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Abstract

We apply genetic programming in conjunc-
tion with other machine learning methods to
obtain concise rules that accurately identify
scientifically meaningful components in hy-
drating plaster over multiple time periods.
Genetic programming enables the deriva-
tion of understandable rules from otherwise
opaque classifications.

Our study was based on three dimensional
data obtained through X-ray microtomogra-
phy at five times in the hydration process.
Starting with statistics based on locality and
output from an unsupervised classification
system (autoclass), we use genetic program-
ming to derive simple rules for identifying
three classes. These rules are tested on a sep-
arate subset of the plaster datasets that had
been labeled with their autoclass predictions.
The rules were found to have both high sensi-
tivity and high positive predictive value. Ge-
netic programming in conjunction with other
machine learning methods enabled us to go
from unlabeled data to simple classification
rules in a straightforward manner.

1 INTRODUCTION

Plaster of paris is a widely used material
of economic importance. For example, the
porcelain industry maintains large numbers of
plaster molds whose strength, durability, and
ability to absorb water impact the industry’s
costs [Kingrey et al., 1976]. At NIST, we are using
our genetic programming system, GPP (Genetic
Programming - Procedural) [Devaney et al., 2001,
Hagedorn and Devaney, 2001] to begin to understand

the structure of plaster at a microscopic scale. We
developed GPP at NIST as a generic genetic pro-
gramming system to address problems from a variety
of scientific areas. In this project, GPP is providing
us with insight that we were unable to obtain through
the use of other machine-learning techniques.

2 BACKGROUND

Plaster powder is formed by calcining gypsum (calcium
sulfate dihydrate, CaSO4 ·2H2O) to form calcium sul-
fate hemihydrate (CaSO4 · 1

2
H2O). The solid plaster

is then formed by adding water to the powder (hydra-
tion) and allowing the mixture to set. The equations
are [Kingrey et al., 1976]:

Calcination:

CaSO4 · 2H2O = CaSO4 ·
1

2
H2O + 3

2
H2O

Hydration:

CaSO4 ·
1

2
2H2O + 3

2
H2O = CaSO4 · 2H2O

During hydration, an interlocking network of gyp-
sum crystals forms. See Figure 1 for a scan-
ning electron micrograph (900X) [Clifton, 1973]
of precipitated gypsum crystals (CaSO4 · 2H2O).
This crystalline network is the foundation of the
strength, durability, and absorptivity of the plas-
ter [Kingrey et al., 1976]. There is much to learn
about plaster. Even the form of the kinetic equa-
tions (fraction of plaster reacted versus time) is not
agreed upon [Hand, 1994][Ridge, 1995][Hand, 1995]
and would be an interesting problem for genetic pro-
gramming also. Understanding the process of setting
plaster as well as being able to predict its final prop-
erties is of scientific as well as economic interest.

For this study, X-ray microtomography has been used
to obtain the high resolution of 0.95µ per voxel in three
dimensional images of hydrating plaster. Commercial



Figure 1: A scanning electron micrograph
(900X) [Clifton, 1973] of precipitated gypsum
crystals (CaSO4 · 2H2O).

grade plaster of paris was mixed with a water-to-solids
mass ratio of 1.0 and the sample was imaged with X-
ray microtomography after 4, 7, 15.5 hours and 6 days.
Additionally, a sample of the plaster powder was im-
aged. This resulted in five images of plaster of size
10243. This is gray scale data with each data element
varying from 0 to 255 [Bentz et al., 2002][Vis, 2002].

In this project we are looking for simple algorithms
to describe and predict components in hydrating plas-
ter. Since classification of plaster does not follow the
straighforward methods used for materials such as ce-
ment, the algorithms or rules for classifying the ele-
ments of the data sets must be found by automatic
means. We turned to various machine learning tech-
niques as a means to find these classification rules.

We extracted a 1003 subset of the data taken at the
same place in each of the five time steps. These five
data sets were used to develop the rules. A second
1003 subset was also extracted for validation studies.

