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Outline

1. Combining information for parameter estimation

� Exploring the Data

�Mean of Means

�Weighted Means

�Multi-Method Problem

{ Schiller-Eberhardt Method

{ BOB method (Levenson)

{Mande-Paule method

{Maximum Likelihood (Vangel, Rukhin)

� Borrowing Strength: Empirical Bayes analysis

2. Combining information for decision making.

� Simultaneous statistical inference
{ Bonferroni method

� Hypothesis testing and p-values

� Combining p-values

� E�ect sizes
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3. Estimation of Consensus Function

� Linear Case
{Melting Pot Regression

{ Average CoeÆcients

� Non-linear case
{ Loess{Localized Regression

{ Splines

� Uncertainty Estimation

{ Residual Samples Method
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Some Goals :

� Learning from Combining Studies

{ Can we combine the studies to get an overall

estimate or conclusion ?

� Borrowing Strength
{ Can we use data from all the studies to help

analyze individual studies?
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Combining Information: Simplest Case

� x1; : : : ; xn are a sample of independent observa-

tions from a N(�; �2) distribution= the Normal

Distribution with center � and variance �2.

� �x =
nX
i=1

xi=n is an estimate of �. The variance of

�x is �2=n, and the standard deviation of the mean

(also known as the standard error) is �=
p
n.

� This simplest case highlights that the amount of

`information' you have is proportional to the num-

ber of replicates{things that when averaged to-

gether will `even things out.'
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Why we do what we do

� Simple case of the Law of Large Numbers: (Un-

der regularity conditions) As the sample size gets

very large, the average should converge towards

the true mean.

{ As a coin is ipped more and more, the propor-

tion of heads converges to 1/2.

� Central Limit Theorem: (Under regularity con-

ditions) The distribution of a statistic that is an

average of n numbers becomes approximately nor-

mal as n grows large.

� How do we average together numbers from di�er-

ent experiments, studies, etc.?
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Melting Pot

What about taking all the original data from k stud-

ies and throwing it into a \single pot" ?

� Original data may not be available.

� Data from di�erent studies may be on di�erent

scales or constructs.

� Loses information about the experimental condi-

tions of the data.

� Can be dominated by one or two experiments with

huge sample sizes.

� Heterogeneity may preclude combining.

� Your e�ective sample size is not as big as adver-

tised.

{ If the sample sizes are n1; : : : ; nk, then the de-

nominator of the variance of the mean is n1 +

� � � + nk.

{ You do not really have n1+� � �+nk independent
replicates that average together.
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Round Robin of H data

The following pages show a measurements of 26 lab-

oratories of H in a reference material and a conve-

nient graphical representation (called a dotplot) of

the data.

There seems be much more between-lab variation

than within-lab variance; you do not have 4*26 (=104)

e�ective replicates.
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Lab

1 4.95 5.03 5.03 5.05

2 5.46 5.49 5.23 5.30

3 5.22 5.17 5.12 5.10

4 5.09 5.14 5.10 5.13

5 4.92 4.92 4.93 4.92

6 5.02 5.05 5.07 5.08

7 5.02 4.89 4.89 5.10

8 5.04 5.00 4.98 5.00

9 4.52 4.56 4.56 4.56

10 5.13 5.14 5.15 5.15

11 4.95 4.96 5.13 5.05

12 5.20 5.20 5.20 5.20

13 5.70 5.69 5.29 5.29

14 5.09 5.05 5.08 4.97

15 5.33 5.30 5.35 5.38

16 4.68 4.63 4.98 5.19

17 4.93 4.95 5.02 5.05

18 5.07 5.09 5.10 5.12

19 5.16 5.13 5.36 5.34

20 5.19 5.09 5.12 5.00

21 5.27 5.20 5.35 5.30

22 5.08 5.09 5.08 5.08

23 5.32 5.51 5.37 5.50

24 5.12 5.14 5.00 4.92

25 4.90 5.00 4.97 4.98

26 4.90 4.78 4.95 5.01

Table 1: H Measurements from 26 Labs
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Mean of Means Approach

Sometimes it makes sense (especially when you have

26 studies) to treat the collection of study means

�x1; : : : ; �xk as you would treat a sample (Natrella

1963, Levenson et al 2000):

� Use the mean of means ��x =
kX
i=1

�xi as the overall

mean.

� Use the sample standard error of the mean of the

k means ��x

û =

vuuuuuuuut
kX
i=1

(�xi � ��x)2

k(k � 1)

(as from a sample of k) as the standard uncer-

tainty.

� The quantity û captures both within{ and between{
sample variability.

� Use as a 95 percent \con�dence interval" ��x� t� û,

where t� is obtained from the Student's t distri-

bution with k � 1 degrees of freedom.
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Mean of Means (Cont'd)

Some issues with this method:

� If k is small, then t� can be very large (e.g. 12.7 for

k = 2 and 4.3 for k = 3); it's very hard to get good

variance estimates with only a few observations.

� \It rests on the assumptions that there is a popula-

tion of methods whose biases are centered around

zero and that the chosen methods are a random

sample from the population."

{ (Levenson 2000)

� Ignores possible heterogeneities of within-lab vari-

ances and other factors.
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Exploratory analysis

� It helps to examine the data graphically to see

how and if things really do go together.

� Ideally the study means to be combined should

like a sample from a normal distribution.

� The following page shows a histogram of the Lab

Means.

� It looks `sort of' normal, but not as normal as we'd

like.
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Stem-Leaf diagram of 26 Lab Means of H
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A Stem-Leaf plot, which is essentially a hand-written

histogram (with more information) is often a conve-

nient way to examine the distribution of a modestly

sized sample.

Here, we see that the distribution of lab means is in

between normal and skewed to the right, with the

4.55 value sticking out.
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QQ-Norm Plots

AQQ-Norm plot (available in some computer pack-

ages) is another way to check the normality of your

data.

Deviations from a straight line indicate deviations

from normality.

In the QQ-Norm plot on the next page, most of the

data looks approximately normal except for at the

ends; again, the lowest value is much lower than it

should be under normality.
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Hypothesis tests for Homogeneity?

There are hypothesis tests to for homogeneity..

� For two samples, there is the 2-sample t-test to

check if the two studies have the \same" mean.

� One can do an ANOVA (Analysis of Variance) to

test for inhomogeneity.

� A common test of homogeneity of e�ect sizes in

the meta-analytic literature is a large sample test

based on the Q statistic:

Q =
kX
i=1

(�xi � x+)
2

�̂2(�xi)
; (1)

where

� �xi is the estimated mean for study i,

� �̂2(�xi) is the estimated variance for �xi,

� x+ is the weighted mean where the weights are

inversely proportional to the estimated variances.
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Homogeneity Tests (Cont'd)

If all k studies have the same population mean and

all have large sample sizes, then Q has an asymp-

totic e�ect size of a chi-square distribution with k�1

degrees of freedom.

The Q test is liable to blow up when some estimated

variances are very small.

These tests should be treated with caution because:

� accepting the null hypothesis of homogeneity does

not imply you should pool, and

� rejecting the null hypothesis does not imply that

you should not pool.
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Back to H

� Note: the H data all tested as having signi�cant

di�erences, especially the Q test, which is very

susceptible to small variances. This test was not

a factor in the ensuing analysis.

