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1 Introduction

This document provides guidance to users of the computer program RECIPE
(REGression Con�dence Intervals on PErcentiles). This program can provide
approximate one-sided tolerance limits (or, equivalently, con�dence intervals
on percentiles) for a wide range of situations where one is able to assume
a normal probability model. Arbitrary regression models with or without
a random e�ect can be analyzed using this program, and in this ability to
accommodate between-batch variability RECIPE is perhaps unique.

RECIPE is a general program for one-sided mixed model tolerance limits
for any mixed model having one or two components of variance, with no
interaction between �xed and random e�ects. However, this work was moti-
vated by the need for statistical methodology for use in determining design
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allowables for composite materials in aircraft applications, particularly in the
presence of between-batch variability. Most readers of this document will be
users of composite materials, so we will explain this program using the ex-
amples of A-basis and B-basis material properties (or design allowables). An
A-basis value is a (:99; :95) lower tolerance limit, and a B-basis value is a
(:90; :95) lower tolerance limit. Alternatively, A- and B- basis values can be
interpreted to be 95% lower con�dence bounds on the 1st and 10th popu-
lation percentiles, respectively. For more information on statistically-based
design allowables and their relation to tolerance limits, see Mil-Handbook-
17D (1994, Volume 1, Chapter 8) and Vangel (1996). This user's manual
is intended to be usable by engineers with little statistical training; conse-
quently (as in Vangel 1996) the examples are discussed with these engineers
in mind, and some background material is included which can be omitted by
the experienced statistician.

The theory underlying the method used is documented in Vangel (1995a,
1994) and will not be discussed here. Instead, we will illustrate the use of
this computer program through a series of representative examples.

2 One-Sided Tolerance Limits and Con�dence

Intervals on Percentiles

The present section is divided into two parts: the �rst part provides a precise
de�nition of one-sided tolerance limits and their relationship to con�dence
intervals on percentiles, the second part attempts to explain tolerance limits
in terms of the engineering application to design allowables. Obviously, the
statistician may want to read the �rst part carefully and skim the remainder,
while the opposite will likely be true for the engineer.

2.1 A Mathematical De�nition

Let U be a random variable, and assume that we are interested in interval
estimates of quantiles of U . Let T be a statistic based on a random sample
from U . A (�; ) lower tolerance limit is a random variable T such that a
proportion of at least � of the population of U is covered by the interval
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(T;1) with probability . That is,

Pr [Pr (U > T jT ) � �] = : (1)

One-sided upper tolerance limits are de�ned similarly (see the AZppendix).
We refer to � as the content and  as the con�dence .

Now, assume in addition that U denotes a N (�; �2) random variable,
where �2 = �2

b + �2
e is the sum of a between-group component of variance

�2
b and a within-group component of variance �2

e . For example, U might
represent the strength of a random specimen chosen from a random batch of
a material, where � = wT� may depend on covariates. The program RECIPE
calculates approximate (�; ) lower tolerance limits for U .

2.2 Statistically-Based Design Allowables

A design allowable for a material is the maximum value of stress or strain
at which one can be reasonably certain that failure will not occur. For
the design of structures for which weight is not a primary consideration,
allowables are typically calculated by dividing a stress level at which failure
is known to often occur by a su�ciently large constant (a safety factor)
(Gere and Timoshenko, 1984, p. 29). The structure is then designed so as to
ensure that the stresses (or strains, etc.) do not exceed the allowables for the
materials. No use is made of statistics in this general de�nition of allowable.
The strength of a material is regarded as a known constant, and this value is
divided by a safety factor, which may reect extensive engineering experience
in similar applications.

Material properties often exhibit considerable scatter, however, and this
is particularly apparent for many composite materials. Also, the use of de-
terministic safety factors can result in structures which are heavier than
they need be, an obvious drawback to their use in aerospace applications.
Consequently, the concept of design allowable has a precise statistical de�-
nition in the aircraft industry, established long ago in Mil-HDBK-5 (1987)
for metals, and carried over to the corresponding handbook for composites,
Mil-HDBK-17 (Volume 1, 1994). (What we refer to as `allowables' here are
called `material basis properties' in Mil-HDBK-17; for the present discussion
these terms can be regarded as equivalent.)

A B-basis design allowable, or material basis value, is de�ned to be a
95% lower con�dence limit on the 10th percentile of the population of a
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material property (usually strength, but sometimes ultimate strain). An A-
basis value is de�ned as a 95% lower con�dence limit on the 1st percentile of
a population; this more stringent value is typically used in situations where
failure of a component would cause structural failure.

It is helpful to begin by considering the simplest case. Based on strength
measurements for n identical specimens of a material, tested under identi-
cal experimental conditions, a B-basis is calculated. This calculation can
be done using RECIPE (see Example 1), though this scenario is so simple
that the calculations could actually be done by hand (e.g., Mil-HDBK-17,
1994, Volume 1, Section 8.5). We could plot a histogram of these values,
and we might imagine what this histogram would look like if we had many
(even in�nitely many) strength values. The histogram would likely approach
a smooth curve, which we call the population of strength values. This pop-
ulation has a 10th percentile, the value of which we will never know, since
we only have n specimens, and n is presumably quite small. Our B-basis
value tells us something about this percentile, however. A B-basis value has
the property that if we were to obtain n specimens over and over again, and
calculate many of these basis values, 95% of the time these (hypothetical) B-
basis values would be less than the unknown 10th population percentile. The
B-basis value thus provides a conservative estimate of the 10th percentile; we
say that it is less than this percentile with 95% con�dence.