The first step in the process was the use
of an unsupervised classifier. We use auto-
class [Cheeseman et al., 1988] [Cheeseman, 1991]
[Stutz and Cheeseman, 1995] [Kanefsky et al., 1994]
[Goebel et al., 1989] to do an initial classification of
the data. Because materials scientists are interested
in three classes within hydrating plaster [Bentz, 2002],
we constrain autoclass to seek three classes.

The input to autoclass was a vector of attributes at
each image element that was derived from the original
data sets. These attributes were selected based on
the Principle of Locality [Reichenbach, 1932], wherein

natural laws are viewed as the consequence of small-
scale regularities. Since the structures we are looking
for may be as small as a few microns [Vis, 2002], we
choose as our scale a 33 cube centered on each pixel
in the image. Using simple statistics on these small
cubes, we create eight attributes for each data element
as described in Table 1. These attributes vectors are
the input to autoclass.

Autoclass identified three classes that were found to be
useful in identifying specific components of the sam-
ples. See Figure 2 for a two-dimensional slice of data.
On the left is the unclassified intensity data. On the
right is the data as classified by autoclass. Images such
as this one indicate that autoclass has picked up the
basic structure of the data. In the classified data, Class
2 (the white area) is the pore space, Class 1 (the grey
area) identifies the crystalline network and the unhy-
drated plaster, and Class 0 (the black area) represents
the boundary region.

Figure 2: The left image shows a slice of the original
plaster data; the classified data is on the right.

But autoclass operates in a “black-box” fashion. The
algorithm by which it classifies and predicts elements
is opaque to the user. To derive more transparent
statements of the autoclass classification schemes, we
used a decision tree, C5 [C5, 2002] C5 is the commer-
cial successor to C4.5 [Quinlan, 1993], which has been
used extensively for learning.

Table 1: Attributes Used for Classification

Name Definition

A0 gray level value of pixel itself
A1 neighborhood midrange
A2 nbhd variance about midrange
A3 neighborhood range
A4 neighborhood minimum
A5 neighborhood maximum
A6 neighborhood median
A7 neighborhood mean



In our attempts to derive all of the autoclass classifica-
tions using C5, we obtained incomprehensible decision
trees with thousands of nodes. These decision trees
yielded no insight into the meanings of the classes.

But as we examined the data, we observed that the
brightness histograms for the classes suggested that
classes 1 and 2 should be easily separable. Using C5,
ten fold cross validation on the combined class 1 and
2 showed that this was the case in four of the five
datasets. Single node decision stumps with less than
five misclassifications over hundreds of thousands of
cases were found for the powder, 4 hour, and 15.5 hour
data sets. All of these branched on attribute A1. The
fourth simple classification was for the 7 hour dataset.
This also yielded a single node decision stump; how-
ever, this branched on A7. The six day dataset did
not yield a simple decision tree for the combined class
1 and 2. For uniformity in the final rules across the
hydration times, the 7 hour and six day cases were re-
run requiring C5 to use only A1 to get a single best
split on this attribute.

The attribute A1 is the local midrange. The midrange
is a robust estimator of the center of a short tailed dis-
tribution [Crow and Siddiqui, 1967]. Since the range
is limited for each neighborhood to 0 − 255, this is
the situation here. So all the class 1/2 discriminator
rules are now of the form: if the center of the local
distribution is ≤ x ....

At this point in the process, we had obtained a good,
but opaque, classification scheme from autoclass, and
a concise rule for separating class 1 from class 2 from
C5. But we had no understandable rules for separating
class 0 from class 1 or class 0 from class 2. The decision
tree approach had failed to produce useful results for
these decisions. It was at this point that we turned to
genetic programming.