� For this particular data set, it was known that

the labs used several di�erent measurement tech-

niques among them to measure coal.

� It was decided to group the labs according to

two groups via types of measurement technique,

and use a weighted average of the two technique

means.
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Reference Material Example: Cu

The following example is of Cu concentration in a

reference material.

�Method 1 (from Lab 1) has mean �x1 = 4:96 with

a standard uncertainty of u1 =.09 with 10 degrees

of freedom.

�Method 2 (from Lab 2) has mean �x2 = 4:90 with a

standard uncertainty of u2 = .025 with 7 degrees

of freedom.

How the two sets of results compare with each other

is diagrammed in the schematic on the next page.

Following that are diagrams of 3 other cases where

we seek to comine the results. Think about what you

would do in those cases and why.
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Weighted Means

Suppose that there are summary statistics y1; : : : ; yk

(e.g. sample means) from k individual studies, with

respective raw weights w�

1; : : : ; w
�

k.

The weighted mean is

y+ =
kX
i=1

w�

i yi =
kX
i=1

w�

i :

If we de�ne wi = w�

i =
kX

j=1
w�

j to be the ith standard-

ized weight, then

y+ =
kX
i=1

wi yi:

If we assume that the y1; : : : ; yk are independent, and

the w1; : : : ; wk are �xed, then

V ar(y+) =
kX
i=1

w2
i V ar(yi):

Without independence, one needs to account for the

covariances between the yi's:

V ar(y+) =
kX
i=1

w2
i V ar(yi) +2

X
i<j

wiwjCov(yi; yj):
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Optimal Weighting by Inverse Variance

A standard result is that if y1; : : : ; yk are independent

and have respective known variances the �21; : : : ; �
2
k,

then the variance of the weighted mean is minimized

by wi / 1=�2i .

If we denote the `optimal' weights by

ŵi = (
1

�2i
) /(

kX
j=1

1

�2j
);

then the variance of the weighted mean
kX
i=1

ŵi yi is

kX
i=1

ŵ2
i�

2
i =

kX
i=1

1
�4

i

�2i

(
kX

j=1

1

�2j
)2

=

kX
i=1

1

�2i

(
kX

j=1

1

�2j
)2

= (
kX

j=1

1

�2i
)�1 (2)

We will discuss later some problems we might face

with using this formula.
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Cu Example{Unweighted Mean

Remember that

� from Lab 1 we have mean �x1 = 4:96 and standard

uncertainty u1=.09.

� from Lab 2 we have mean �x2 = 4:90 and standard

uncertainty u2 = .025.

The unweighted (equally weighted) mean of �x1 and

�x2 is 4.93. If we assume independence of �x1 and �x2;

then because w1 = w2 = 1

2
, the standard deviation

of the unweighted mean is

r
(1
2
)2 :092 + (1

2
)2 :0252 = :047;

which is slightly more than half of the larger standard

error. This is a common occurrence for the mean

of 2 averages, because the sum of squares will be

dominated by the large standard error.
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Minimum Variance Weighted Mean{Cu

Example

The weighted mean with minimum variance has weights

inversely proportional to the respective variances:

ŵ1 =
1

:092
=(

1

:092
+

1

:0252
) = :07

ŵ2 =
1

:0252
=(

1

:092
+

1

:0252
) = :93

The minimum variance weighted mean ŵ1y1+ŵ2y2 =

4:904, and using Formula (2), we �nd its standard

deviation to be

(
1

:092
+

1

:0252
)�1=2 = :024:

This weighted mean is dominated by the more precise

y2, and it shows in the standard error, which is much

smaller than for the unweighted mean.

Later we will discuss why we don't use this estimate.
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Advantages of Weights

�Minimizes variance (optimal precision).

� Utilizes more available information.

� Gives more weight to \better" studies.

� Very widely used.
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Disadvantages of Weights

� Simplicity of unweighted mean vs. complex for-

mulas for weighted mean.

� Precision may not indicate accuracy (low bias).

� Relative variances may not indicate relative pre-

cision:

{ Some experimenters may not include all sources

of uncertainty.

{ Other experimenters may \pad" uncertainty to

be \safe."

� Estimates of variance are notoriously inaccurate,

especially for sample sizes.

�Weighted mean may be dominated by one or a

few values with very small variances (lack of ro-

bustness).
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On Chi-square distributions

Given n normally distributed observations, the sam-

ple variance will be distributed as a constant times a

�2n�1=(n� 1) random variable (where �2n�1 is a chi-

square with n� 1 degrees of freedom).

The diagram on the next page depicts the probability

densities of �2�=� for � = 1; 2; 3; 8; 20: Some things

to note:

� �2�=� has mean 1 and variance 2=�.

� The distributions are quite skewed for small de-

grees of freedom.

� Thus, variance estimates from low sample sizes

have a good chance of being much too small (which

is one reason by the t� multiplier is so large for

small degrees of freedom).

� Variance estimates that are much too small lead

to estimated weights that are much too big.
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Inverse Variance Weighting (Cont'd)

If x+ is the optimally weighted mean, and recall

V ar(x+) = (
kX

j=1

1

�2i
)�1

� Thia formula holds when the weightswi are known

and �xed.

� Hence, it underestimates V ar(x+) because in prac-

tice the �2i 's and thus the wi's are not known but

are estimated.

� Hence, there are errors in the estimated weights,

which can be quite large for small sample sizes.
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Inverse Estimated Variance Weighting

� If si=pni is the estimated standard error for the

ith sample mean, let the estimated weights be

ŵ�

i = 1=(s2i=ni), and

� Ŵ � =
kX
i=1

ŵ�

i ,

� then from (2), V ar(x+) can be estimated by 1=Ŵ �.

� Even if the estimates of the individual variances

are themselves unbiased, then 1=Ŵ � as an esti-

mator of V ar(x+) is biased downward.

� A more conservative estimate that takes into ac-

count the variability of the weights is

kX
i=1

ni ŵ
�

i =(ni � 4)

Ŵ �2
: (3)

� This formula is predicated on relatively large sam-

ple sizes.
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Inverse Variance Weighting (Cont'd)

� Cochran (1954) has a more accurate (and quite

complicated) estimate of V ar(x+), also only for

large sample sizes ( ni > 8).

� For smaller sample sizes, Cochran and Carroll (1953)

and Cochran (1954) contain tables of empirical

results showing tables much 1=W needs to be in-

ated to be a good estimate of V ar(x+). (These

tables don't seem to match?)

� They show that 1=Ŵ not only underestimates

V ar(x+) for small sample sizes, but it can vastly

underestimate V ar(x+) for small sample sizes and

a large number of studies k.
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Weighting for Cochran

William Cochran (1909-1980) made many contribu-

tions to statistics, especially applied to agricultural

experiments. Here are some comments from Cochran

(1954) as highlighted by Rao (1984).

� The weighted estimator can be recommended when

the individual studies have large sample sizes.

�Weighting may be preferable if the e�ect size vari-

ances are heterogeneous and are based on substan-

tial degrees of freedom.

� His \experience with actual data has been that of-
ten there is little to choose between �x (unweighted

mean) and �xw (weighted mean), but occasionally

�xw wins handsomely."