Complications of at least three kinds can be introduced into these calcula-
tions. First, we don't know the functional form of this `smooth curve' which
we think of as being the population of material property values. We will
make the assumption that this curve is Gaussian (or `bell-shaped'); statisti-
cians would say that it has a `normal distribution'. Other models, such as
the Weibull distribution, are sometimes used, but at present only the nor-
mal distribution can be applied to the complicated `messy data' scenarios,
involving several batches, which are typical in applications.

Another common di�culty occurs when the population mean varies with
factors such as temperature, layup, and humidity, forcing the experimenter to
spread his testing resources rather thinly by testing only a very few specimens
at any one set of experimental conditions. Allowable curves (or surfaces) may
be required, for example with temperature as an independent variable. The
computations are likely to be too di�cult for hand or calculator calculations,
though RECIPE can provide the desired results fairly easily (Examples 2-5).

The third complication arises when we have data from several batches,
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and we are concerned with variability among these batches, and among fu-
ture batches which we will see during production. Our population here may
consist of the strength of a random specimen chosen from a random batch,
with the population variance being the sum of between-batch and within-
batch components. If we ignore the batches and pool the data, then we will
be acting as if the between-batch component of this variance is zero, and
hence underestimating the population variance. As a result, our allowables
could be too high.

The second and third di�culty discussed above often occur together when,
for example, data from several batches are obtained at several temperatures.
RECIPE can be used for these problems, as we will see in Example 4.

3 Regression Analysis

Testing is expensive, so it is not surprising that in industry one usually ob-
tains only a small amount of data for a �xed set of experimental conditions
(e.g. �ve room temperature dry unidirectional tensile strength measurements
on data from a single batch). If one chooses to determine material basis prop-
erties for given conditions using only data obtained at these conditions, then
one will often be faced with prohibitively low values because of the limited
data. However, if one is willing to assume that other sets of data on the
same material come from populations which di�er in their means, but have
the same variance, then regression analysis is an extremely powerful general
statistical technique which uses all of the data to determine material basis
values at each condition. In addition, if some of the conditions are continuous
variables such as temperature, one can interpolate or (with caution) extrapo-
late to estimate basis values for conditions for which no test data is available.
We relate the various datasets corresponding to di�erent conditions by a re-

gression model and make assumptions of independence, constant variance,
and normality. In return for these assumptions, we are able to make much
more e�cient use of the data than if we analyzed each condition separately;
however, if the assumptions do not approximately hold, regression methods
can lead to misleading results. So the use of any regression analysis pro-
gram, in particular RECIPE, must be accompanied by careful inspection of
the data to check the validity of assumptions. RECIPE is not a replacement
for general regression analysis software: it is a program which only calculates
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one-sided tolerance limits (in particular, material basis values), and the use
of RECIPE should be supplemented by data analysis using general-purpose
statistical software. A discussion of the practice of regression analysis, in-
cluding the interpretation and criticism of the results and the diagnosis and
treatment of the violation of assumptions is beyond the scope of this user's
guide. There are many textbooks on this topic at all levels (e.g., Box, et. al.
(1978), Chapter 14; Weisberg (1980)).

4 Regression Models

The objective of a regression analysis for material basis properties is to obtain
basis values for a particular response (e.g., tensile strength) as functions of
�xed factors (e.g., temperature, layup, and humidity). We will refer to the
measured response values as observations, and the values which describe the
conditions corresponding to these observations as covariates. For example,
if we assume a linear relationship between tensile strength and temperature,
then the mean strength at a temperature Ti is, in the limit of in�nitely many
observations at this temperature, equal to �0 + �1Ti. The constants �0 and
�1 are generally unknown, and must be estimated from the data. The values
that these constants multiply, here 1 and Ti, are covariates; together they
describe the �xed conditions under which the ith strength observation was
made.

Assume that the data being analyzed consist of n observations at l �xed
conditions (or levels), and number these conditions 1; 2; : : : ; l. In our ex-
ample of linear regression on temperature, we have l temperatures, and l
corresponding sets of covariates: ( 1; T1 ), ( 1; T2 ),: : :, ( 1; Tl ). We
need to indicate which �xed condition corresponds to each observation, so
let the �xed condition for the sth observation be p(s). We will also allow for
the fact that each observation is made on a specimen from one of m batches.
These batches are numbered 1; 2; : : : ;m, and q(s) indicates the batch cor-
responding to the sth observation. We will denote the observations by ys,
for s = 1; 2; : : : ; n, where the sth value comes from �xed level p(s) and from
batch q(s).

We assume that the fysg are a sample from a normal distribution with
mean

�p(s) = �1zp(s);1 + �2zp(s);2 + : : :+ �rzp(s);r; (2)
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where the fzp(s);ug;for 1 � p(s) � l and u = 1; : : : ; r, are known constants and
the f�ug are parameters to be estimated. For example, if we are assuming
that mean strength varies linearly with temperature, and if condition p(s) = 1
corresponds to 75 degrees, then

�1 = �1 + �275; (3)

so r = 2, z11 = 1, and z12 = 75.
We can never observe the means �p(s). Each data value consists of the

sum of �p(s) plus a random quantity bq(s)+ es, where bq(s) takes on a di�erent
value for each batch q(s), and es takes on a di�erent value for each observa-
tion. We assume that the fbq(s)g and fesg are random samples from normal
populations with means zero and variances �2

b and �2
e , respectively. We will

refer to �2
b as the between-batch variance, and to �2

e as the within-batch (or
error) variance. We can now express the data as

ys = �p(s) + bq(s) + es = �1zp(s);1 + : : :+ �rzp(s);r + bq(s) + es; (4)

where the fzp(s);ug are known, the f�ug are unknown �xed quantities, and
the fbq(s)g and fesg are random quantities with unknown variances. The
speci�cation (4) is called a regression model. Every regression analysis begins
with the choice of a regression model. In the remainder of this section, we
illustrate the construction of regression models with �ve examples. In the
following section we provide analyses for particular cases of each of these
examples, using actual graphite/epoxy strength data.

