
1. Introduction

Most interpretations of optical measurements on
compound semiconductors such as GaSb require phys-
ical models and associated input parameters that
describe how carrier densities vary with dopant concen-
trations and measured Fermi energies. In this paper, we
report on a method that gives closed form analytic
expressions for the carrier densities in the conduction
sub-bands for GaSb at room temperature. The method
is based on an iterative and self-consistent solution of
the charge neutrality equation with full Fermi-Dirac
statistics for the carriers at finite temperature and on the
use of statistical analyses to give analytic expressions
that represent the calculated data sets.

The method reported here is related to earlier work
on n-type GaAs presented in reference [1]. Reference
[1] gives the results predicted by an effective two-band
model, one equivalent conduction band and one equiv-
alent valence band at Γ, that includes the densities of
states modifications due to high concentrations of

dopants and due to many-body effects associated with
carrier-carrier interactions. The method given below for
GaSb is a four-band model. But, because of computa-
tional limitations, it does not include the densities of
states modifications due to high concentrations of
dopants and due to many-body effects.

2. Theory

The electron n and hole concentrations h in units of
cm–3 at thermal equilibrium are given, respectively, by

(1)

where f0(E) = {1 + exp[(E – EF)/kBT]}–1 is the Fermi-
Dirac distribution function, EF is the Fermi energy in
eV, ρc(E) and ρv(E) are, respectively, the electron den-

Volume 108, Number 3, May-June 2003
Journal of Research of the National Institute of Standards and Technology

193

[J. Res. Natl. Inst. Stand. Technol. 108, 193-197 (2003)]

Dependence of Electron Density on Fermi
Energy in N-Type Gallium Antimonide 

Volume 108 Number 3 May-June 2003

Herbert S. Bennett and Howard
Hung

National Institute of Standards
and Technology,
Gaithersburg, MD 20899-8120
USA

herbert.bennett@nist.gov
howard.hung@nist.gov

The majority electron density as a function
of the Fermi energy is calculated in zinc
blende, n-type GaSb for donor densities
between 1016 cm–3 and 1019 cm–3. These
calculations solve the charge neutrality
equation self-consistently for a four-band
model (three conduction sub-bands at Γ, L,
and X and one equivalent valence band at
Γ ) of GaSb. Our calculations assume par-
abolic densities of states and thus do not
treat the density-of-states modifications
due to high concentrations of dopants,
many body effects, and non-parabolicity of
the bands. Even with these assumptions,

the results are important for interpreting
optical measurements such as Raman
measurements that are proposed as a non-
destructive method for wafer acceptance
tests.

Key words: band structure; dopants; elec-
tron density; Fermi energy; gallium antino-
mide; Raman measurements.

Accepted: April 11, 2003

Available online: http://www.nist.gov/jres

0 c 0 v( ) ( )d  and [1 ( )] ( )d ,n f E E E h f E E Eρ ρ
+∞ +∞

−∞ −∞

= = −∫ ∫



sity of states for the conduction band and the hole den-
sity of states for the valence band, kB is the Boltzmann
constant, and T is the temperature in kelvins. The cal-
culations incorporate the Thomas-Fermi expression for
the screening radius,

(2)

and the charge neutrality condition

NI = n – h, (3)

to compute self-consistently the Fermi energy EF and
the screening radius rs for given values of the ionized
dopant concentration NI and temperature T. The static
dielectric constant is ε and the permittivity of free space
is ε0. The ionized dopant concentration is positive for n-
type material (donor ions) and negative for p-type
material (acceptor ions). The results reported here are
for uncompensated n-type material. The results for the
screening radius rs are not reported here because they
are not needed to extract carrier concentrations from
Raman measurements.