� The unweighted mean is \preferable on account of

its simplicity unless �xw brings a worthwhile gain

in precision."
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Weighting for Cochran (Cont'd)

� The unweighted mean is optimal when standard

errors are equal, and is \highly eÆcient for small

(sample sizes) when the (standard errors) do not

vary much."

� \When the numbers of degrees of freedom in the

individual experiments are less than 8, the weighted

mean will seldom be more precise than the un-

weighted mean."
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Partial Weighting

Cochran (1934,1954) suggests partial weighting as a

way to weight for precision without allowing a single

experiment from dominating the result:

� \The same weight is given to all experiments with

relatively low values of s2i , this weight being �wp =

1=�s2p, where �s2p is the mean of the s2i over those

experiments that are chosen to have equal weight.

Each of the remaining experiments receives its in-

dividual weight wi = 1=s2i ."

� For partial weighting, \the choice of the number

of experiments that are to receive equal weight is

to some extent arbitrary. A good working rule is

to give equal weight to between 1/2 and 2/3 of

the experiments."

While partial weighting may give sensible answers for

combining (more than a few) study e�ects, it may be

too complicated (politically as well?).
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What are we really combining?

For the previous discussion of weighted means, we

have often implicitly supposed that a group of k stud-

ies satis�es the following:

� The ith study has ni measurements.

� If xij is the jth measurement of the ith study,

xij = � + eij; (4)

� where eij � N(0; �2i ).

� The feijg are mutually independent.

If xi =
Pni

j=1 xij=ni is the ith study mean, then

� �xi � N(�; � 2i ), where

� � 2i = �2i =ni .

Here, all the study means are estimating the same

thing; they would all converge towards the same

number as sample sizes grow, which means:

�We don't include between{study variation.

�Weighting more precise estimates makes more sense.
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Fixed and Random E�ects Models

An often more realistic model for k summary statis-

tics (e.g. Lab Means) y1; : : : ; yk :

yi = � + bi + �i; (5)

{ The fbig are independent can be interpreted as

the biases.

{ Each �i has mean 0 and variance � 2i .

{ The fbig and f�ig are all independent.
{ The f�ig are often assumed to have normal dis-

tributions.

� How do we interpret the bi's?

{ In a random e�ects model, the fbig come from

a distribution with mean 0 and variance �2b .

The �2b is the between-study variance.

{ In a �xed e�ects model, the fbig are not ran-

dom, but �xed.
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Fixed or Random E�ects Models

Some statisticians feel the distinction between �xed

and random e�ects is not worth worrying about, but

here it is useful to think about what you're really

estimating.

� In a random e�ects models, the bi's will jump

around (0), and may change next month.

� In a �xed e�ects model, the bi's stay the same.

� In the random e�ects models, you need to �gure

in the extra uncertainty caused by the variation

in the random bi's.

� For some �xed e�ects model, you may not need

to �gure in the variation in the bi's if what you

are really after is some theoretical center �, but

merely the average � +
kX
i=1

bi=k:
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Fixed and Random E�ects (cont'd)

� For a NIST SRM, we presume the bi's are close to

0, and ideally they average out (whether they are

�xed or random).

� However, for some �xed e�ects models, the bi's do

not have to be close to each other or to 0.

� For example, there may be strati�ed studies where

we may be able to estimate a quantity for individ-

ual groups very precisely. If we then want an over-

all average, then the weighted mean of the group

means with a (possibly) very small variance is ap-

propriate.

{ E.g. an insurance company may have payout

data on various demographic groups to be com-

bined into an overall payout.
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When combining multiple methods, it

would be nice if ...

Some desirable properties for techniques to combine

multiple methods :

� Reasonable intervals and coverage probabilities for
real problems

� If from 2 methods, should include both method

means

� Interval should at least intersect the component

intervals

� Follows, or agrees with ISO G.U.M.

� Results can be used for secondary and future anal-
yses

� Solution should depend continuously on the data

�Weights should properly reect relative scienti�c

status of component methods.

� Scales up from 2 methods nicely (approach smoothly

case with large number of methods)
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� Not penalized for a larger number of methods

� Good whether or not there is between-method

variance

� Accounts for dependence between methods

� Provision for using prior information

� Face validity
� Statistically justi�able

� Recognize that the input uncertainties are them-

selves uncertain (random), especially when used

to determine weights

Unfortunately, no single technique uniformly satis�es

all these conditions.

Note: The results combined can be from multiple

methods, or from multiple labs. One \method" may

an average from a round robin, or be itself a combi-

nation of di�erent methods or labs.
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Random E�ects Models Refresher

Random E�ects model: k summary statistics (e.g.

Lab Means) y1; : : : ; yk follow the model:

yi = � + bi + �i; (6)

� The fbig are independent and come from a dis-

tribution with mean 0 and variance �2b . The bi

can be interpreted as the biases, and �2b as the

between-study variance.

� �i has mean 0 and variance � 2i .

� The fbig and f�ig are all independent.

� The f�ig are often assumed to have normal distri-

butions.
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Mandel-Paule procedure

In the random e�ects model, V ar(yi) = �2b + � 2i :

De�ne

wi = 1=(�2b + � 2i ); i = 1; : : : ; k (7)

Then, the wi's are the weights that minimize the vari-

ance of the weighted mean because wi is inversely

proportional to V ar(yi).

To estimate �2b , Paule and Mandel (1982) note that

if y+ is the weighted mean with such weights fwig,
then

E[
kX
i=1

wi(yi � y+)
2] = k � 1: (8)

Solving (8) iteratively for �2b provides a solution ~�2b

for �2b and thus for the wi's and y+ as well.
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Schiller-Eberhardt

Schiller-Eberhardt (1991) procedures produce uncer-

tainty statements that take into account the di�er-

ences between method means; they use expanded un-

certainty intervals of the form y+�(k uc+B); where

� y+ is the Mandel-Paule estimate (weighted) or the

unweighted avearage of the method means,

� k is an appropriate t multiplier garnered from use

of the Satterthwaite approximation.

� uc is the standard uncertainty calculated as if the

weights wi are constant.

� B is a bias adjustment that ensures that the in-

terval covers all of the yi's.

� The Schiller-Eberhardt grows larger with each method

added, hence it is best for only 2-3 methods.
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\Type B on Bias" Approach

� The BOB (Type B on Bias) approach of Levenson

produces intervals for the mean similar to those

of Schiller-Eberhardt. However, it follows the ISO

Guide by incorporating the uncertainty of the bias

into the combined standard uncertainty.

� It does so by modeling the bias �b of the unweighted

mean as a Type B distribution. Usually, that bias

is modeled as a rectangular (uniform) distribution

centered at 0 and having the same range R as the

collection of study means; such a distribution has

variance R2=12 .

� Thus, for k = 2 studies with study means �x1; �x2,

R = j�x1 � �x2j; the type B uncertainty uB =

R=
p
12 is then incorporated with the other com-

ponents of uncertainty in the usual way.
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BOB: Example

Back to the Cu example:

�Method 1 has mean �x1 = 4:96 with a within stan-

dard uncertainty of u1 =.09 with 10 degrees of

freedom.

�Method 2 has mean �x2 = 4:90 with a within stan-

dard uncertainty of u2 = .025 with 7 degrees of

freedom.