3 DERIVING CLASSIFICATION

RULES WITH GENETIC

PROGRAMMING

The class 1/2 decision algorithm generated by C5 for
each case separates elements into two set: one set con-
tains class 1 elements and class 0 elements; the other
set contains class 2 and class 0 elements. Genetic pro-
gramming is then used to derive second-tier decision
algorithms to separate class 0 from class 1 and class
0 from class 2. We use GPP, a genetic programming
system that we have developed here at NIST.

The goal was to derive simple and understandable for-
mulae that closely match the original classifications

provided by autoclass.

The method for using GPP in this problem followed
the following steps for each desired classification:

• Prepare training data sets from the classified data
sets.

• Select parameters, such as the operator set, for
the GPP runs.

• Construct a fitness function to measure algorithm
effectiveness.

• Execute a set of GPP runs.

• Select the run with results that most closely
match the original classification.

• Simplify the GPP-produced algorithm to a suc-
cinct form.

3.1 GPP TRAINING DATA SET

PREPARATION

The input data to GPP is of the same form as that
provided to autoclass except that for each element
it includes the classification determined by autoclass.
That is, it consists of a set of elements from the plas-
ter volume and for each element it provides the eight
attributes described above plus the class to which that
element was assigned by autoclass.

As mentioned above, the decision algorithms to be de-
rived by GPP are be used as a second-tier decision af-
ter the application of the class 1/2 decision algorithm
derived by C5. The class 1/2 decision algorithm clas-
sifies elements from classes 1 and 2 very accurately,
but the algorithm also assigns elements from class 0 to
either class 1 or 2.

We create training sets for the GPP runs based on the
input that the decision algorithms will receive. For
example, to create the training data set for the class
0/1 decision algorithm we follow these steps:

• Apply the class 1/2 decision algorithm to class 0.

• Select a subset of class 0 elements classified as
class 1 for inclusion in the training set.

• Select a subset of all class 1 elements for inclusion
in the training set.

We follow the corresponding procedure for the class
0/2 training sets. For all runs the training sets have
200 elements: 100 elements from each of the two
classes being considered.



3.2 GPP RUN PARAMETERS AND

FITNESS FUNCTION

A variety of operating parameters must be selected for
the GPP runs. All runs were done with the same set
of parameters. The parameters were selected based on
knowledge of the problem to be solved, prior experi-
ence with GPP, and a few preliminary test runs.

The primary parameters that were used for all runs
are:

• Operators allowed in the programs:
+,−,∗,/,<,negate,mod, conditional assign-
ment,and,or,not

• Population size: 500

• Maximum number of generations: 50

• Rates for genetic operations: (crossover : 10%),
(mutation : 60%), (prune : 10%), (repair : 10%),
(survival : 5%), (new individual : 5%)

The pruning operation [Hagedorn and Devaney, 2001]
was considered particularly important in the project.
This operation tends to inhibit program bloat and
should lead to smaller solution programs. Smaller pro-
grams should result in simpler decision algorithms.
Some test runs with and without pruning clearly
showed that the the use of the pruning operation re-
sulted in substantially smaller programs. Further-
more, the execution times of the GPP runs were
greatly reduced because of the smaller sizes of the
evolved programs.

The fitness function is based on the correlation be-
tween the algorithm’s classifications with the actual
classifications. The fact that this is a two-valued prob-
lem simplifies the calculation of the correlation. We
use the formulation by Matthews [Matthews, 1975],
which has been used in the context of genetic pro-
gramming by Koza [Koza, 1994]. The correlation is
given by:

TpTn − FnFp
√

(Tn + Fn)(Tn + Fp)(Tp + Fn)(Tp + Fp)

where:

• Tp is the number of true positives

• Tn is the number of true negatives

• Fp is the number of false positives

• Fn is the number of false negatives

In this context, a positive determination refers to the
classification of an element as class 1 or 2 depending
on whether the run is for the class 0/1 decision or the
class 0/2 decision. The correlation is evaluated based
on the execution of an algorithm on the appropriate
training set. This correlation value varies from -1 to 1,
where 1 indicates perfect performance on the training
set and -1 indicated a perfectly incorrect performance
on the training set.