4.1 Example 1: Simple Random Sample

We begin with the simplest case of all: a simple random sample of n observa-
tions from a single batch at a �xed set of conditions. For this case, we have
l = 1 condition and m = 1 batch, so p(s) = q(s) = 1 for each s. We write
this model as

ys = �1 + es: (5)

Note that bq(s) does not appear in (5). We cannot estimate between-batch
variability with fewer than two batches, just as we cannot estimate a variance
with fewer than two observations.
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4.2 Example 2: Random E�ects ANOVA Model

Now assume that we have data on several batches, each tested under the
same set of �xed conditions. Since we have only one set of �xed conditions,
the model for this example has a constant mean, but now we have both
between-batch and within-batch components of variance. So l = 1, and

ys = �1 + bq(s) + es: (6)

Equation (6) is the usual random-e�ects ANOVA (or simply `ANOVA')
model of Mil-HDBK-17D (Volume 1, Section 8.5.4).

4.3 Example 3: Simple Linear Regression With Data

From a Single Batch

We return now to the situation where we have data from a single batch, so
that m = 1; but now we allow for several conditions, so that l > 1. To
�x ideas, assume that we have several sets of unidirectional tensile strength
data from a single batch, with each set being tested at a di�erent tempera-
ture, and with all other conditions held constant. Assume further that the
strength for this material is believed to vary linearly with temperature, at
least for temperatures within the range of the data. As in (5), we cannot es-
timate between-batch variability. The regression model appropriate for this
situation is:

ys = �1zp(s);1 + �2zp(s);2 + es; (7)

where zp(s);1 = 1 and zp(s);2 = ti, the ith test temperature.

4.4 Example 4: Simple Linear Regression With a

Random E�ect

If we have the same situation as in Section 4.3, except that we have data
from more than one batch, then we can introduce the bq(s) random batch
e�ect in the model, to get

ys = �1zp(s);1 + �2zp(s);2 + bq(s) + es: (8)
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4.5 Example 5: One-Way Mixed Model ANOVA: Ba-

sis Values With Data From Multiple Sources

Suppose that we have several batches of data from each of several manu-
facturers, and that they wish to combine their resources to determine basis
values. If we are absolutely certain that the manufacturing and testing are
identical for all of the data, then we can ignore the fact that the data came
from multiple sources. Often, however, there will be slight di�erences among
the manufacturers in the way the material was fabricated and/or tested. In
such cases, if we are not willing to assume that the variability between and
within batches are close to being the same for all manufacturers, then there
is no alternative to applying the usual ANOVA method (as in Section 4.2)
separately to each manufacturer's data. But if we are willing to assume that
each set of data exhibits the same variability (with a possibly di�erent mean
for each manufacturer), then all of the batches can be used to determine
a basis value for each manufacturer. These basis values will often be sub-
stantially higher, and closer together, than if each manufacturer had acted
alone.

To develop a regression model for this example, let the mean for the ith
manufacturer be �i. If there are l manufacturers, we have r = l unknown
�xed parameters �1, �2, : : : ; �l { in addition to the components of variance
�2
b and �2

e . Hence, the regression model is of the form

ys = �1zp(s);1 + : : :+ �rzp(s);r + bq(s) + es (9)

= �p(s) + bq(s) + es:

We have taken the zs to be zp(s);u = �p(s);u, where �p(s);u (the Kronecker-�)
equals one when p(s) = u, and zero otherwise. The �xed parameters are
�i = �i.

5 Examples

To illustrate the use of the program, we will now present an analysis for each
of the �ve examples of the previous section, using actual graphite/epoxy
tensile strength data. The models (5) and (6) can also be analyzed using
methods described in Mil-HDBK-17D (Volume 1, Sections 8.5.5 and 8.5.4,
respectively). The present approach reduces exactly to the Mil-HDBK-17D
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methods for these cases. The linear regression model without batch e�ects (7)
is an example of the regression model discussed in the Handbook (Volume
1, Section 8.5.8). The one-way mixed model (9) is also discussed in Mil-
HDBK-17D (Volume 1, Section 8.5.9), and RECIPE again essentially agrees
with the Handbook procedure for this special case. The regression model
with random e�ects (8) cannot be handled using the statistical methods
presently in Mil-HDBK-17D, though it is easily treated using RECIPE.

In order to use RECIPE for a particular problem, it is necessary to create
a �le which contains the data, the information necessary for the program to
construct the regression model, and a list of the covariate values at which
the basis value is to be evaluated. The �les for the �ve examples discussed in
this documentation are included with the software, and are named `ex1.dat',
`ex2.dat', : : :, `ex5.dat'. The format of these �les will become clear as we
discuss the examples.