� R = j4:96�4:90j = :06, so uB = :06=
p
12 = :017:

� The within variance of �x = (�x1 + �x2)=2 is

(12)
2[:00252 + 0:092] = :0452.

� The combined uncertainty is uc =
p
:0452 + :0172 =

:048:

� Procedures to calculate the appropriate degrees

of freedom using the Welch-Satterthwaite formula

are in Levenson et al (2000). Here, the approxi-

mate d.f. is calculated to be around 13, leading

to a multiplier of k = t13;:025 = 2:16.
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� The expanded uncertainty is U = k � uc = 2:16 �
:048 = :104, leading to the interval 4:93� 0:104.
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BOB Comments

� Distributions other than the rectangular can be

used.

� Levenson et al (2000) also contains a Bayesian

justi�cation for BOB.

� Both the Schiller-Eberhardt and the BOB method

are appropriate only for small k � 5 (ideally 2 or

3?).

52



Normal Random E�ects

We go back to the previous random e�ects model and

add the assumption of normally distributed biases.

Suppose that there are k labs, and the ith study does

ni measurements. If xij is the jth measurement of

the ith study, then

xij = � + bi + eij: (9)

� Suppose that the bias bi come from a N(0; �2b )

distribution.

� The eij come from a N(0; �2i ) distribution.

� The bi's and eij's are all mutually independent.

Rukhin and Vangel (1998) produce the Maximum

Likelihood Estimator of � under the above model

and show that the Mandel-Paule estimator x+ is a

good approximation to the MLE under that model.
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Rukhin-Vangel{Mandel-Paule

Under the normal random e�ects model (9), let

� �xi =
Pni

j=1 xij=ni (ith study mean).

� t2i = s2i=ni (estimated standard error of �xi).

� ~�2b is Mandel-Paule estimate of �2b .

� wi = 1=(~�2b + t2i ); i = 1; : : : ; k are the Mandel-

Paule weights.

� x+ =
kX
i=1

wi�xi is the Mandel-Paule estimator.

Rukhin and Vangel (1998) provide an approximate

estimator of the asymptotic variance of x+ and the

MLE (predicated on a large k):

f kX
i=1

(�xi � x+)
2

(~�2b + t2i )
2
g[ kX

i=1

1

~�2b + t2i
]�2 (10)

A con�dence interval based on that asymptotic vari-

ance may be appropriate for large k (at least 5{6).

For smaller k, such intervals may tend to be small.

Don't worry{the Dataplot function \Con-

sensus Means" does all the work!
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Combining procedures: Cu Example

The previous page diagrams the �rst of several exam-

ples with respective intervals with 95% con�dence.

� This example has just two methods, which favors

methods like BOB rather than the Mean of Means

or MLE (Maximum Likelihood method) method.

� The Mean of Means interval would be too big to

�t into this picture because having only 1 degree

of freedom would lead to a t multiplier of over 12.

� The two labs show relative agreement with each

other (one interval sort of nested within the other),

which is rather rare; in such situations:

{ the Mandel-Paule and MLE feel con�dent that

the two methods are indeed estimating the same

thing, and thus give more weight to the more

precise estimate, leading also to a tighter esti-

mate (remember the formula for variance of a

weighted mean).
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{ The BOB and unweighted Schiller-Eberhardt,

by design, equally weight the estimates (the

weighted Schiller-Eberhardt would give more

weight to Lab 2 but with similarly wide inter-

vals).

{ The BOB and unweighted Schiller-Eberhardt

are quite similar, and their intervals are so large

not only to cover each lab mean, but also be-

cause the large uncertainty of Lab 1 is given

equal weight as the smaller one in Lab 2.
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Combining procedures: Ca Example

The previous graph shows relative disagreement be-

tween the two labs; in such cases, the intervals look

more similar because:

� All the combining procedures see the disagree-

ment and include a large between-method vari-

ance in the uncertainty

� Although the Mandel-Paule and MLE give more

weight to the more precise measurement, the weight

distribution is much more even than the previous

case.
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Combining procedures: PCB Example

There are 4 methods here, which is reaching BOB's

limit for usefulness.

� It is relatively rare to see this degree of agreement

with this many methods.

� TheMLE andMandel-Paule procedures give more

weight to the most precise estimates, producing

tighter intervals.

� The BOB and Schiller-Eberhardt have to include

the large uncertainty from Lab 1.

61



3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

1 2 3 4 5 6 M-P MLE MnofMns S-E(wt)

Intervals By Lab and Combining Procedure

P
h
e
n
a
n
th

re
n
e
 c

o
n
ce

n
tr

a
tio

n

6
2



Combining procedures: Phenanthrene

Example

� There are 6 methods here, which is too many for

BOB.

� The disagreement among labs results in sizeable

intervals for all.

� The Schiller-Eberhardt interval has to extend it-

self to cover all the Lab means. The S-E intervals

tend to get larger as more labs are added, unless

they all agree.
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Borrowing Strength{Empirical Bayes

When the quantities are not the same, but similar

in some ways, information can be combined to make

each individual estimate better.

Suppose that

Xi � N(�i; Vi); i = 1; : : : ; k:

The usual maximum likelihood estimator for � =

(�1; : : : ; �k) is Xi; : : : ; Xk:

When the variances Vi are equal and known (Vi =

V ), it can be advantageous to estimate each �i by by

an estimator of the form

X̂ = [1�B]Xi +B �X; (11)

where �X =
kX
i=1

Xi , and

B = min(1; (k � 3) V=S);

with S =
kX
i=1

(Xi � �X)2:

The estimator X̂ is called a James-Stein estimator

or a Shrinkage estimator because it shrinks each
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estimate of �i towards the group mean (it is a linear

combination of the individual mean and the group

mean).

It is an example of an Empirical Bayes proce-

dure.

Note: Empirical Bayes procedures can also be helpful

even in situations where the Vi are not all equal and

known.
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1970 Baseball Example

Player batting batting Empirical

average average Bayes

(1st 45 AB) (rest of season) Estimate

Clemente .400 .346 .290

F. Robinson .378 .298 .286

F. Howard .356 .276 .281

Johnstone .333 .222 .277

Berry .311 .273 .273

Spencer .333 .279 .273

Kessinger .289 .263 .268

Alvarado .267 .210 .264

Santo .244 .269 .259

Swoboda .244 .230 .259

Unser .222 .264 .254

Williams .222 .256 .254

Scott .222 .303 .254

Petrocelli .222 .264 .254

E. Rodriquez .222 .226 .254

Campaneris .200 .285 .249

Munson .178 .316 .244

Alvis .156 .200 .239
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Baseball Example{Discussion

� Example (taken from Efron and Morris (1975)).

Listed on the table of the previous page are the

batting averages of the 18 players who were listed

as having 45 at-bats in the April 26 or May 3

(1970) editions of the New York Times.

� The conventional MLE estimates (given no other

information) of �i= the ith player's batting bat-

ting average for the rest of the season is simply

their current batting average (after 45 at bats).

� The Empirical Bayes estimate pools information

from all the players to help estimate each player's

future batting average.

� Let yi be the ith players batting average, or rather,
batting proportion during his �rst 45 at-bats (e.g.

y1 = :400).

