrix can again be determined. Similarly, conjugating
and linker molecules can be attached to the nanoparticle.
Once the atomic positions in the external molecules are

known, the coupling between the nanoparticle and the
molecules can be determined. A typical atomic basis
would include 10 orbitals. Each atom is described by its
outer valence s orbital, the 3 outer p orbitals, the 5 outer
d orbitals, and a fictitious excited s* orbital that is includ-
ed to mimic the effects of higher lying states. When spin
is included the basis is doubled. For a system with N
atoms, there will be 10 N eigenstates (20 N if spin-orbit
coupling is included). For any system except for the very
smallest (less than about 1000 atoms), iterative tech-
niques, such as the Arnoldi method [10], must be used to
diagonalize the system Hamiltonian and only those
eigenstates near the fundamental gap are found. This
may mean that 100 to several thousand states are found,
but this is still far less than 20 N (where N can be as high
as a million or more).

In the tight binding calculations that we typically do,
we assume that the atoms in a nanoparticle occupy the
sites of a regular zinc-blende or wurtzite lattice. We
typically model spherical, hemispherical, tetrahedral, or
pyramidal nanoparticles or nanocrystals linked together,
e.g., a double quantum dot, quantum dot molecule or
arrays of quantum dots.

3. The Calculation of Electron and Hole
States

3.1 Solving the Hamiltonian Equation Sequentially
and in Parallel for a Single Nanoparticle

Given that only nearest neighbor coupling is included
in our models, the matrix we work with is a large, sparse,
banded Hermitian matrix. The “large matrix” we are
referring to is the tight-binding Hamiltonian (H) whose
solutions are the single particle wave functions ψn in

(1)

where the empirical tight-binding Hamiltonian matrix
(H) is determined by adjusting the matrix elements to
reproduce known band gaps and effective masses of the
bulk bandstructures.

Solving this matrix equation for its eigenvalues and
eigenvectors (the wave functions) reduces to a matrix
diagonalization problem which can be stated as

(2)

where A is a large, sparse, Hermitian matrix. The λ’s are
the energies, and for each λ, z is an eigenfunction (wave
function) for the corresponding energy.

One of the best solvers for this type of matrix diago-
nalization is ARPACK [10]. In ARPACK, the computa-
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,n n nH Eψ ψ=

,Az zλ=



tional work is proportional to n (the size of the matrix is
n by n, n = 10 N or 20 N) times ncv (which defines the
size of the space to use in finding eigenvectors; we
choose ncv to be 4 times the number of eigenvalues
sought). The only other eigensolver for this class of
problem is the Jacobi-Davidson technique [11], but it is
O(n2), i.e., the computational work is proportional to n2

rather than to n. There is another consideration, name-
ly, the number of eigenvalues sought. But as long as the
number of eigenvalues sought is much less than
20 N, ARPACK is much more efficient. The method
employed in ARPACK when A is symmetric reduces to
a variant of the Lanczos method called Implicitly
Restarted Lanczos Method (IRLM) which is a synthe-
sis of Arnoldi/Lanczos with the Implicitly Shifted QR
scheme [12]. Implicitly restarted implies iterative, and
the matrix is diagonalized iteratively by a series of
actions of the matrix A on a vector,

(3)

where W is part of the workspace in the Arnoldi solver
in ARPACK. Vk is the vector representing the single-
particle wave function calculated by ARPACK, chang-
ing on each iteration k (converging to the solution). On
the other hand, the action of A on Vk, AVk, is a user
supplied matrix-vector multiplication. In the tight-bind-
ing code, the matrix-vector multiplication is time-
consuming, but the dominant time cost is still the
vector reorthogonalization in the Arnoldi solver.

Partial, iterative diagonalization of the sparse
Hamiltonian for a nanoparticle benefits greatly from
parallelization for the sizes of nanoparticle structures
that we deal with. Parallel ARPACK (PARPACK) [13]
can be used to explicitly partition and distribute the
matrix across nodes of a distributed memory machine
(Linux cluster, for example) or processors of a shared
memory parallel machine, thereby distributing the
workload.