Because these decision algorithms are binary in nature,
we can turn a very bad algorithm into a very good al-
gorithm simply by inverting each decision. In terms of
the correlation value, this means that we can regard a
decision algorithm with a correlation of -0.6 to be just
as good as an algorithm with correlation +0.6. So our
fitness function is the absolute value of the correlation
value given above. Each GPP run seeks to evolve an
algorithm that maximizes this fitness value.

3.3 EXECUTION OF THE GPP RUNS

AND SELECTION OF THE BEST RUN

For each decision algorithm to be derived, five hun-
dred GPP runs were made. Each of these five hundred
runs differed only in the seed to the random number
generator. On a single processor a set of five hun-
dred runs would typically complete in approximately
5 hours. Given the resources available to us, we easily
ran all 12 sets of runs over a single night.

After completing a set of five hundred runs we then
have to select the best run for further consideration.
Each of the runs produces an output file that contains
the evolved decision algorithm in C++ form (although
C++ is not the internal representation of the evolved
programs).

We implemented a post-processing procedure to aid
us in finding the GPP run that produces the best re-
sult. For each of the five hundred runs, the procedure
executes these steps:

• Extract the C++ version of the algorithm from
the output file.

• Compile the C++.

• Run the program on the appropriate full data sets.

• Write out brief performance statistics for that pro-
gram.

The performance statistics are then easily scanned to
select the best run.



3.4 SIMPLIFICATION OF THE GPP

ALGORITHMS

Once the best GPP run has been selected, we would
like to express the evolved algorithm in a simple form.
GPP produces programs that can be a bit obscure and
often include elements that do not contribute to the
final decision. For this reason, we seek to simplify the
GPP evolved algorithms.

This simplification process is, in part, a manual
procedure, but we recognized that it would be ad-
vantageous to use symbolic computation software
as an aid. There are a variety of symbolic com-
putation systems available and we decided to use
Maple [Monagan et al., 2000], which can reduce alge-
braic expressions to simpler forms.

As mentioned above, each GPP run produces an out-
put file that contains a representation of the evolved
program in C++ form. In addition to this C++ rep-
resentation, GPP also writes out the algorithm in a
Maple representation. Maple can operate on this rep-
resentation of the algorithm and simplify it to a single
compact formula.

There are some issues in this scenario because some of
our internal program representations cannot be easily
expressed in Maple’s representation. In these cases,
some manual intervention is required to complete the
simplification. But this is not overly burdensome and
Maple has proven to be invaluable in understanding
and simplifying the GPP-evolved programs.

4 RESULTS

The relatively simple decision rules were derived for
all five time steps and for each of the required classifi-
cations. After deriving the rules, we sought to evalu-
ate their effectiveness relative to the original autoclass
classification.

4.1 CLASSIFICATION RULES

Recall that for each time step, C5 derived the top-level
rule that separates elements into one group with class
1 and class 0 elements and another group with class 2
and class 0 elements. GPP then derived rules for fully
separating the classes.

Note that the derived rules are succinct and the entire
classification algorithm for a particular time step is
quite compact.

Here are the classification algorithms that were derived
by C5 and GPP.

4.1.1 POWDER

if A1 ≤ 42.
then (class is either 2 or 0)

if b.518494A3 + .019318A6c = 2
then class = 0
else class = 2

else (class is either 1 or 0)
if (7235./A7) ≤ (A7 + A4 + A1)

then class = 1
else class = 0

4.1.2 4 HOUR

if A1 ≤ 27.
then (class is either 2 or 0)

if A6 = 0
then if b0.5 + .06145A1c = 2

then class = 0
else class = 2

then if b0.5 + .06145A1 + .003373A3c = 2
then class = 0
else class = 2

else (class is either 1 or 0)
if (6323/A1) < (A0 + A4 + 0.69213A6 + A7)

then class = 1
else class = 0

4.1.3 7 HOUR

if A1 ≤ 42.5
then (class is either 2 or 0)

