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BUGS programs for the Consensus
Mean Problem

The problem of determining a
consensus mean based on data from
multiple labs or methods has been
fully addressed at NIST from the
classical point of view. The result is
the DATAPLOT procedure
Consensus Mean.
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A Bayesian solution to this problem can
be obtained through the application of
hierarchical Bayes models via the
Markov Chain Monte Carlo simulation
software called BUGS.
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Here we have BUGS code for two
common hierarchical models and apply it
to an example from SRM 1946, Lake
Superior Fish Tissue.
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Model 1.

This model assumes that the multiple
labs data comes from Normal
distributions which have different means
and different variances, that is thatYij is
distributed as

Yij ~N δ i ,σ i( ),

and that the meansδ i , and the variances
σ i are related.

That is that

∂ i~ N µ ,τ( ),
and

σ i ~ IGamma(a,b)

where
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µ~ N 0,10000( ),
τ ~ IGamma0.0001,0.0001( ),
a ~ exp(1),
b ~ IGamma(0.0001,0.0001).
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This model allows for borrowing in the
estimation of both the means∂ i , and the
variancesσ i .

This means that even when some of the
labs have extremely small sample sizes
(even n=1) the lab variances can be
estimated through the pooling of the
hierarchical model.
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The prior distributions above are
“vague” which is appropriate when real
prior information in the form of expert
opinion or prior data is not available.

Analysis performed using vague prior
distributions can be considered objective
and is generally preferred by classical
statisticians.

When real prior information is available
in the form of a mean and variance ofµ
it can be included by simply changing
the mean and variance of the Normal
distribution.
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If more robustness is required a t-
distribution with small degrees of
freedom can be substituted for the
Normal.
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The following is the BUGS code which
will carry out the MCMC simulation to
estimate the consensus meanµ.
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MODEL 1: two-stage Normal
hierarchical model with vague priors and
borrowing for both means and variances.
model model1;
const
N=13, k=7;
var
theta[k], sigma[k],mu,tau, Y[N],
lab[N], a , b , Y.p[N], p.smaller[N];
data lab, Y in "fat.dat";
inits in "fat.in";

{
mu ~ dnorm(0, 1.0E-4);

tau ~ dgamma(1.0E-4, 1.0E-4);
a ~ dexp(1.0);
b ~ dgamma(1.0E-4, 1.0E-4);

for(i in 1:k) {
sigma[i] ~dgamma(a,b);
theta[i] ~ dnorm(mu, tau);
}

for (i in 1:N) {

Y[i] ~ dnorm(
theta[lab[i]],sigma[lab[i]]);

Y.p[i] ~ dnorm(
theta[lab[i]],sigma[lab[i]]);
p.smaller[i] <- step(Y[i]-Y.p[i]);}}
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Model 2.
In some cases, the assumption that the
variances are related may not be
appropriate, in that case the following
model should be used.

Yij ~N δ i ,σ i( )
∂ i~ N µ ,τ( ),
and

σ i ~ IGamma0.0001,0.0001( )

where

µ~ N 0,10000( ),
τ ~ IGamma0.0001,0.0001( ).
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This model does not have the property of
model 1 that allows for pooling of data in
the estimation of the lab variances.

For that reason, when sample sizes are
small for some of the labs, the precision
of the posterior estimates of the means
and variances will be smaller than for
model 1.
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The following is the BUGS code for this
model:

model model2;
const
N= 13, k=7;
var
theta[k], sigma[k],mu,tau, Y[N],
lab[N], vw[k], vb;
data lab, Y in "fat.dat";
inits in "fatonest.in";

{
mu ~ dnorm(0, 1.0E-4);
tau ~ dgamma(1.0E-4, 1.0E-4);

for(i in 1:k) {
sigma[i] ~dgamma(1.0E-4, 1.0E-4);
theta[i] ~ dnorm(mu, tau);
vw[i] <- 1.0/(sigma[i]); }

for (i in 1:N) {

Y[i] ~ dnorm(
theta[lab[i]],sigma[lab[i]]);

}
}



14

Example.
Data from an experiment which weighed
the amount of solids in a sample of dried
fish tissue is given in the following table:
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Table 1. Amount of solids measured per
sample per lab.

Lab solids
1 28.58
1 28.98
2 28.41
2 28.58
3 28.86
3 28.72
4 29.3
4 28.7
5 28.6
6 28.64
6 28.75
7 28.78
7 29.31
8 28.71
8 28.89
9 28.5
9 28.6
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Both models were applied with the
results given in the following table.

Table 2. Consensus means, posterior
standard deviations, and 95% HPDs for
the two models.

Model 1.
Consensus mean sd 95% HPD
2.871E+1 6.116E-2 (2.861E+1,2.884E+1)

Model 2.
Consensus mean sd 95% HPD
2.868E+1 7.077E-2 (2.858E+1,2.884E+1)



17

It is clear from the table that the
estimates of the consensus means are
very close and that there is a slight
increase in the size of the posterior HPD
due to the reduced pooling of Model 2.

It is interesting to note that lab 5 had
only one observation. This causes most
classical consensus mean methods to fail
because they require at least two data
points to estimate each labs variance.
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The Bayesian models can handle this
situation, even in the case of model 2
where there is no pooling for variance
estimation.

This is due to the fact that a proper prior
(probability distribution) is used and so
the variance estimate is based on the
prior together with any data that is
available.
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For a comparison, the DATAPLOT
Consensus Mean procedure was run on
this data and produced the following two
estimates:

The Mean of Means
Consensus mean 95% CI
2.875E+1 (2.860E+1, 2.889E+1)

Grand Mean
Consensus mean 95% CI
2.875E+1 (2.863E+1, 2.888E+1)
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Michelson’s Determination of the
Speed of Light (1879),

a case study.

Data:

100 measurements made over 18 distinct
days.

24 distinct sets were made corresponding
to time-of-day and day. (see graph
“Effect of Measurement Day)

5 runs of 20 measurements each,
possibly adjustments were made to the
apparatus between runs. (see graph
“Measurement Runs”)

Air temperature is given for each
measurement. (see graph “Temperature
Effect”)
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Data quality:
given as “good”, “intermediate”, and
“poor”. (see graph “Data Quality)
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Data Analysis:

Least squares fit to 4 different models in
preparation for the Bayesian analysis.

Classical significance tests were used to
pick a model. The most complex model,
one which has terms for temperature, run
and set and which allows different
sample variances for different data
quality was selected.

The Model:

( ) iiiii esrTTY +++−+= βα
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Bayesian Hierarchical Model

βα , both have non-informative prior
distributions.

ri ~ normal(0,σr)
si ~ normal(0,σs)

all σ have noninformative prior
distributions.
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Results:
1. The error variances for the three

different data quality classes appear
to be different but do not fit the
“good”, “medium”, “worst”
categories of quality.

2. The standard deviations
corresponding to the “run” and
“set” variables are different. Note
that the distribution of the “set”
standard deviation is more diffuse
(i.e., less info).

3. There is a shift in the mean value of
the measurement due to “run”.

4. The effect of “set” on the mean
measurement is minimal but there
are some sets which indicate that
something out of the ordinary
happened.

5. The posterior distribution of� , that
is the mean measurement not



25

adjusted by the other variables,
shows a 95% posterior probability
interval close to that of Michelson/s
published value.
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Goodness-of- fit testing

Posterior predictions were made for
each of the 100 measurements. The
plot shows 95% posterior predictive
probability intervals.

The fit seems adequate.
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