� For technical reasons, we �nd it advantageous to
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use a variance-stabilizing arcsin transformation

xi =
p
45 arcsin(2yi � 1);

so we now have a sample x1; : : : ; x18 (with ap-

proximately approximately unit variance).

�We shrink the individual estimates back toward

the group means with

x̂i = [1�B]xi +B�x; (12)

with

B = min(1; (k � 3) =S);

with S =
kX
i=1

(xi � �x)2:

� Transforming x̂i back to the original units give

the Empirical Bayes estimates of future batting

averages given in the table.

� The Empirical Bayes estimates are closer to the

conventional estimates for 15 of the 18 batters!
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Bayes isn't just Empirical

Baseball fans already know that better estimates of

future batting average would incorporate prior knowl-

edge of the player's career.

In fact, far better estimates of a player's future bat-

ting average would be

A * [Career Average] + B*[Current Average] + C*[Pooled

Average of players],

with A having by far the largest weight.

This indicates the value of a Bayesian approach

that can incorporate prior information in a rig-

orous way.
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An Alarming Example

� A more serious application of Empirical Bayes

methods was done by the RAND Corporation for

the New York City Fire Department in the 1970's.

� The previous page shows a (very) simpli�ed schematic

of the possible location of �re alarm boxes in a re-

gion of the Bronx.

� The region is divided into 9 neighborhoods con-

sidered to be approximately homogeneous within

each region.

� The Fire Department wanted to know the likeli-

hood that a box-reported alarm indicates a struc-

tural (serious) �re given the alarm box location

(in allocating how many �re engines to send on

an initial response).

� Each estimated probability was a weighted esti-

mate of the neighborhood average probability and

the average for that particular alarm box.
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� The relative few previous alarms for most alarm

boxes precludes producing a good estimate using

data from that box only. Pooling data from sur-

rounding boxes produce much better estimates.
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Empirical Caveats

� \Although blind applications of these methods would

gain little in most instances, the statistician who

uses them sensitively and selectively can expect

major improvements." (Efron and Morris, 1975)

� Use of empirical Bayes estimated means would of

course be silly in many cases (e.g. estimating

the concentrations of 30 di�erent analytes in an

SRM).

� However, they can be useful where pooling makes

sense, and can help make up for lack of informa-

tion in individual cases.

� Borrowing strength can also be useful for helping

estimating uncertainties where such information

may be lacking for individual cases.
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Simultaneous Intervals{ SRM Example

(Simpli�ed, with some numbers changed)

� There are two lots of a proposed reference mate-

rial. To check that the two lots are the same, 10

di�erent elements are measured for each lot.

� If we do two-sample t-tests for each element sepa-

rately, there are statistically signi�cant di�erences

in 2 of the elements. 95 percent con�dence inter-

vals for these elements are:

{ Element 1: ( -.035 , -.003 )

{ Element 2: (-.0067, -.0017)

� Can we adjust these results to take into account

doing 10 comparisons at once?
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Signi�cance Levels and P-values

� A Hypothesis test with a signi�cance level of .05

means that if it sees the Null Hypothesis for real

many times, it would reject it 1 out of 20 times

on the average.

� (If you throw 4 dice many times, some of your

throws will be 6666.)

� Of course, the more individual signi�cance tests

you do, the more likely that you will turn up a

false positive by chance.

�Multiple comparisons were developed so that an

entire set of hypotheses or statments would have

a desired signi�cance.

� They are useful for guarding against \data dredg-
ing" (and �nding spurious signi�cant e�ects).
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Con�dence intervals and hypothesis tests

� Note: There is often a duality between con�dence

intervals and hypothesis tests such that the state-

ment that H0 : � = 0 is not rejected by a hypoth-

esis test with signi�cance level .05 is equivalent to

that the statement that a 95% Con�dence interval

for � includes 0.

{ Con�dence intervals give more information than

mere hypothesis tests, e.g. direction and mag-

nitude of the e�ect.

� Thus, one sometimes desires a set of simultane-

ous con�dence intervals with a desired probability

that they all cover their respective estimands,

e.g. this set of con�dence intervals include all the

right values 95% of the time.
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Bonferroni Method

A simple way of doing multiple comparisons is use

the Bonferroni rule.

� Suppose you have a set of k statements S1; : : : ; Sk

(e.g. k di�erent null hypotheses H01; : : : ; H0k)

who have respective signi�cance levels �1; : : : ; �k.

� If H0i is true, let Si be the event that its test

statistic comes out signi�cant; P (SijH0i) = �i.

Suppose all the null hypotheses are true; the proba-

bility then that they are all accepted is

P (No Si's true)=

1�P (at least one of the Si true) = 1�P (S1[� � �[Sk)

� 1�P (S1)�: : :�P (Sk) = 1��1�: : :��k; (13)

which follows from

P (S1 [ � � � [ Sk) � P (S1) + � � � + P (Sk):

(13) is known as the Bonferroni inequality.
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� A Bonferroni's inequality is not as crude as it

looks, and it is especially tight for k not too large

(� 5) and � small (e.g .01). Miller (1981)

�More exact methods can provide improvement but

often not much.
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Using Bonferroni

A typical 100(1 � �)% con�dence interval is of the

form

�x� tm;�=2 S;

where S is an estimate of the appropriate standard

deviation, and tm;�=2 is the 100(1��=2)th percentile

point of the Student's t distribution with m degrees

of freedom.

To obtain k con�dence intervals with 100(1 � �)%

simultaneous con�dence, these intervals would be of

the form

�xi � tm;�=2k S; i = 1; : : : ; k

These intervals aren't as huge as you might think at

�rst glance, because tm;a grows relatively slowly as a

shrinks closer to 0.
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SRM Example with Bonferroni Method

The individual 95 percent con�dence intervals for the

average lot di�erences that did not contain 0 were:

� Element 1: ( -.035 , -.003 )

� Element 2: (-.0067, -.0017)

These intervals take the form

�x1 � �x2 � tk;�=2 ~S (14)

where in this case k = 10 is the number of degrees of

freedom (calculated from sample sizes, not number

of elements), � = :05 is the signi�cance level, and

~S is an estimate of the standard deviation of the

di�erence.

The Bonferroni simultaneous intervals are

�x1 � �x2 � tk;�=20 ~S;

which use t10;:0025 = 3:58 instead of t10;:025 = 2:23.

� The 8 other con�dence intervals that contained 0

still do so.
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� The 95 percent simultaneous con�dence intervals

for the other two elements are

{ Element 1: ( -0.044 , 0.007 )

{ Element 2: (-.0082 , -0.0002)

� Note that the interval for Element 1 now includes

0, and the interval for Element 2 is even closer to

including 0 (within detection limits).

� As with all such statistical techniques, multiple

comparison and simultaneous inference procedures

need to be used not blindly but only when appro-

priate!
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Other methods

There are many other procedures for simultaneous

inference and multiple comparisons, which we won't

go into. Miller (1981) explains all of them.