if b.527467A1 + .027467A7c = 2
then class = 0
else class = 2

else (class is either 1 or 0)
if b0.5 + 0.008515A7c = 1

then class = 1
else class = 0

4.1.4 15.5 HOUR

if A1 ≤ 30.
then (class is either 2 or 0)

if b.525849(A6 + A3)c = 2
then class = 0
else class = 2

else (class is either 1 or 0)
if A0 6= 0

then if A4 < (5321.0/A7)− (a0 + a7)
then class = 0
else class = 1



Table 2: Sensitivity and Positive Predictive Values for the Derived Rules.

Dataset Sensitivity Positive-Predictive-Value
class 0 class 1 class 2 class 0 class 1 class 2

Powder 0.94 0.88 0.97 0.86 0.97 0.95
4 Hour 0.97 0.96 0.97 0.93 0.98 0.997
7 Hour 0.95 0.95 0.99 0.95 0.95 0.99

15.5 Hour 0.96 0.93 0.98 0.93 0.96 0.996
6 Day 0.97 0.96 0.996 0.99 0.95 0.98

else if A4 < (5321.0/A7)− a3
then class = 0
else class = 1

4.1.5 6 DAY

if A1 ≤ 28.
then class = 2
else (class is either 1 or 0)

if A0 + (A1 − (4643/A7)) > 0
then class = 0
else class = 1

4.2 EVALUATION OF THE RULES

We use sensitivity and positive predictive
value [Lathrop et al., 1993] as metrics to evaluate our
derived rules relative to the original classification.
A rule can be optimal with respect to a particular
classification in two ways. The rule can be very
successful at seeing a class when it is there. This
is called its sensitivity. And the rule can be very
successful at identifying the class in the presence of
other classes. This is called its positive predictive
value. Let Tp be the true positives. Let Fp be the
false positives. Let Fn be the false negatives. Then:

Sensitivity =
Tp

Tp+Fn

Positive-Predictive-Value =
Tp

Tp+Fp

In a confusion matrix, sensitivity is accuracy across a
row; positive predictive value is accuracy down a col-
umn.

We test our classification rules with a completely dif-
ferent 1003 subcube of data from each of the five time
steps. To test the rules we first compute the same at-
tribute vectors for the new dataset. Then we use the
prediction capability of autoclass to label the vectors
using the same classification scheme that autoclass de-
rived from the original data subsets. Finally, we use

the above rules to create confusion matrices of the pre-
dictions for each of the time periods. We derive the
sensitivity and positive predictive values for class and
time period. The derived rules are all highly predictive
as shown in Table 2.

5 CONCLUSIONS AND FUTURE

WORK

Genetic programming has enabled us to derive clear
and concise decision algorithms that accurately predict
the class of unseen data for hydrating plaster. Fur-
thermore, genetic programming was successfully used
in conjunction with other machine learning techniques
and was able to solve problems and provide insight in
ways that those other techniques could not.

Our work on plaster has just begun, however. First,
we would like to develop a better method for validat-
ing the classifications. One approach is to generate
simulated plaster data sets for which proper classifi-
cations are known, for example using computer model
microstructures designed to mimic the Plaster of Paris
system [Meille and Garboczi, 2001]. We will also be
working with an expert to label manually small sub-
sets of the X-ray tomography data sets. These labeled
data will then be used for training and validation. This
will likely result in refinement of our rules.

Additionally, we would like to derive rules to sepa-
rate the unhydrated plaster from the gypsum crystals
using GPP. Next we would like to develop equations
that accurately predict the class regardless of the time
of hydration, i.e. that work over the whole hydration
period. We will need additional data to include vari-
ations with respect to the parameters that can influ-
ence the setting process and the resultant properties
of plaster. Finally, we would like to predict physi-
cal characteristics of classes with equations, instead of
predicting classes. We expect genetic programming to
be an essential tool throughout these efforts.
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