Since PARPACK’s parallelization scheme distributes
the Arnoldi vectors Vk across a 1-D processor grid
(blocked by rows), we decompose the nanoparticle into
slabs such that there are approximately equal numbers
of atoms on each processor. Atoms in one slab are
coupled to atoms in another slab only via the neighbor-
ing atoms at the common interface. Communication
between neighboring slabs is minimal while there is no
communication between slabs that are further apart.
This makes the tight-binding, sparse coupling approach
ideal for this parallelization.

The parallel code looks essentially like the sequential
code except that the local block of the Arnoldi vector,
Vloc, is passed in place of V, and nloc, the dimension of
the local block, is passed instead of n. There is a user
supplied matrix-vector product subroutine to compute
the local segment of the matrix-vector product AV that
is consistent with the partition of V. This product
requires communication in addition to the communica-
tion managed by PARPACK. Memory management is
handled by Fortran 90 allocate and deallocate state-
ments so there are parallelization gains coming from
the ability to spread the matrices across multiple
processors as well as from overall computational time
(turnaround) speedup.

To minimize communication between neigboring
slabs, we assume the atoms are ordered in one of the
coordinates, which we take to be the z-coordinate. We
sort and order atoms by z, and then catalog zmin,zmax for
each processor. We distribute atoms to processors in
layers, as depicted in Fig. 2, to more or less evenly dis-
tribute the atoms for load balancing.1 During the com-
munication phase, each atom on a processor P only
needs information about atoms which are on P plus any
atoms which are on neighboring slabs and are the near-
est-neighbor distance away from the edge layers on P.

For each P, we determine the layers in neighboring
processors which contain atoms which are nearest
neighbors to atoms in P. Only the V’s for these layers
need to be communicated by neighboring processors.
So, in Fig. 3, V2BOTg is a layer used on processor 1 that
is a “ghost” of the bottom layer on processor 2.
Similarly V0TOPg is a layer used on processor 1 that is a
“ghost” of the top layer on processor 0. During the
communication phase, processor 1 has only to receive
V2BOTg from processor 2 and V0TOPg from processor 0 for
the

(4)

product to be computed. Exchanging only these ghost
layers and allocating only the actual amount of memo-
ry to do this cuts down communication drastically and
is the key insight to effective parallelization.
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1 Because we put all atoms with the same z on the same processor, the
number of atoms on different processors may be different. In practice
the difference between the maximum and minimum number of atoms
in a layer is about 10 %.

,kAV W=>

loc locAV W=>



3.2 Results

To assess the speedup due to parallelization, we
present an example of a diagonalization for an 18 nm
diameter spherical HgS nanocrystal with 195393
atoms, each with 5 orbitals. In Table 1 we discuss
results for the PARPACK parallelization for the cor-
responding 976 965 × 976 965 matrix running on the
NIST cluster of Pentium, Athlon, and Intel processors
running RedHat Linux 2. The run times are for comput-
ing twenty different eigenvalue-eigenvector pairs (run
times depend on the number of eigenvalue-eigenvector
pairs computed).

Notice that simply by sorting in z we significantly
improved the run time. This speedup is due partly to
faster convergence (a smaller number of iterations to
convergence), presumably due to better location of the
bands in the sparse matrix.

For all of the sorted runs, timings are consistent.3 The
matrix-vector multiplication is split across processors
in an approximately even way. For up to 50 processors,
communication is a minor part of the run and CPU time

Volume 113, Number 3, May-June 2008
Journal of Research of the National Institute of Standards and Technology

135

Fig. 2. A slab distribution of the computation.

Fig. 3. A pyramid structure with ghost layers drawn in. The actual
layers and their corresponding ghost layers (shown as shaded layers)
are connected by arrows.

2 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

3 There is an anomaly at 10 processors which is due to the number of
iterations to convergence. This is because convergence depends on
the choice of initial vector and ARPACK’s choice of an initial vector
is different for different numbers of processors. We find a 10 % to
30 % deviation in our runs coming from this factor.