In this paper, we use the four-band model that has
three conduction sub-bands centered at the Γ, L, and X
symmetry points in the Brillouin zone and one equiva-
lent valence band centered at the Γ symmetry point. We
do not include the detailed nonparabolicity of the GaSb
energy bands at Γ. Unlike GaAs, the GaSb conduction
Γ, L, and X sub-band masses and energy spacings are
such that for donor densities of technological interest,
the conduction sub-band at L is the one that is most
populated. The non-parabolicity of the conduction Γ
sub-band in GaAs is discussed in Ref. [2]. If we were
to use the Kane three level k · p model [2], which does
not include the conduction sub-bands at L and X, we
would be able to include the non-parabolicity of the
conduction Γ sub-band. However, because the conduc-
tion Γ sub-band band in GaSb is not the dominant band
for determining the Fermi energy, its non-parabolicity
correction may not have a significant effect on the
results given below and may lie within the uncertainties
associated with the band masses quoted in the literature
for GaSb.

The heavy hole mass mhh and light hole mass mlh for
the two degenerate sub-bands at the top of the valence
band are combined to give an effective mass

mvΓ = (mhh
3/2 + mlh

3/2)2/3,                     (4)

for the valence topmost sub-band. The values of these
parameters are given in Table 1.

The zero of energy is at the bottom of the conduction
Γ sub-band. The bottoms of the conduction L and X
sub-bands are, respectively, at EcL and EcX. The top of
the degenerate valence Γ sub-band is at –EG, where EG

is the bandgap of GaSb. The split-off valence sub-band
at Γ due to spin-orbit coupling and the non-parabolici-
ty factor of the conduction Γ sub-band are neglected.
The probabilities for typical carriers in equilibrium to
occupy appreciably these states are low. This means
that the Fermi energies should be sufficiently above the
valence sub-band maximum at Γ. Placing exact limits
on the Fermi energies for which the four-band model is
valid would be tenuous, because knowledge of how the
various sub-bands move relative to one another due to
the dopant concentrations considered here and due to
many body effects is not adequate.

The general expression [3] for the temperature
dependence of conduction sub-band minima relative to
the top of the valence band at Γ is

Ei = Ei0 – [AiT 2/(T + Bi)]                    (5)

in units of eV, where i = Γ, L, or X. The values for the
coefficients Ei0, Ai, and Bi are listed in Table 2.

The general expression for the parabolic densities of
states for electrons and holes per band extrema and per
spin direction is given by

(6)

where Ne is the number of equivalent ellipsoids in the
first Brillouin zone, the volume of the unit cell is
V = aL

3, aL is the lattice constant, m* is one of the effec-
tive masses listed in Table 1 for the appropriate band
extrema, and m0 is the free electron mass. Because eight
permutations of the wave vector in the (111) direction
exist, there are eight L sub-band ellipsoids with centers
located near the boundary of the first Brillouin zone.
Also, because six permutations of the wave vector in
the (100) direction exist, there are six X sub-band ellip-
soids with centers located near the boundary of the first
Brillouin zone. Since about half of each ellipsoid is in
the neighboring zone, the number of equivalent sub-
bands NcL for the L sub-band is four and the number of
equivalent sub-bands NcX for the X sub-band is three.

In terms of a four-band model for room temperature
n-type GaSb, the total density of states ρc(E) for the
majority carrier electrons in n-type GaSb then becomes
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ρc(E) = ρcΓ(E) + ρcL(E) + ρcX(E),            (7)

where ρcΓ(E), ρcL(E), and ρcX(E) are the sub-band den-
sities of states for the conduction Γ, L, and X sub-bands
with effective masses of mcΓ, mcL, and mcX, respectively.
The density of states for the minority carrier holes is

ρv(E) = ρvΓ(E)                           (8)

with an effective mass of mvΓ.