5.1 Analysis for Example 1

For the simple random sample (5), the example dataset has observations on
�ve specimens from a single batch. The �le `ex1.dat' is

#

# RECIPE Example #1: Simple random sample

#

# -- For this example, we have 5 observations: all at the same

# fixed level and from the same batch. RECIPE is a very

# general program which is here used for a very simple

# example. This example might seem confusing because it

# is so special. If so, consider the more complicated

# examples, particularly Example #4. Ironically, the

# simpler examples may then be easier to understand.

#

# -- ntot, nlvl, nbch, npar, npts, prob, conf

#

5 1 1 1 1 .9d0 .95d0

#

# -- Fixed levels. Here nlvl=1 and npar=1; that is there is only

# one fixed level and one regression parameter (a constant mean),
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# so this part of the input consists of one row and one column,

# containing just the number `1'.

#

1

#

# -- Fixed level, batch number, response value. Note that there

# is only one level (nlvl=1) and one batch (nbch=1).

#

1 1 328.1174

1 1 334.7674

1 1 347.7833

# (this just shows that comments can be put anywhere: even among

# the data values. This is useful, for example, if a data value

# is to be removed from the analysis. Simply put a `#' at the

# beginning of the appropriate line, and decrease `ntot' by 1

# in the first noncomment line)

1 1 346.2661

1 1 338.7314

#

# -- Points at which to evaluate tolerance limit. Here the only fixed

# effect is a constant mean, so this part of the input is trivial.

1

Lines which begin with a `#' are comment lines which are ignored by the
program. Comment lines can be inserted anywhere, and are intended to
make RECIPE data �les self-documenting. The input to this program is
free-format, so it doesn't matter which column values are in, so long as they
are in the correct order and separated by spaces. The sole exception to this
is that comment lines must have a `#' in column 1.

The �rst non-comment line of any RECIPE �le has seven constants, to
which we give the mnemonics `ntot', `nlvl', `nbch', `npar', `npts', `prob', and
`conf'. The total number of observations (n) is `ntot', the number of �xed
levels (l) is `nlvl', the number of batches (m) is `nbch', and the number of
�xed parameters (r) is `npar'. It is necessary to specify the number of points
at which the basis values are to be determined. For example, if a linear
regression model relates strength to temperature, then a basis value can be
calculated at any number of temperatures, i.e. the temperatures at which
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basis values are determined need not correspond to values for which data is
available. So the �fth number on this line, `npts', speci�es the number of basis
values which are to be calculated. The sixth and seventh values, `prob' and
`conf', give the content and con�dence which are to be used. For purposes of
allowable calculations, one need only remember that `prob' should be .99d0
or .90d0, for A- and B-basis values, respectively, and that `conf' should be
.95d0.

In this example, we see that there are n = 5 observations, at l = 1 �xed
level, from m = 1 batch, with r = 1 �xed parameters, and that a single
B-basis value is to be calculated. (Since this corresponds to a simple random
sample, there is only one basis value which it makes sense to calculate.)

The next l = 1 noncomment lines specify the �xed levels; for this example
there is only one �xed level, and it is just the mean, so this part of the �le
has only one line with a `1' in it.

The following n = 5 uncommented lines each gives, from left to right, a
�xed level (p(s), here p(s) = 1), batch (q(s), here q(s) = 1), and observation
(strength ys), for s = 1; : : : ; 5.

The next npts=1 uncommented line gives the zs corresponding to each
point at which a basis value is to be calculated. Again, because this example
is a simple random sample, this part of the �le consists of only a single line
with a `1'.

We run RECIPE as follows:

recipe

Filename (without .dat extension) ?

ex1

RECIPE : One-Sided Random-Effect Regression Tolerance Limits

(Version 1.0, April 1995)

*** Simulated pivot critical value file ex1.crt not found.

Satterthwaite approximation will be used.

regini : Warning: between-batch variance cannot

be estimated from these data. Results

will be based on the assumption that the

between-batch variability is negligible.
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Probability Confidence Regression Tolerance Limit

0.90 0.95 339.133120 311.338667

The �rst two columns of the output indicate that a B-basis value has been
calculated. The third column gives the value of a point on the least squares
regression line (here just the sample mean), and the fourth column gives the
corresponding basis value (here the usual normal B-basis value for a single
sample of �ve specimens). The warning message reminds us that we cannot
estimate between-batch variability with data from a single batch, and that
consequently this basis value has been calculated under the assumption that
there is no between-batch variability.

There are two methods which RECIPE can use to calculate allowables.
One involves the use of a Satterthwaite approximation (Satterthwaite, 1946),
and the other requires using an auxilliary program SIMPVT in order to
obtain a quantile of a pivotal random variable for which the probability
distribution cannot be determined in analytical form. Usually, these two
methods will give very nearly the same answers, at least for material basis
value calculations. The simpler Satterthwaite approximation is therefore
recommended for general use. For more information, see Vangel (1995a) and
the Appendix.

5.2 Analysis for Example 2

For the one-way ANOVA model (6), the example data �le `ex2.dat' is:

#

# RECIPE Example #2: Basis value from a one-way ANOVA model

#

# -- This example has 31 observations in 6 batches, for which

# an ANOVA B-basis value is to be determined

#

# -- ntot, nlvl, nbch, npar, npts, prob, conf

31 1 6 1 1 .9d0 .95d0

#

# -- Fixed levels. Here we are fitting a one-way ANOVA model, so there

# is only one fixed level, and only one fixed parameter (the mean)
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# to estimate.