� Tukey's Studentized Range

� Sche�e projections
� Fisher's Least Signi�cant Di�erence method

�Maximum Modulus techniques

In addition to problems like the example above, these

procedures are useful for answering other questions

like: I have k di�erent sample averages (e.g. measure-

ments of the same material using k methods); an F

Test tells me they are not all the same, but which of

these averages are di�erent from each other?
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Signi�cance Levels and P-values

� Under the null hypothesis, a hypothesis test with

a signi�cance level of � = :05 has a 5 percent

chance of incorrectly rejecting the null hypothesis

(an innocent person has probability 0.05 of being

convicted).

� The p-value of a hypothesis test result is the pro-
portion of such tests that would have a result as

extreme or more if the Null Hypothesis were

really true. By \as extreme," we mean as fa-

vorable to the alternative hypothesis.
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P-value Examples

� Example 1. The P-value of a DNA match is

2e10�N ; the probability that a random person

who have DNA that matched the sample so ex-

actly is � < 2e10�N .

� Example 2. You unked a lie detector test with

a P-value of .25. One of four random honest per-

sons would have unked the test as badly as you

did or worse.

� A p-value of .04 would be signi�cant for a .05 level

test but not for for a .01 level test.
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Power of Hypothesis Test

� Note that the Signi�cance Level doesn't tell you

how e�ective the test is when the null hypothesis

is not true (i.e. at discerning guilt when guilt is

present).

� The probability of correctly discerning the Alter-

native Hypothesis when it is present is thePower

of the test.

� Since most hypothesis tests are based on a statis-

tic with a threshold value, the choice of threshold

involves the conict between wanting high power

and very low signi�cance level.

� Traditional practice has �xed the signi�cance level
at 0.05 (or .01 or .10), and let the power be what-

ever it is. If the true e�ect and the sample size

are not large, then the test may have rather low

power (perhaps not even 50 percent!).
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Empowering the Small and Weak

It may be desirable to bring together studies that

point in the right direction but which lack power.

This is ideal for bringing small e�ects to light:

� Psychotherapy is useful!

{ Glass, Smith, Rosenthal, etc.

� Peto: In medicine, incremental improvements are

more likely than revolutionary changes. These

incremental improvements can save thousands of

lives.

� \Chalmers (1991): 10,000-20,000 deaths a year

in the United States alone could have been pre-

vented if the recommendations of a meta-analysis

conducted in the mid-1970's on the e�ectiveness in

aspirin in preventing heart attacks had been fully

implemented." Although that estimate is likely

somewhat inated, it demonstrates the appeal of

combining studies.
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� Unfortunately, a poorly done meta-analysis can

make bad results even worse. (Combining apples

and oranges, Garbage in{Concentrated Garbage

Out, etc.).
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On Combining P-values

�What if you have k p-values all between .11 and

.15? While none are individually signi�cant, the

group of p-values provides considerable evidence

of some e�ect.

� If the null hypothesis is true, then (theoretically)

the p-value of a hypothesis test has a Uniform

(Rectangular) distribution on the interval (0,1).

� There are many methods of combining k p-values

(for experiments testing the \same" thing) that

say, \If this Null Hypothesis were really true, then

these k p-values would be like a sample of k ob-

servations from a uniform (0,1) distribution. Let's

test if that's the case!"
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Fisher's Method

� If pi is from a uniform (0,1) distribution, then

�2 log pi has the �22 distribution (with 2 degrees

of freedom).

� Thus, if p1; : : : ; pk are from a uniform (0,1) distri-

bution, then �2 kX
i=1

log pi has a �
2
2k distribution

(with 2k degrees of freedom).

� Reject H0 if

�2 kX
i=1

log pi > C�; (15)

where C� is the 100(1��) percentile point of the

�22k distribution.

Example (part of a larger data set from Hedges

and Olkin (1985)) Four studies of Sex Di�erences in

Conformity produced p-values of .0029, .0510, .6310,

and .3517.

Fisher's Statistic is (�2) � (�5:84 � 2:98 � 4:6 �
1:04) = 20:65, which is greater than C:05 = 15:5

(and C:01) for the �
2
8 distribution.

89



Inverse Normal (Stou�er's) Method

� Let zi = ��1(1 � pi), which then has a N(0; 1)

distribution.

� Then
~z = (

kX
i=1

zi)=
p
k

also has a N(0; 1) distribution.

� Reject H0 if z > C�, where C� is the 100(1� �)

percentile point of the N(0; 1) distribution.

Sex Di�erences Example

Stou�er's statistic is ~z =

(��1(:9971)+��1(:949)+��1(:369)+��1(6483))=
p
4

= 2.2, which is greater than1:96 = C:05 for the stan-

dard normal distribution.
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Other Methods of Combining P-Vaues

� There are many others schemes for combining p-

values. Most involve transformations of the p-

values (e.g. Fisher's, Stou�er's method) or based

on order statistics of the set of p-values (the small-

est, largest, median, etc.).

� In addition, there are modi�ed schemes that in-

volve weighting and trimming the p-values accord-

ing to their magnitude, quality, etc.
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Weaknesses of Combining P-values

� Nowadays, just combining p-values is something

you should only for those cases where you have no

other information.

� There may be considerable information about a

study's results that are not captured in the p-

value; e.g. a very low p-value may be the result of

a very large e�ect or a very large sample size and

a small e�ect.

� \If more complete summary information about a

study is available, it makes good sense to use it

and avoid P-values." (Gaver, et al, 1992)
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E�ect Sizes

� Some data, especially in educational and psycho-

logical research often consists of arti�cial constructs

for possibly nebulous quantities (e.g. self-concept,

attitude towards school).

� Glass (1976) advocated the use of e�ect sizes,

or e�ect magnitudes, that did not depend on

the arbitrary scaling of the dependent variable.

� In this way, a series of studies that used di�erent

but \approximately equatable" outcome measures

could have comparable e�ect magnitudes that can

be combined.

� E�ect sizes usually are combined in a weighted

mean (weighted by inverse variance or sample size).
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Two Families of E�ect Sizes

There have been two main families of e�ect sizes in

traditional meta-analysis:

� The \r family": based on correlation coeÆcients

and related quantities. It is suited for cases when

seeking relationships between 2 continuous vari-

ables. See the text by Rosenthal (1981) for more.

� The \Æ family": based standardized mean di�er-

ences and is suited for comparing two groups (e.g.

treatment and control), e.g.

Æ = (�T � �T )=�;

where �T and �C are the means of the treatment

and control groups, respectively, and � is the (often

common) population standard deviation.

�Note: Æ is not what a t-statistic measures!

(What happens to a t statistics as the sample sizes

go to 1?)
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How big is my e�ect size?

� \Cohen (1977) de�nes a large e�ect size as one

visible to the naked eye."

{ For normal distributions, Cohen says Æ = :2

is small, and Æ = :8 is large. The following

diagrams depict these cases.
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Blood Pressure Example

Control: 135 148 155 162

Treatment: 131 124 166 127

An commonly used example involves a data set of sys-

tolic blood pressure readings from persons with hy-

pertension (from Kraemer and Andrews (1981) and

other sources). For illustrative purposes we will look

at only a tiny portion of that data.
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An Estimate of Æ

The usual estimators of Æ are of the form

(�xT � �xC)=S;

where �xT and �xC are the sample means for the treat-

ment and control groups, respectively, and S is some

measure of the (possibly common) standard devia-

tion.

Glass advocated the estimator g0 = (�xT � �xC)=SC;

where SC is the sample standard deviation of the

Control group.