3. Results

Tables 1 and 2 contain the input parameters for the
calculations of the Fermi energy as a function of the
dopant donor density. We solve self-consistently, by
means of an iterative procedure, Eq. (3) with Eqs. (6),
(7) and (8). The independent variable is the temperature
T. The Fermi energy is varied for a given temperature
until Eq. (3) is satisfied. Figure 1 presents the calculat-
ed data graphically for 28 values of donor densities
between 1016 cm–3 and 1019 cm–3. Figure 2 gives the
electron densities in the conduction sub-bands at Γ and
L and the total electron density as functions of the
Fermi energy. Figure 2 does not show the electron den-
sity in the conduction sub-band at X, because it is less

than 10–3 times the total electron density. Because
mcΓ << mcL and EcL is much closer to EcΓ than it is to EcX,
the electron density in the conduction L sub-band
exceeds the electron density in the conduction Γ sub-
band at room temperature. The solid curve in Fig. 2 is
the same curve as given in Fig. 1. Figure 2 shows that
the majority of electrons is in the conduction L sub-
band and that the density of electrons in the L sub-band
approaches the total density of electrons as the donor
density approaches 1019 cm–3. Hence, even though
GaSb is intrinsically a direct semiconductor, the results
from Fig. 2 suggest that electrons for n-type GaSb in
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Table 1. Input parameters for intrinsic zinc blende GaSb at 300 K. The energies of the extrema of the conduction and valence sub-bands are ref-
erenced to the bottom of the conduction sub-band at the Γ symmetry point in the Brillouin zone of the reciprocal lattice space. The mass of the
free electron is m0. These data are from Ref. [3]

Parameter Symbol Value Units

Lattice constant aL 6.09593 × 10–8 cm
Dielectric constant in vacuum ε 8.854 × 10–12 F/m
Static dielectric constant ε0 15.7
Bandgap EG = |EvΓ| 0.726 eV
Bottom of the conduction L sub-band EcL 0.084 eV
Bottom of the conduction X sub-band EvX 0.31 eV
Top of the degenerate valence Γ sub-band –EvΓ –0.726 eV
Spin-orbit splitting Eso 0.80 eV
Top of the split-off (spin-orbit splitting) valence Γ sub-band –EsoΓ = – EvΓ – Eso –1.526 eV
Effective mass of conduction Γ sub-band mcΓ 0.041 m0
Transverse L sub-band mass mtL 0.11 m0
Longitudinal L sub-band mass mlL 0.95 m0
Effective mass of conduction L sub-band mcL = (mlL mtL

2)1/3 0.226 m0
Transverse X sub-band mass mtX 0.22 m0
Longitudinal X sub-band mass mlX 1.51 m0
Effective mass of conduction X sub-band mcX = (mlX mtX

2)1/3 0.418 m0
Light hole mass of degenerate valence Γ sub-band mlh 0.05 m0
Heavy hole mass of degenerate valence Γ sub-band mhh 0.4 m0
Effective mass of degenerate valence Γ sub-band mvΓ 0.41 m0
Splitoff band mass of the valence sub-band at Γ mso 0.14 m0
Number of equivalent conduction L sub-bands NcL 4
Number of equivalent conduction X sub-bands NcX 3

Table 2. Coefficients for the temperature dependence of the conduc-
tion band extrema that are used in Eq. (5). These data are from Ref.
[3]

Parameter Symbol Value Units

Γ sub-band EΓ0 0.813 eV
Γ sub-band AΓ 3.78 × 10–4 eV/K
Γ sub-band BΓ 94. K
L sub-band EL0 0.902 eV
L sub-band AL 3.97 × 10–4 eV/K
L sub-band BL 94. K
X sub-band EX0 1.142 eV
X sub-band AX 4.75 × 10–4 eV/K
X sub-band BX 94. K



the vicinity of the Fermi surface will behave as though
they have many characteristics of electrons in an indi-
rect semiconductor.