1

#

# -- Fixed level number, batch number, strength. Since we have

# only one fixed level, the first column is all ones. The

# second column gives the batch number, and the third column

# gives the strength values.

1 1 328.1174

1 1 334.7674

1 1 347.7833

1 1 346.2661

1 1 338.7314

1 2 297.0387

1 2 293.4595

1 2 308.0419

1 2 326.4864

1 2 318.1297

1 2 309.0487

1 3 337.0930

1 3 317.7319

1 3 321.4292

1 3 317.2652

1 3 291.8881

1 4 297.6943

1 4 327.3973

1 4 303.8629

1 4 313.0984

1 4 323.2769

1 5 312.9743

1 5 324.5192

1 5 334.5965

1 5 314.9458

1 5 322.7194

1 6 291.1215

1 6 309.7852

1 6 304.8499

1 6 288.0184
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1 6 294.1995

#

# -- Points at which to evaluate tolerance limit. For the one-way

# ANOVA model used here, there is only one point at which the

# evaluation can be done: it corresponds to the one fixed

# level of the model.

1

The output is similar in form to the example discussed above:

recipe

Filename (without .dat extension) ?

ex2

RECIPE : One-Sided Random-Effect Regression Tolerance Limits

(Version 1.0, April 1995)

*** Simulated pivot critical value file ex2.crt not found.

Satterthwaite approximation will be used.

Probability Confidence Regression Tolerance Limit

0.90 0.95 316.010884 271.672860

Note, however, that the warning message that was output for Example 1
doesn't appear here. We are able to estimate the between-batch variability
since we have six batches, and the fourth column gives the one-way ran-
dom e�ects ANOVA basis value, instead of the single sample basis value of
Example 1.

5.3 Analysis for Example 3

For an example of a regression model with data from a single batch, we have
data on tensile strength obtained at -67 and 75 degrees Fahrenheit. The �le
`ex3.dat' is:

#

# RECIPE Example #3: Regression model with data from a single batch
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#

# -- This dataset has 11 observations at two fixed levels. The

# data come from 1 batch, there are two fixed parameters to

# estimate (the slope and intercept of a straight line), and

# a B-basis value is to be calculated at 7 points on this line.

#

# -- ntot, nlvl, nbch, npar, npts, prob, conf

11 2 1 2 7 .9d0 .95d0

#

# -- We are fitting a model y=a+bT at two levels: T=75 degrees and

# T=-67 degrees. The first column corresponds to `a' in this

# linear equation; the second column corresponds to `b'. Note

# that these values need not be given in any special order,

# for example (1, -67) need not come before (1, 75). The

# important thing is that the order of the rows given here

# must correspond to the level indicator, p(s), given with each

# response value.

1 75

1 -67

#

# -- Now we have the 11 observations. The first column is the

# level (=1 for 75 degrees, =2 for -67 degrees), the second

# column is the batch (always 1), and in the third column are

# the strength observations.

#

1 1 328.1174

1 1 334.7674

1 1 347.7833

1 1 346.2661

1 1 338.7314

1 1 340.8146

2 1 343.5855

2 1 334.1746

2 1 348.6610

2 1 356.3232

2 1 344.1524

#
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# -- Finally, we give the seven points at which basis

# values are to be determined. These correspond

# to seven different temperatures -67,...,50. Note

# that the first column of ones is required because

# of the intercept in the regression model

1 -67

1 -50

1 -25

1 0

1 25

1 50

1 75

Note that the �rst noncomment line of `ex3.dat' indicates (in order, from
left to right) that we have 11 observations in all, that the data are at 2 �xed
levels, that all of the data are from a single batch, that the �xed part of
the model involves 2 unknown parameters (actually, it turns out that we are
�tting a straight line), that we will evaluate the basis value curve at 7 points,
and that the tolerance limits to be calculated are B-basis values.

This example illustrates the common situation where a material basis
value is required as a function of temperature. We have data at two �xed
levels, corresponding to the temperatures -67 and 75 degrees, and we would
like to determine basis values at the 7 temperatures -67, -50, -25, 0, 25,
50 and 75 degrees. The intercept of the linear function is constant for all
temperatures, so the �rst column equals 1 for the 2 rows which give the
levels of the �xed e�ect, as well as the 7 rows which give the points at which
the basis values are to be evaluated. The output from running RECIPE on
these data is

recipe

Filename (without .dat extension) ?

ex3

RECIPE : One-Sided Random-Effect Regression Tolerance Limits

(Version 1.0, April 1995)

*** Simulated pivot critical value file ex3.crt not found.

Satterthwaite approximation will be used.
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regini : Warning: between-batch variance cannot

be estimated from these data. Results

will be based on the assumption that the

between-batch variability is negligible.

Probability Confidence Regression Tolerance Limit

0.90 0.95 345.379340 325.887099

0.90 0.95 344.665104 325.747683

0.90 0.95 343.614756 325.338699

0.90 0.95 342.564409 324.619436

0.90 0.95 341.514062 323.538853

0.90 0.95 340.463714 322.102027

0.90 0.95 339.413367 320.366619

Each of the last seven lines gives a point on the regression line, and the
corresponding point on the B-basis curve, for each of the seven sets of inde-
pendent variables (seven temperatures) in the �le `ex3.dat'. Note that there
is a warning message to remind us that we cannot estimate between batch
variability using data from a single batch. The basis values calculated are
valid under the assumption that the between-batch variability is zero (or at
least negligible).

5.4 Analysis for Example 4

For the fourth example, we have data at the same two temperatures, but
now with several batches at each temperature. The �le `ex4.dat' is