According to Glass, g0 is especially appropriate for

comparing several treatment groups to a single con-

trol group, because the di�erent treatment groups

would probably not have the same variances.

Blood Pressure Example

�xT = 137, �xC = 150, and SC = 11:5, so

g0 = (137� 150)=11:5 = �1:13:
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g estimates Æ

When there is only one treatment group and the vari-

ances of the treatment and the control groups are

equal, it is advantageous for an estimate to utilize

both samples to obtain a pooled estimate of the com-

mon standard deviation.

Suppose that the Treatment sample has m observa-

tions and the Control sample has n observations.

Then, an estimator of Æ is

g = (�xT � �xC)=s;

where

s =

vuuuuut(m� 1) (ST )2 + (n� 1) (SC)2

m + n� 2
:

Blood Pressure Example

�xT = 137, �xC = 150, ST = 19:5, and SC = 11:5,

leading to s = 16 and

g = (137� 150)=16 = �:81:
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Variance of g

The asymtotic variance of g is

�2
1
(g) =

m + n

mn
+

Æ2

2 (m + n)
:

Note that it depends only on the sample sizes m and

n and on Æ.

An estimate of the variance of g is thus

�̂2(g) =
m + n

mn
+

g2

2 (m + n)
:

Blood Pressure Example

Using an asymptotic expression for sample sizesm =

n = 4 is clearly questionable, but for illustrative pur-

poses we have

�̂2(g) =
4 + 4

4 � 4 +
(�:81)2
2 (4 + 4)

= 0:54
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Probability of Superiority

Another type of e�ect size has been called the \Prob-

ability of Superiority"; given x1; : : : ; xm � F and

y1; : : : ; yn � G, what is the probability that a ran-

dom observation from F will be greater than one

from G?

De�ne

Uij =

8>>>>>>>>><
>>>>>>>>>:

1; if yj < xi ;
1

2
; if yj = xi;

0; if yj � xi ;

and U =
mX
i=1

nX
j=1

Uij :

Use dPS = U=mn as an estimator of PS= the Prob-

ability of Superiority of X over Y .

This is based on the Mann-Whitney and Wilcoxon

nonparametric tests.
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� If U = 0, use dPS = 1=(mn+ 1); and if U = mn;

then put dPS = mn=(mn + 1):

�We can transform dPS into a form comparable

with the standardized mean di�erence d:

{ Assume approximate normality and equivari-

ance of the distributions with a real e�ect size

of d = Æ:

{ Then Æ̂ =
p
2 ��1( dPS) is an estimator of Æ

{ This is based on the relation

P (yj < xi) = �(Æ=
p
2 ); (16)

which follows from the distribution of (xi�yj).
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Blood Pressure Example

Control: 135 148 155 162

Treatment: 131 124 166 127

To calculate Æ̂, consider that there are 4 � 4 = 16

possible di�erent pairings of a control observations

with an treatment observations. Of these 16 pairings

of observations, there were only 4 pairs in which the

control observation was smaller than the Treatment

observation (the pairs involving 166 from the Treat-

ment group). Thus, U = 4, and dPS = 4=16 = 0:25:

Æ̂ =
p
2 ��1(0:25) = �:95:
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Pros and Cons of Æ̂

� The estimate Æ̂ is much more robust than tradi-

tional estimators of d and almost as eÆcient.

� Unfortunately, they are much more diÆcult to cal-

culate, requiring a computer for all but small data.

� Those not wanting to do their own programs can

use the relation

U = W �m(m + 1)=2;

where the Wilcoxon statistic W is the sum of the

ranks of the treatment observations in the com-

bined sample (Randles and Wolfe (1979)) and is

also available in some computer packages.

� A computer program is required for variance esti-

mation.
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Function Estimation

� Often the desired result is not just a number, but

a function.

� As an example, NIST is considering using a cer-

tain ceramic material as a reference material for

thermal properties such as thermal di�usivity, ther-

mal conductivity, and heat capacity.

� Scientists around the world have performed exper-

iments measuring these properties.

� These experiments have varied greatly in several

factors: temperature range of the observations,

number of observations, and general quality of the

experiment.

� The next pages show data for the three mentioned

thermal properties, with each di�erent experiment's

measurements depicted by di�erent symbols. Some

data sets have already been excluded from the �g-

ures by subject matter experts.
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Consensus Functions?

� How do we combine the data from the various labs

into a \consensus function"?

� In the past, the \authoritative" functions were

sometimes results from a regression but also some-

times from an expert taking a pencil and drawing

a line through the data.

� The quality of those results is a tribute to the

expertise and experience of the scientists involved.

� Although we would like to move towards more

computational ways of function estimation, scien-

ti�c judgment will always be needed.
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Scope of Discussion

� This class concentrates on the issues involved in

combining data sets.

� In some cases it will be practical to combine the

data sets and then proceed as if dealing with a

single data set.

�We will not go into these single data set techniques

in great detail because it is already the subject

of a vast literature on regression, smoothing, and

�tting, as well as previous (and future?) NIST-

SED classes, e.g.

{ Regression Methods (Will Guthrie)

{ Functiona Data Analysis (Walter Liggett)

{ Exploratory Data Analysis (Jim Filliben)

� Since most procedures like regressions and splines

are now carried out by computer packages, I won't

detail the algorithms (can be found in references).
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Simulation of Linear Case

� A standard way to evaluate estimation procedures

is on simulated data where we know what the \real

answer" is.

� The next graph plots one example of the very spe-

cial case of simulated linear data sets.

The simulation scenario is the following:

� The \real answer" is y = m x + b:

� The ith of k data sets has ni points scattered on

a random subset of the real line.

� Each point is generated as:

yij = m xij + b +Biasi + �ij;

� Biasi comes from a uniform distribution on (�b; b);
the error term �ij comes from a N(0; �2i ) distribu-

tion.

� Each variance �2i is generated from a Gamma

distribution.
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Some Combining Methods

This is a very special (and simple) case where you

know the model is linear. We will look at the follow-

ing methods of combining work for this case:

�Melting Pot Method

� Parameter Averaging

� Line Averaging
� Non-linear smoothing (not covered)
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Melting Pot Method

� A relatively easy strategy is to put all the points

in one large dataset and run a linear regression.

� This option may not be available if data are miss-

ing or not available.

�Weighting the observations from the di�erent data

sets is an option.

� This is the linear case, but for the general case,

if treating it as just one data, can utilize gen-

eral regression and function (functional) estima-

tion techniques.

� For this simulation situation, the estimates were

quite good.
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Parameter Averaging and Line Averaging

� In the linear case, taking the set of estimated pa-

rameters and averaging them gives the same result

as taking the set of lines and averaging them.

� They would not be the same in most other situa-

tions.

� There are many situatios where neither method

would make sense. In the linear case, if the the-

ory truly holds that estimated parameters are nor-

mally distributed around the true parameters, then

the estimates can be quite good.

� In the simulation, the estimates were good most

of the time, but occasionally bad{a stray line can

mess it up.

� A data set with points only over a small interval

inuences predictions far away.
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Importance of Residual Analysis

� Residual analysis is a very important part of the

�tting process.