Table 1. Computation and communication times in seconds to find
20 eigenvalues of a 976 975 × 976 975 matrix as a function of the
number of processors

Number user-supplied communication CPU Number
of matrix-vector time time of

processors subroutine (s) (s) iterations

1 (unsorted) 13525 778420 1016
1 (sorted) 9710 228470 863

2 4616 1957 111720 788
4 2464 2065 64065 890
8 1405 1075 44122 877

10 1353 1194 46314 1154
16 592 1365 17244 780
32 323 605 14568 925
40 275 394 11267 761
50 225 117 9239 800



scales. Communication time is 10 to 50 times smaller
than the total time. CPU time scales so that the 8 pro-
cessor time is 5.2 times faster than the 1 processor time.
The effects of parallelization are consistent with having
a similar number of iterations to convergence for each
number of processors. A factor of 25 speedup is
achieved on 50 processors for a quantum dot with
195393 atoms, and a matrix size of 976 965 (almost
a million). The original sequential job took 2.7 d, the
50 processor job completes in 2.5 h, a significant
improvement in turnaround time. Neither communica-
tion time nor user-supplied subroutine time is the rate
determining step. The bulk of the time and the rate-
limiting step is the computation done in PARPACK.

4. Building Larger Structures by Stitching

Often it is easy to define the simple nanosubsystems
that make up a complex, heterogeneous nanosystem.
However, it may be difficult to explicitly define the
entire structure. For example, a single quantum dot is
easy to define and implement. An arbitrary sequence of
stacked dots is more difficult to implement. However,
with the simpler building blocks defined, it is easy to
build arbitrary structures with them. A novel feature of
our code is the ability to link together heterogenous
nanostructures (also referred to here as nanosubsys-
tems). For example, when a nanoparticle nanostructure
includes conjugating and linker molecules, these mole-
cules can be assigned separately to different computa-
tional nodes to take advantage of the parallelization. If
the nanosystem includes multiple smaller nanosubsys-
tems linked together, then each smaller nanosubsystem
can be parallelized on a different set of nodes with only
minimal communication required between different
nodes. In the tight-binding code, the matrix-vector
multiplication is important, but the dominant part of the
CPU time is the vector reorthogonalization in the
Arnoldi solver, which is parallelized efficiently by
PARPACK. Hence we are not constrained in how we
partition atoms into nanosubsystems (groups in our
code, each group having its own cluster of processors),
as long as each nanosubsystem partition can be handled
as a group. Thus we can choose a partition that conve-
niently follows the physical partitioning of the struc-
ture. Once we can do multiprocessor runs routinely, we
have the basic building blocks for making larger struc-
tures by “stitching” together disparate subsystems into
composite structures, each separate subsystem to be
stitched together being a smaller multiprocessor run.
The basic idea is to consider each smaller nanosubsys-

tem as its own cluster, using the same input data as
before, but at each iteration in the computation, infor-
mation about atoms in the cluster that are intercluster
neighbors (see Fig. 4) has to be distributed to the appro-
priate processors for the neighboring clusters, thereby
“stitching” the calculations on the nanosubsystems in
the heterogeneous structure together.

4.1 Modifications to the Lattice Generating Code 
for Stitching

For each small nanosubsystem (group), we build a
structure as before, starting with a large cube of bulk
material and throwing away all atoms not inside the
nanosubsystem. Once the position of an atom is deter-
mined, its neighbors in the nanosubsystem can be iden-
tified. In the stitching case, each processor needs to
know the atom data for each atom in the group (cluster)
attached to the processor, as well as all of the atom’s
nearest neighbors, whether in its own group or in a
neighboring cluster. To reduce communication data
between processors, a second pass is done during the
lattice generation process to analyze, for each group,
the data for all other groups and determine the intra-
cluster and intercluster nearest neighbors for each
atom. The nearest neighbor table for atoms in each
group is augmented by intercluster neighbors (each
atom has a global atom id), and data for the intercluster
neighbor atoms from other groups is added to the
group’s atom data table. This eliminates the need to
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Fig. 4. Illustration of intercluster nearest neighbors in a nanosystem
with four subsystems: two quantum dots (QD1 and QD2) and two
conjugating molecules (Ml and M2).



communicate nearest neighbor data between processors
during the iteration phase of the diagonalization.