#

# RECIPE Example #4: Regression model with data from several

# batches

#

# -- In this example, we have 72 strength observations on data

# from 8 batches. A straight-line regression is fit with

# two fixed levels (temperatures). B-basis values are calculated

# for 7 points along this curve.

#
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# -- ntot, nlvl, nbch, npar, npts, prob, conf

72 2 8 2 7 .9d0 .95d0

#

# -- There are two fixed levels, corresponding to

# 75 and -67 degrees.

1 75

1 -67

#

# -- The following 72 rows give the fixed level in the

# first column, the batch in the second column, and the

# strength observation in the third column.

1 1 328.1174

1 1 334.7674

1 1 347.7833

1 1 346.2661

1 1 338.7314

1 2 297.0387

1 2 293.4595

1 2 308.0419

1 2 326.4864

1 2 318.1297

1 2 309.0487

1 3 337.0930

1 3 317.7319

1 3 321.4292

1 3 317.2652

1 3 291.8881

1 4 297.6943

1 4 327.3973

1 4 303.8629

1 4 313.0984

1 4 323.2769

1 5 312.9743

1 5 324.5192

1 5 334.5965

1 5 314.9458

1 5 322.7194
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1 6 291.1215

1 6 309.7852

1 6 304.8499

1 6 288.0184

1 6 294.1995

2 1 340.8146

2 1 343.5855

2 1 334.1746

2 1 348.6610

2 1 356.3232

2 1 344.1524

2 2 308.6256

2 2 315.1819

2 2 317.6867

2 2 313.9832

2 2 309.3132

2 2 275.1758

2 3 321.4128

2 3 316.4652

2 3 331.3724

2 3 304.8643

2 3 309.6249

2 3 347.8449

2 4 331.5487

2 4 316.5891

2 4 303.7171

2 4 320.3625

2 4 315.2963

2 4 322.8280

2 5 340.0990

2 5 348.9354

2 5 331.2500

2 5 330.0000

2 5 340.9836

2 5 329.4393

2 7 330.9309

2 7 328.4553
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2 7 344.1026

2 7 343.3584

2 7 344.4717

2 7 351.2776

2 8 331.0259

2 8 322.4052

2 8 327.6699

2 8 296.8215

2 8 338.1995

#

# -- The following 7 rows give the points at which

# the B-basis value is to be calculated: these

# correspond to 7 temperatures -67,-50,...,75.

1 -67

1 -50

1 -25

1 0

1 25

1 50

1 75

A run of RECIPE produces the output:

recipe

Filename (without .dat extension) ?

ex4

RECIPE : One-Sided Random-Effect Regression Tolerance Limits

(Version 1.0, April 1995)

*** Simulated pivot critical value file ex4.crt not found.

Satterthwaite approximation will be used.

Probability Confidence Regression Tolerance Limit

0.90 0.95 327.537310 286.895095

0.90 0.95 326.157386 285.580736

0.90 0.95 324.128085 283.557672

0.90 0.95 322.098785 281.470595
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0.90 0.95 320.069485 279.335972

0.90 0.95 318.040184 277.119935

0.90 0.95 316.010884 274.783636

The input and output �les have the same form as for Example 3. The
important distinction between Example 3 and Example 4 is that the basis
values in Example 4 account for between-batch variability, while in Example
3 we calculated basis values strictly valid for only a speci�c batch. Note also
that the warning message that appeared in Example 3 does not show up
here, since we have data from several batches.

5.5 Analysis for Example 5

In this example, we have data on several batches of the same material from
each of two manufacturers. We assume that the variability is the same for
each manufacturer, so that model (9) applies, with l = r = 2. However,
there was an important di�erence in processing, so that one would expect
the means to be di�erent for each manufacturer. The data �le `ex5.dat' is

#

# RECIPE Example #5: Basis values using data from multiple sources

#

# -- In this example, we have five batches of data: three from

# one source, and two from a second source. We would like

# to use all five batches of data to get a tolerance limit

# for each source.

#

# -- ntot, nlvl, nbch, npar, npts, prob, conf

#

15 2 5 2 2 .9d0 .95d0

#

# -- The fixed part of this model is a different mean for

# each of the two sources

1 0

0 1

#

# -- Here are the 15 data values. Column 1 indicates the
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# fixed level (data source), and column 2 indicates the

# number of the batch. The third column gives the strength

# values.

1 1 75.8

1 1 78.4

1 1 82.0

1 2 68.8

1 2 70.9

1 2 73.5

1 3 74.5

1 3 74.8

1 3 78.8

2 4 81.3

2 4 87.7

2 4 89.0

2 5 88.2

2 5 91.2

2 5 94.2

#

# -- The tolerance limit are to be calculated at two

# points, which correspond to the two sources. So

# we just repeat the two lines for the fixed part

# of the model here.

1 0

0 1

The �le `ex5.dat' tell us that there are 15 data values, and that we are
using a regression model with r = 2. The �rst column of the 15 rows of
`ex5.dat' which contain data indicates the �xed level, the second column for
these rows indicates the batches, and the third column gives the strength
values. The �xed part of the model has two means, one for each data source.
So the rows which give the �xed levels, and the rows which give the points
at which basis values are to be evaluated, have a 1 in one column and a 0
in the other. Contrast this with Examples 1 and 2, where there is only 1
�xed level, and so the corresponding rows have just 1 column having a single
value, 1.

The RECIPE output for this example is:
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recipe

Filename (without .dat extension) ?

ex5

RECIPE : One-Sided Random-Effect Regression Tolerance Limits

(Version 1.0, April 1995)

*** Simulated pivot critical value file ex5.crt not found.

Satterthwaite approximation will be used.

Probability Confidence Regression Tolerance Limit

0.90 0.95 75.277778 59.401536

0.90 0.95 88.600000 71.902179

The B-basis values are therefore 59.40 and 79.90 for the two manufacturers.
As a simple exercise in using this program, one can show (following Example
2, using the data from Example 5) that the if each manufacturer had used
their own data alone, then the basis values would be 52.8 and 34.6, respec-
tively. Note that the mixed model (9) gives basis values which are higher
and closer together. In particular, the very low value 34.6 is due to the fact
that the second manufacturer only has data on two batches.

