
                                       Case Study --- Pontius Data

     The case study given herein was used in Section 4.6.1 to illustrate the

construction of a regression model that was used for calibration.  We will use some

additional tools in analyzing the data and make some important general points that

were not brought out in Section 4.6.1 because different statistics were employed

there.

        Regression analysis, in its various forms, is unquestionably the most frequently

used statistical method.  One question that the user of regression must address is

“How do I know when I have a regression model that is good enough to use?”  A

simple answer to this question is not possible, as the required “goodness” of the

model depends upon the application.  For example, if we were trying to predict

stock market prices, we would be able to make a considerable amount of money if

we could construct a model that explained just the majority of the variation in @ .

At the other extreme, we will use a case study in this section to show that

accounting for virtually 100% of the variation in @  may not be good enough.

       We will illustrate this with some load cell calibration data that are from circa

1975 and were once the data of NIST scientist Paul Pontius, who is now deceased. 

The dependent variable (@ ?) is Deflection, and the independent variable ( ) is Load.

We would like to be able to model   as a function of  .@ ?

        The data are given below



             repeat reading)      (Y X

            0.11019  0.11052     150000
             0.21956  0.22018     300000
             0.32949  0.32939     450000
             0.43899  0.43886     600000
             0.54803  0.54798     750000
             0.65694  0.65739     900000
             0.76562  0.76596   1050000
             0.87487  0.87474   1200000
             0.98292  0.98300   1350000
             1.09146  1.09150   1500000
             1.20001  1.20004   1650000
             1.30822  1.30818   1800000
             1.41599  1.41613   1950000
             1.52399  1.52408   2100000
             1.63194  1.63159   2250000
             1.73947  1.73965   2400000
             1.84646  1.84696   2550000
             1.95392  1.95445   2700000
             2.06128  2.06177   2850000
             2.16844  2.16829   3000000

and since the -values are so large, we will divide them by 10 , as a matter of? �

convenience.  (This does not affect any statistic or graph that is used in assessing the

worth of the model.)

      Without any prior information to suggest a specific nonlinear model to fit, our

logical starting point would be to plot the data and see if a simple linear regression

model would likely provide an adequate fit

          The scatter plot is as follows:
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                    Figure 1

     We would be very suspicious of such a scatter plot in almost any field of

application as datasets simply do not look this perfect.  Since this is calibration data,

however, we should not be surprised by a very strong linear relationship between the

two variables, and indeed this is what we would hope to see.

        Since there are repeat readings, before we attempt to fit a model, we might want

to see if there is a discernible pattern in the differences of the repeat readings.  A

plot of the first reading minus the second reading against X does not exhibit any

unusual pattern, but it is somewhat curious that 13 of the 20 differences are

negative, and 5 of those differences exceed the largest positive difference in absolute

value.  Due to the latter, a paired-  test of the first reading versus the second readingt

has a  -value of .031, so it would have been of interest to determine if there were anp

explanation for the generally larger second readings.



     Basic computer output for simple linear regression does not deviate much across

statistical software.   Accordingly the output given below is typical:

        The regression equation is
        Y = 0.00615 + 0.00722 X

        Predictor       Coef            SE Coef              T         P
       Constant   0.0061497    0.0007132         8.62    0.00
       X               0.00722103  0.00000397  1819.29  0.00

        S = 0.002171  R-Sq = 100.0%  R-Sq(adj) = 100.0%

       Analysis of Variance

       Source               DF       SS       MS           F                 P
       Regression            1  15.604 15.604  3.310E+06  0.00
       Residual (Error) 38    0.000   0.000
       Total                   39  15.604

       Unusual Observations
       Obs   X        Y              Fit       SE Fit      Residual   St Resid
         1     15   0.11019  0.11447   0.00066   -0.00428 -2.07R
         40  300  2.16829  2.17246   0.00066   -0.00417 -2.02R

        R denotes an observation with a large standardized residual

      This output provides essentially the same message that can be gleaned from the

scatter plot; namely that the model provides almost an exact fit to the data.  Since

there are non-zero residual values, as the last part of the output shows, the fit is not



exact; the  value of 100% is simply rounded off.  (The last part of the output9�

shows nothing to be concerned about as under the assumption of normality for the

errors there should theoretically be two standardized residuals that exceed 2 in

absolute value and somewhat coincidentally that is how many there are.)

       There is a commonly used numerical method and some graphical methods that

can be used to determine if the model can be improved.  The numerical method is a

“lack-of-fit” test.  With this test the residual sum of squares is broken down into a

pure error component and a lack-of-fit component.  The former is variability in @

that cannot be fit by any model, and is reflected by points that line up vertically on a

scatter plot when there is a single independent variable ( ).?