� For instance, when looking at a graph of the x's

vs. the residuals, a random pattern of residuals

(that �t the model) indicates a good �t, while

patterns in the residuals indicate that your work

isn't done.

� The next 2 graphs show the x's vs. the residu-

als for the one example shown of the Melting Pot

regression and Average CoeÆcient lines.

� Other sorts of residual plots as well as hypothesis
tests (e.g. F-tests) are useful for model validation.

� See regression texts and also Will Guthrie's Re-

gression class for more details.

119



Residuals from Avg. Coef. Regression

0
1

2
3

-2 -1 0 1

120



Residuals from Melting Pot Regression
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Residual plots for multiple studies

�When there are multiple studies, there tends to

within-study agreement (correlation), as all the

data from certain labs may show the same bias

and variability.

� Hence you are more likely to see clumps of residu-

als from the same labs that are all high or all low

rather than the ideal totally random patttern.

� Residual plots that look more random or �t the

residual model better may indicate a better �t,

e.g. in the last graph, the residuals for the Melting

Pot regression look better.
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Simulation Model for a Non-Linear

Function

� The next graph shows a simulation of several data
sets in a decidedly non-linear situation.

� The \real" function is

f(x) =
1

x
exp(�[log(x)]2) ; x > 0:

� [Some people may notice the resemblance to the

density function of the lognormal distribution.]

� The ith of k data set has ni points scattered from

a uniform distribution on a random subset of part

of the real line.

� Each point is generated as

yij = Biasi � f(xij) + �ij;

� The Biasi comes from a uniform distribution on

(-0.8,1.2), and the error term �ij comes from a

N(0; �2i ) distribution.
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� Each variance �2i is generated from a Gamma

distribution.

�We also did runs with an additive bias term, but

we felt that with this particular function, a mul-

tiplicative bias factor made the most sense.
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Experience Desired

� Obviously, the best case is if you already know the

form of function, i.e. insight from physical the-

ory. Then some sort of linear or non-linear least

squares (or weighted least squares) would proba-

bly be appropriate.

� Polynomials and other suitable functions cam be

used \less knowledgeable" �tting.

� If you don't know and don't need an explicit func-

tion, then smoothing methods are very useful for

�tting and making predictions.

� Two very useful procedures are Localized Regres-

sion and Splines.
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Loess{Localized Regression

�When �tting (predicting) f(x), points in the re-

gression are weighted by their closeness to x. Thus,

far away data points will have little inuence on

each other.

� As implemented on most statistical packages, the

user tunes the span (window), which is the pro-

portion of points used in each �t.

{ A Loess with small span will �t the data more

closely; too small a span will give a jagged over-

�t

{ A larger span gives a smoother line, but won't

follow the data as well.

{ It may be awkward at times to balance �t and

smoothness; one may want to �t the data in

separate pieces.

Also, each observation can be given a general weight

for a weighted Loess.
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� Does not give an explicit formula, so suitable for

�tting and prediction rather than a physical inter-

pretation.

� Details can be found in the article by Cleveland

and Devlin, or in the documentation to your com-

puter package.
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Splines

� The most commonly known splines are cubic splines,

which approximate a function with a collection of

polynomials of degree less than or equal to 3 on

subintervals such that the 2nd derivatives agree at

the \knots" between subintervals.

� Splines have good structural properties and tend

to give good �ts.

� One can tune the balance between smoothness

and �t desired.

� Does not give an easy explicit formula, so more

suitable for �tting and prediction rather than phys-

ical interpretation.

� There are many references for splines, including

the text by Green & Silverman.
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Weighty Concerns

The use of weights in Loess, splines, regressions, and

other procedures can address several concerns:

� There may be know di�erences in the quality of

data from di�erent sources.

�Weighting by the Lab uncertainties may be desir-

able.

� There have been some data sets that are not really

data, but are discretized values from a previously

estimated curve.

{ In this case, the number of points in this dataset

(which may be very large) is not meaningful.

{Weighting can adjust the inuence of such a

set to a proper level, e.g. so that its e�ective

number of points or its density of points is equal

to that of a typical lab.

{ Such sets also have an arti�cial lack of variabil-

ity which may come into play.
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�Weighting points by its distance away from the

other points, analogous to trimmed means and

M-estimation, may be useful (this is something

we haven't implemented).
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Simulation Results

� There tended to be very little di�erence between

weighted and unweighted cubic splines, and also

between weighted and unweighted Loess estimates.

� Perhaps the minimal e�ect of weighting was due

to the simulation scenarios.

� Splines seemed to do better than Loess, but that

could be due to better tuning for these scenarios.
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Variance proportional to bias

� It is possible that lower quality experiments would

have both larger bias bias and larger variance. In

this case, weighted procedures should be advanta-

geous.

� Simulations were run using the non-linear func-

tion in which the variance was proportional to the

magnitude of the bias. The following page graphs

one result.

� Here, weighted Loess and weighted splines had

an advantage over their unweighted counterparts,

but it was not as large as expected.

� Perhaps the dependence of variance on bias used

were too mild to get much of an e�ect.
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Uncertainties of Estimated Functions

� Normally, computer packages will provide each �t-

ted value ŷ from Loess, etc. with a standard error.

� However, this standard error will be manifestly

too small, probably because the package treats

the data as one huge data set with a huge number

of observations (remember the 1=n rule for the

variance).

� Because the observations come from multiple data

sets, you don't have as many e�ective replications

as the computer thinks you do.
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Residual Samples Method

An ad hoc method of summarizing the amount of

uncertainty:

� Partition the residuals by study, so that we a have

a di�erent set of residuals for each experiment.

The next graph does this for the di�usivity exam-

ple.

� Treat the multiple sets of residuals as you would

multiple sets of data, via the Mean of Means,

BOB, etc.

� Use the intervals obtained for summarizing point-

wise uncertainty.

� There may be a problem in having the same point-

wise uncertainty on the real line.

� If the �t is done on the log scale (as in the dif-

fusivity case), then after transforming back, the

pointwise uncertainties are then proportional to

the �tted values, which is often appropriate.
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Other Uncertainty Methods

This is still an area of ongoing research.

�Multiplying the standard errors given by Loess

and other programs by an appropriate (still un-

known) factor may give reasonable estimates.

� Perhaps a Moving Window version of the Residual

Samples Method: use only the �ts or points that

are close by?

� Current intervals are pointwise (rather than cov-

ering the function as a whole).

� One needs to decide whether con�dence intervals

or prediction intervals are more appropriate.
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Topics Left Out (or only briey touched

upon)

� Trimmed estimators and Robustness issues

� Estimating a bevy of physical constants simulta-

neously using extended least squares.

� \Meta-analysis"{the glamour and the naysayers

� Literature search and evaluation

� File drawer problem
� Theory of Hierarchical Models

� Bayesian Analysis
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Epilogue

LORD OF THE FILES

Three Studies by the Scholar-kings under the sky,

Seven by the Professors in their halls of stone,

Nine by Junior Faculty doomed to die,

One for the Meta-analyst in his dark room

In the Land of Meta-analysis where the Studies do not lie.

One Study to to rule them all, One study to �nd them,

One Study to bring them all and in the darkness bind them

In the Land of Meta-analysis where the Studies do not lie.

Please take a few minutes to comment on the class

on the Feedback Form.
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