In the case of a single group, atoms are distributed
between processors based on an atom’s z position. For
a structure with several groups stitched together, each
atom is first distributed to a cluster of processors, based
on the group that the atom belongs to. Then the atom is
distributed to a particular processor in that cluster based
on the atom’s z position.

4.2 Modifications to the Matrix-Vector Multiplier
for Stitching

When computing the product in Eq. (4)

(5)

at each iteration, diagonal matrix elements present no
problem. However, off-diagonal matrix elements
require that the V’s (eigenvector pieces that change in
each iteration) for each atom’s intercluster nearest
neighbor atoms (see Fig. 4) must be communicated to
the processor who “owns” the atom as in the non-stitch-
ing case. Contrary to the non-stitching, one group case
where the processors are correlated to the atom z posi-
tion, now we have an irregular grid (where processor
atom z position is not as well defined) because we stitch
arbitrary structures together. With an irregular grid, the
communications scheme has to be defined explicitly.

Basically, each processor has to exchange informa-
tion with all nearest neighbor atoms not on the proces-
sor, both from neighbor atoms within its group and out-
side its group. Initially each processor knows (i.e., can
figure out) what processor to send V’s to, but not which
processors it will be receiving data from or how much
data it will be receiving. To solve this problem we use
a set of irregular communication routines available
from Steve Plimpton[14]. These routines work by first
setting up a communication pattern or descriptor and
then invoking the communication operation with arbi-
trary types of data. The end result is that each processor
learns how much data it will receive and from whom,
so the subsequent communication operations can be
performed efficiently. The irregular grid used for
stitching heterogeneous nanostructures affects the CPU
speedup of our parallel code. In benchmarking stitching
code, we find that the parallelization is similar to the
non-stitching code illustrated in Table 1 for up to about
40 processors (see Table 2). After that, there is no
further speedup as additional processors are included in
a run, indicating that for irregular grids communication
eventually dominates CPU time and limits the size of a 

cluster that can be effectively employed in a stitching
calculation.

4.3 Results

To appreciate the utility of the stitching approach,
structures with multiple subsystems must be studied.
Two vertically stacked InAs pyramids (quantum dots)
on InAs wetting layers embedded in a large GaAs
medium (computationally, a large box) have been
investigated previously [15, 16] as a single nanostruc-
ture. As a test of our stitching code, we have calculated
this system as two separate pyramids (each modeled as
in Fig. 1) and obtained results for the energy bands and
eigenfunctions that are identical to the previous single
group calculation. This demonstrates the validity of the
stitching code.

As another test, we considered a multilayer
nanocrystal structure with a core of CdS, a middle shell
of HgS and an outer shell of CdS. Previously these
structures have been considered as a single structure
[9]. There are six possible combinations of how layers
can be ordered for a stitched structure. When consid-
ered as a stitched structure, all constructions should
give the same results, and they do, again validating our
stitching code.

As a more complicated example, we consider three
GaAs pyramidal dots (with their wetting layers)
stacked on top of each other and embedded in an
AlGaAs matrix. Such a structure is a prototypical quan-
tum device with electrons and holes stored in the indi-
vidual GaAs quantum dots. Charge (either the electrons
or the holes) in the outer dots could be brought togeth-
er in the middle dot to interact and transfer quantum
bits (qubits) of information. To design and engineer
such devices, it is critical to determine the device toler-
ance to imperfections in the fabrication. The stitching
code greatly facilitates the analysis of such effects.
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Table 2. Computation times for two groups stitched together as a
function of the number of processors

Number of processors CPU time
(s)

4 155402
8 81910

16 59905
32 34826
40 20869
50 25697
80 36600



Figure 5 shows the three groups of atoms correspon-
ding to three slabs of AlGaAs, each slab with one
embedded GaAs quantum dot and wetting layer.
Various alignments of the quantum dots in the structure
can be immediately tested simply by shifting the align-
ment of the slabs, using the same slabs as building
blocks for all of the calculations. This greatly reduces
the work needed to build different structures, especial-
ly if several related structures are to be studied.