      As is shown by the list of data, all of the -values are repeated.  Figure 1 does?

not show vertical scatter, however, simply because the two -values at each -@ ?

value are very close together.  This plus the fact that the residual sum of squares is

so small, (0.000) to three decimal places, prevents us from seeing the magnitude of

the pure error relative to the magnitude of the lack of fit component.

      We can see this numerically when we do a lack-of-fit test, however, and the test

result is given below, in an abbreviated table, with more decimal places added so

that non-zero tabular entries are displayed.

                                            Analysis of Variance

               Source            DF         SS                 MS               F           P
               Residual Error   38     0.00017915
                    Lack of Fit     18   0.00017823   0.0000991       214.75     0.00
                    Pure Error      20   0.00000092   0.000000046

The test shows that the lack of fit is significant, as the -statistic is very large.-



     The test was possible in this instance because the -values were repeated. (At?

least one -value must be repeated for the test to be performed.)  When the -values? ?

occur at random, we can't expect to observe repeats, so other methods, such as the

method of nearest neighbors, must be employed in grouping the data and performing

an approximate test.

      Although the lack-of-fit test tells us that the model can be improved, the test

result does not tell us how to do so.  There are various types of residual plots that can

be employed for this purpose, and more than one plot should be used since there is

no guarantee that any one plot will give the appropriate message in a given

application.

       A commonly used plot is a plot of the standardized residuals against either  or?

@ »V V  (The plots will have the same general configuration when   is positive, and will�
�

be mirror images when   is negative.)   Of course one of these two plots will rarely�V
�

be needed in simple linear regression as the scatter plot will generally be suggestive

of the type of (nonlinear) term to add to the model.

      This is one of those rare occasions when the scatter plot is uninformative,

however.  Given below is the standardized residuals plot.
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      The graph strongly suggests that a quadratic term should be added to the model,

and when the term is added the results are as follows.

               The regression equation is
              = 0.000674 + 0.00732  0.000000 @ ? ^ ?

�

              Predictor        Coef          SE Coef               T           P
             Constant    0.0006736   0.0001079          6.24      0.000
                            0.00732059  0.00000158   4638.65    0.000?

                         -0.00000032  0.00000000     -64.95     0.000?
�

              S = 0.0002052   R-Sq = 100.0%    R-Sq(adj) = 100.0%

                                        Analysis of Variance

               Source                DF          SS          MS               F                 P
               Regression            2     15.6040      7.8020   1.853E+08   0.000
               Residual Error    37       0.0000      0.0000



               Total                    39     15.6040

               Source       DF     Seq SS
                 C3            1     15.6039
                 C4            1       0.0002

              Unusual Observations
              Obs        C3         C1                Fit        SE Fit        Residual    St Resid
                2          30    0.21956     0.22001     0.00007    -0.00045       -2.33R
              17        255    1.84646     1.84687     0.00005    -0.00041       -2.07R
              26          90    0.65739     0.65697     0.00004     0.00042        2.11R
              39        285    2.06177     2.06137     0.00007     0.00040        2.09R

               R denotes an observation with a large standardized residual

     The output shows that the quadratic term is statistically significant, although its

contribution is quite small.  Since statistically significant results won't always have

practical significance, it is desirable to look beyond these results.  With the linear

term only in the model, the average value of  | is@ ^ @ OV  0.00183, compared with

0.00016 when the quadratic term is additionally in the model.  There is thus

essentially one decimal place difference and subject-matter specialists say that this

degree of improvement is important (and thus practically significant) in calibration

work.

        As stated, no one residual plot can be expected to always give the correct signal.

Certain facts are known, however. In particular, since the raw residuals are

orthogonal to the s and to ? @V , a line fit through the points on a plot of the raw

residuals against either one of the  will have a slope of zero, and?s or against @V

when standardized residuals are used, the slope will be very close to zero.  This



means that a standardized residuals plot will generally correctly identify the need for

a term for which the configuration of plotted points that would suggest the term

would logically have a correlation of zero with the horizontal axis variable.  A

quadratic term falls into this category, but reciprocal and log terms do not, as a plot

that suggests the need for those terms would have standardized residuals that are

highly correlated with the horizontal axis variable.

        A plot that is more likely to detect the need for such a term is a partial residuals

plot, which is a plot of   against .  That plot fails for this example,� ] ? ?V�� � �

however, because the linear term overwhelms  with the result that the plot is almost�

exactly a straight line, which shows the strong linear relationship that we observed

earlier.

       See Chapter 5 of Ryan (1997) and Cook (1993, 1994) for information on other

types of residual plots and more information on when certain types of residual plots

should be effective.
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