For illustrative purposes, we give here only the
results for fitting the logarithm to the base 10 of the
total electron density n in units of cm–3 to a polynomial
in EF, namely,

(9)

The analytic fits for the electron densities in the Γ, L,
and X sub-bands are available by sending an email to
herbert.bennett@nist.gov. During the fitting analyses,
we rely substantially on graphics and keep the number
of fitting parameters to a minimum, subject to the con-
straint that the residual standard deviation Sres is accept-
ably small, i.e., Sres ≤ 0.01. The standard deviation is a
measure of the “average” error in a fitted model and
thereby is a metric for assessing the quality of the fit. A
smaller Sres indicates a better fit. The residual standard
deviation for a model Y f = f (Z) is

(10)

where Yj are the calculated data values, the are the
predicted values from the fitted model, N is the total
number of data points (here N = 28), and P is the total
number of parameters to be fitted in the model. We use
the NIST-developed DATAPLOT [4] software for both
the exploratory graphics and for the statistical analyses.

Table 3 gives the four fitting parameters for the cubic
l = 3 polynomial fit to the log10(n) as shown in Eq. (9)
and the associated residual standard deviation Sres =
0.0066. In general, the values of Sres decrease monoton-
ically with increasing number l of terms in the polyno-
mial given in Eq. (9). But, care must be taken to avoid
fitting noise in data sets. The general guideline for
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Fig. 1. The calculated Fermi energy for n-type GaSb at 300 K as a
function of the donor density. The Fermi energy is relative to the
majority conduction band edge at the Γ symmetry point in the first
Brillouin zone.

Fig. 2. The calculated electron densities in the conduction sub-bands
at Γ and L and the total electron density as functions of the Fermi
energy. The Fermi energy is relative to the majority conduction band
edge at the Γ symmetry point in the first Brillouin zone.
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Table 3. The four fitting parameters for a cubic polynomial fit of the theoretical calculations for the total
electron density in n-type, zinc blende GaSb at 300 K as a function of the Fermi energy relative to the bot-
tom of the conduction Γ sub-band. The ratio is the estimated value divided by the estimated standard devia-
tion. The residual standard deviation is Sres = 0.0066

Fitting parameter Estimated value Estimated standard Units Ratio
deviation

a0 17.7504 0.1774 × 10–3 1.001 × 105

a1 15.6775 0.5416 × 10–2 eV–1 2.895 × 103

a2 –11.4745 0.4723 × 10–1 eV–2 –2.43 × 102

a3 –41.3848 0.8535 eV–3 –4.849 × 101



many data sets is that when the absolute value of the
ratio R of the estimated parameter value divided by its
estimated standard deviation is less than about 2, then
the rate of decrease in Sres with increasing l tends to
decrease. For the data given in Fig. 1, when l = 2 or
P = 3, Sres = 0.0644; when l = 3 or P = 4, Sres = 0.0066;
and when l = 4 or P = 5, Sres = 0.0063. Because the
change in values of Sres between l = 3 and l = 4 is not
significant, we use the fitting parameters for the cubic
l = 3 case in this paper. Also, the ratio R for the param-
eter a4 when l = 4 is –1.917, and such a value for R
means that proceeding with higher l values probably is
not warranted. A figure that compares the calculated
total electron density as a function of the Fermi energy
with the fitting results from Eq. (9) for a cubic polyno-
mial is not given because the two curves lie on top of
one another within the line widths of each curve. Fits to
the calculated electron densities for each of the conduc-
tion sub-bands are available from the author upon
request. Also, since the screening radii for the carriers
from Eq. (2) are not needed when interpreting the pro-
posed measurements considered here, the correspon-
ding screening radii are not presented in this paper.

4. Conclusions

The results from Sec. 3 are consistent with the find-
ings of experimental work reported in the literature
such as Refs. [5] and [6]. Interpreting experiments for
GaSb requires at least a three-band model and under
some conditions may require a four-band model. And
finally, even though GaSb is intrinsically a direct semi-
conductor, our results show that electrons for n-type
GaSb in the vicinity of the Fermi surface will have
some characteristics that are similar to those for elec-
trons in an indirect semiconductor.
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