The electronic structure of a perfectly aligned struc-
ture can be directly determined. For example, the ener-
gy levels of the 6 lowest hole states are shown in
Fig. 6. To study imperfect structures, we misalign the
slabs, redetermine the intercluster nearest neighbor
assignments and repeat the calculations. Figure 6
shows how sensitive the levels are to misalignment.
The effects become significant for misalignments of 3
or more lattice constants between adjacent dots.

The effects of misalignment are more apparent if the
charge densities for the corresponding states are visual-
ized. Figure 7 shows the charge density from the
s orbitals for the first electron state in the aligned struc-
ture, while Fig. 8 shows the corresponding charge den-
sity when the adjacent slabs are misaligned by
6 lattice constants, which is nearly the half-width of the
dot base and is shown in Fig. 5. In this case the electron
state is able to spread between the three dots. This
delocalization persists even when the dots are substan-
tially misaligned.

The px orbital charge densities for the lowest hole state
in the aligned structure and the strongly misaligned
structure are shown in Fig. 9 and Fig. 10. In the aligned
structure the hole is also delocalized. However, in the
misaligned structure the hole becomes strongly local-
ized. Here critical differences in the effects of
misalignment on electron and hole states are apparent.
Such differences in the consequences of imperfect
alignment would be critical in making choices about
how to use these structures in quantum devices, as men-
tioned above. Using these structures as optical devices
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Fig. 5. Triple quantum dot structure analyzed by the stitching code.
One quantum dot is embedded in each slab (but not visible in the
figure). In the perfect structure, the dots would be aligned on top of
each other and the corresponding slabs would be aligned. Here the
dots are misaligned by the amount corresponding to the slab shift.
Different colors represent different anions and cations.

Fig. 6. The hole energies of a triple dot structure as a function of the
misalignment between adjacent slabs (dots).

Fig. 7. The s-orbital charge density of the first electron state in an
aligned structure. Different colors denote the charge on anions and
cations.



depends on the electron and hole states having a large
overlap. The results show that the overlap is severely
impacted by misalignment. Our stitching approach
using building blocks to implement and parallelize
calculations for large systems makes such studies prac-
tical. The calculations we mentioned above did not
include d orbitals. Including d orbitals doubles the
number of states per atom. Similarly including
spin-orbit coupling doubles the number of states

(spin-up and spin-down). In addition the computational
demands increase because the spin-orbit coupling
requires complex arithmetic. However in a recent study
of the electronic structure of GaAs nanocrystals, inclu-
sion of d orbitals and spin-orbit coupling proved to be
critical to a proper description of the lowest electron
states [17]. Hence in these latest calculations, the use of
a parallel approach is even more essential. The intro-
duction of d orbitals and spin-orbit coupling increases
the eigenvector size by a factor of 8 and increases the
time for each arithmetic operation (complex arith-
metic). Stitching becomes even more critical in this
case, because it allows us to take full advantage of
multiple processors.

5. Visualization

Visual models of laboratory experiments and compu-
tational simulations to explore the nanoworld can be
critical to comprehension. However, increasing
amounts of data are being generated. For example, in
the example of the three stacked dots, the region
considered has nearly 700 000 atoms. Each atom has
5 orbitals. Thus there are 3.5 million pieces of data to
describe one state. Both high performance computing
and experiment must be augmented by high perform-
ance visualization. At NIST our visual analysis capabil-
ities include both coarse grain capabilities and finer
grain capabilities (which are more demanding of CPU
and visualization resources) as well as static graphical
representations and fully three-dimensional immersive
capabilities.
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Fig. 8. The s-orbital charge density of the first electron state in a
structure misaligned by 6 lattice constants.

Fig. 9. The px-orbital charge density of the first hole state in an
aligned structure.

Fig. 10. The px-orbital charge density of the first hole state in a
structure misaligned by 6 lattice constants.