6 Batches, Panels, and Confounding

RECIPE is based on the assumption of at most two sources of variability;
we have called these `between-batch variability' and `within-batch variabil-
ity'. In the manufacturing of composites, however, there are typically at
least three sources of variability. For composites made from prepreg, the
additional source is due to the fact that several specimens are typically man-
ufactured together as a `panel', consequently we will refer to this third source
as `between-panel' variability.

When we have data on a material from several batches, but at only one
set of �xed conditions (e.g., Example 2) we cannot estimate batch and panel
variabilities separately. Whenever we obtain data from a new panel, that
data also comes from a di�erent batch. (In statistical terminology, we say
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the batch and panel variances are confounded.) So, what we call `between-
batch variability' in such cases is actually the sum of the between-batch and
between-panel variances. Unless the between-panel variability is negligible,
we will over-estimate the between-batch variance in such cases. This can
result in material basis properties that are lower than they should be.

Next, consider the situation where data are available from several batches,
at more than one set of �xed conditions (e.g., Example 4). If we assume
also that data at di�erent conditions from the same batch are from di�er-
ent panels, then we are able, in principle, to estimate the between-batch
and between-panel variances separately. However, since we are not able to
include both of these sources of variability in our regression models, the
between-panel variance is confounded, not with the between-batch variance
as above, but with the within-batch variance. This can result in material
basis values that are somewhat higher than they should be, but this is likely
to be a less serious problem than the case where panel and batch variances
are confounded, for several reasons. Perhaps the most important of these is
that of the sources of variability, that due to batches is our primary concern,
and this is now being treated appropriately. Another reason is that there
is typically considerable variability within panels, and if the between-panel
variance is small with respect to this third source of variability, then the
material basis properties will not be substantially higher than they should
be.

7 Conclusion

In this document, we have illustrated the use of a computer program, RECIPE,
for determining one-sided normal tolerance limits for mixed models having
two variance components. Since our primary audience is users of composite
materials, the focus has been on the application of this program to deter-
mining material basis properties, and ultimately design allowables, for com-
posite materials. To some extent, these notes are self-contained; there is a
brief discussion of regression models, and some discussion of the concept of
confounding, for example. More background information is provided in the
tutorial article Vangel (1996). However, the routine user of this program
should acquire at least an elementary knowledge of statistics at the level of
Box, et. al (1978), and Weisberg (1980), or else consult periodically with
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someone knowledgeable in this �eld. Also, there has been no discussion here
of the theoretical foundation of the algorithm implemented in this program.
Material on this topic can be found in technical articles (Vangel 1995a, 1994).
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8 Appendix: Advanced Topics

In this section, some special topics are discussed which may be of interest,
particularly to users of this program who are interested in applications other
than material design allowables. Issues discussed here include checking the
actual con�dence level by simulation, an improvement over the Satterthwaite
approximation for highly unbalanced datasets, upper tolerance limits, and
two-sided con�dence limits on quantiles. This section assumes a higher level
of statistical expertise than most of the rest of this manual.

8.1 SIMCOV: Examining the Actual Con�dence Level

If the between-batch variance is zero and one knows this to be the case,
then tolerance limits provided by RECIPE will be exact. However, when the
possibility of between-batch variability is allowed for, the actual con�dence
level will depend on the ratio of between to within batch variances �2

b=�
2
e , or,

equivalently, on the intraclass correlation � = �2
b=(�

2
b + �2

e). The intraclass
correlation is the correlation between observations from the same batch. It is
more convenient to use � than the variance ratio, because it assumes values
in the �nite interval [0; 1].

The nuisance parameter � is unknown, and there are often too few batches
to be able even to estimate it very well. We would like to have a tolerance
limit procedure for which the actual con�dence level equals the nominal level,
whatever � might be. This goal is probably unattainable in general, although
one can come extremely close for certain very simple regression models (see
Vangel 1992). This di�culty is analogous to the well-known Behrens-Fisher
problem concerning the two-sample test for equality of means in the presence
of variances in unknown ratio. However, RECIPE provides tolerance limits
for which the con�dence levels usually do not depend strongly on �, and for
which the actual con�dence is generally fairly close to the nominal level.

In order to determine how close the actual con�dence level corresponding
to the RECIPE algorithm is to the nominal level, it is necessary to simulate.
This is because the actual con�dence level depends on the model matrix
and on the points on the regression surface at which the tolerance limits are
calculated, which will be di�erent for di�erent applications. The program
SIMCOV is provided to simulate the actual con�dence. It takes as input
the same �le which is used by RECIPE, and it provides con�dence levels for
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various levels of � for each point at which tolerance limits are to be calculated.
One can expect SIMCOV to show that the RECIPE intervals are some-

what conservative when � is near zero, somewhat anticonservative for in-
termediate values of �, and nearly exact for � = 1. For highly unbalanced
datasets, the con�dence may di�er substantially from the nominal level when
� = 1 (for an example, see Vangel 1995b). This indicates that the Satterth-
waite approximation is not adequate, and that improved performance can be
obtained by replacing the Satterthwaite value with the appropriate quantile
of a simulated pivotal random variable. By doing this, one can attain ex-

actly the nominal con�dence level when � = 1 (to within the accuracy of the
simulated pivotal quantile), and this will typically improve performance for
intermediate values of � as well.

As an example, if SIMCOV is applied to the input �le for Example 5,
something resembling the following output will result:

Filename (without '.dat' extension) ?

ex5

SIMCOV : One-Sided Random-Effect Regression Tolerance Limits

(Version 1.0, April 1995)

*** Simulated pivot critical value file ex5.crt not found.

Satterthwaite approximation will be used.

Number of simulation replicates ?

5000

Integer seed ?