In our quantum dot simulations we visualize the
atomic scale structure of the lattice and the charge den-
sity of the electrons and holes at both the fine grained
and coarser grained levels. Figures in the previous
section show one of the finer grained ways we visual-
ize the charge density, i.e., by displaying the contribu-
tion of the s and p orbitals to the charge distribution of
an eigenstate of the triple pyramid quantum dot. The
orbitals are centered on the atoms in the structure, so
these images also represent the atoms in the structure.
This visualization is important because the presence of
significant orbital charge density between the dots indi-
cates that tunneling is probable between the structures, 
i.e., the visualization shows the tunneling created by
coupling dots in the structure.

Finer detail than the detail visible in Figs. 7-10 can
be represented in a visualization. Figure 11 shows the
charge density of the lowest hole state in a CdS
nanocrystal. In this case, much greater detail is appar-
ent. The contributions from pz orbitals (green) and px

orbitals (blue) are shown. The contributions of py and s
orbitals are not visible in this example. The orbitals are
centered on the corresponding atom. The shape, size,
and color represent the orbital type and the magnitude
of its contribution. The different colors of the orbital
lobes (for example, lighter and darker blue for px) indi-
cate the phase of the orbital. In this way, complete
information about electron and hole states can be
obtained. For example, state symmetries can be dis-
cerned immediately from these visualizations. Such
symmetries are more difficult to discern otherwise.

Even for these examples, the amount of data to be
visualized can be prohibitive. Coarser grained visual-
izations can avoid that problem. Figure 12 is an exam-
ple of contours and transparent surfaces which shows
charge densities in a coarser grain way. The figure
shows the atomic scale charge density of an electronic
state trapped in the well region of a CdS/HgS/CdS
core/well/clad nanoheterostructured nanocrystal.

We can do much more with the output of our nano-
structure calculations. Our visual analysis capabilities
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Fig. 11. Charge density of the lowest hole state in a CdS nano-
crystal.

Fig. 12. Two different views of atomic state density of an electronic state trapped in the well region of a
nanoheterostructured nanocrystal.



include an immersive environment that allows scientists
to interact with their data by navigating through a three-
dimensional virtual landscape of the data rather than by
simply viewing pictures of the data. Our nanostructure
calculations output detailed charge distributions which
are transferred to the NIST immersive environment
where they can be studied interactively. One can move
through space, going inside the structure and moving
around inside the structure. In this way one can visualize
the structure looking in from the outside, or looking out
from the inside. One can visualize both the nanostructure
(see, for example, Fig. 13), and the atomic scale varia-
tion of calculated nanostructure properties from any
orientation and position in space. This is not possible
with any static graphical representation. For an example
of an interaction with a nanostructure in the immersive
environment (which can be saved as a quicktime movie),
see [18].

Our representations are tremendously helpful. They
encapsulate the physics and allow one to easily see  fea-
tures that might be missed by just perusing the
voluminous output from a supercomputer size calcula-
tion. Such insights are very helpful and greatly speedup
the extraction of useful understanding and insights
as we explore the properties of new and unfamiliar
systems.

6. Summary

In this article we discuss the use of high performance
computing and visualization for the simulations of the
nanoscale systems that would be used in emerging
nanotechnologies, biosensors and quantum devices.
Paradoxically, the properties of individual nanostruc-
tures often depend on their atomic scale structure while
the complex device structures used in these nanotech-
nologies integrate multiple nanosystems and contain a
million or more atoms. One must have a multiscale com-
putational approach that allows one to routinely study
systems with a million atoms or more, including the
atomic scale detail. We use the tight-binding approach to
include atomic-scale detail. We use code parallelization
to make million atom calculations feasible. We have
implemented a stitching approach to the parallelization
to allow us to implement and study efficiently complex
nanosystems built from heterogeneous building blocks.
To mine the voluminous amounts of data that are gener-
ated, we used a variety of fine-grained and coarse-
grained approaches that span the range from static repre-
sentations to immersive visualization. The later allows
us to move interactively to regions of high interest
in complex structures to rapidly identify and isolate
key features. However, immersive visualization still
comes at the cost of tremendous hardware demands
to run the immersions. Thus simpler representations
still play a critical role in gaining insights into the
physics and operations of these nanotechnologies and
quantum devices.
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Fig. 13. Snapshot from an immersive visualization of a quantum dot.
The spheres represent s orbitals, which also are representative of the
atoms in the structure.
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