32

Number of values for intraclass correlation ?

11

1= use same random numbers for each rho

0= use different random numbers for each rho ?

0

rho confidence
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0.0000 0.9646

0.0000 0.9686

0.1000 0.9550

0.1000 0.9578

0.2000 0.9494

0.2000 0.9470

0.3000 0.9482

0.3000 0.9504

0.4000 0.9444

0.4000 0.9364

0.5000 0.9384

0.5000 0.9432

0.6000 0.9378

0.6000 0.9350

0.7000 0.9310

0.7000 0.9368

0.8000 0.9344

0.8000 0.9322

0.9000 0.9422

0.9000 0.9448

1.0000 0.9516

1.0000 0.9522

For � = 0; :1; : : : ; 1, the actual con�dence was obtained from 5000 simulated
regressions. The two values given for each � correspond to the two points at
which the tolerance limit is to be calculated. This example data �le is for a
(.90, .95) lower tolerance limit, and it is clear that the nominal con�dence of
.95 is nearly attained for all �. Note that if N is the number of simulations
and the actual and nominal con�dences are indeed equal, then one would ex-
pect the simulation results to usually fall within the two-standard-deviation
interval

 � 2

s
(1 � )

N
; (10)

where  is the nominal con�dence. For this example,  = :95 and the interval
(10) is (:944; :956).
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8.2 SIMPVT: An Improvement on Satterthwaite's Ap-

proximation for Highly Unbalanced Data

Usually, SIMCOV will demonstrate that RECIPE will provide con�dence
levels reasonably close to the nominal level. However, for unbalanced models
we can improve on the Satterthwaite tolerance limits if we are willing to
do more work. If RECIPE �nds a �le with a `.crt' extension, then it will
read the critical values from that �le, rather than using a Satterthwaite
approximation. The program SIMPVT simulates the pivotal random variable
for � = 1 and creates a `.crt' �le for use by SIMCOV and by RECIPE. An
example will help illustrate the use of SIMPVT.

An unbalanced dataset was created from Example 5 by deleting four
values: two from batch 1 and one each from batches 4 and 5. The new input
�le, called `ex5a.dat' follows:

#

# RECIPE Example #5a: Basis values using data from multiple sources

# This is an `unbalanced version' of Example #5 in which four

# values have been deleted: two from batch 1, and one each from

# batches 4 and 5. Note that `ntot' has been changed from 15 to 11.

#

# -- In this example, we have five batches of data: three from

# one source, and two from a second source. We would like

# to use all five batches of data to get a tolerance limit

# for each source.

#

# -- ntot, nlvl, nbch, npar, npts, prob, conf

#

11 2 5 2 2 .9d0 .95d0

#

# -- The fixed part of this model is a different mean for

# each of the two sources

1 0

0 1

#

# -- Here are the 15 data values. Column 1 indicates the

# fixed level (data source), and column 2 indicates the
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# number of the batch. The third column gives the strength

# values.

1 1 75.8

# 1 1 78.4

# 1 1 82.0

1 2 68.8

1 2 70.9

1 2 73.5

1 3 74.5

1 3 74.8

1 3 78.8

2 4 81.3

2 4 87.7

# 2 4 89.0

2 5 88.2

2 5 91.2

# 2 5 94.2

#

# -- The tolerance limit are to be calculated at two

# points, which correspond to the two sources. So

# we just repeat the two lines for the fixed part

# of the model here.

1 0

0 1

The actual con�dence that RECIPE will achieve for this dataset with the
Satterthwaite approximation for � = 0; :5; 1 are determined by SIMCOV:

simcov

Filename (without '.dat' extension) ?

ex5a

SIMCOV : One-Sided Random-Effect Regression Tolerance Limits

(Version 1.0, April 1995)

*** Simulated pivot critical value file ex5a.crt not found.

Satterthwaite approximation will be used.
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Number of simulation replicates ?

25000

Integer seed ?

12

Number of values for intraclass correlation ?

3

1= use same random numbers for each rho

0= use different random numbers for each rho ?

0

rho confidence

0.0000 0.9681

0.0000 0.9668

0.5000 0.9421

0.5000 0.9430

1.0000 0.9574

1.0000 0.9566

When � = 1 the actual con�dence, although probably acceptably close to the
nominal .95, is well outside the two-standard-deviation limit of (:947; :953).

SIMPVT is now used to produce a critical value �le `ex5a.crt' which can
be used instead of the Satterthwiate approximation. Since the SIMCOV has
shown that the actual con�dence level at � = 1 which we want to improve
on is already close to .95, we must determine the pivotal quantile quite ac-
curately in order to see any improvement in the con�dence level. So we will
have SIMPVT obtain the desired quantiles from 1,000,000 simulated values
of the pivotal random variable.

simpvt

Filename (without '.dat' extension) ?

ex5a

Number of simulation replicates ?

1000000

Integer seed ?

23
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SIMPVT : One-Sided Random-Effect Regression Tolerance Limits

(Version 1.0, April 1995)

Simulated critical values

Number of values = 2

Number of replicates = 1000000

Seed = 23

Input file = ex5a.dat

Output file = ex5a.crt

5.293335957447922

5.525013667521424

The two numbers printed out by SIMPVT are the critical values correspond-
ing to the two points at which tolerance limits are to be calculated; they have
been written to the new �le `ex5a.crt'.

Now we run SIMCOV again to see how much improvement we've realized.
It helps to use the same seed as in the previous run of SIMCOV in order to
make it easier to discern any improvement.

simcov

Filename (without '.dat' extension) ?

ex5a

SIMCOV : One-Sided Random-Effect Regression Tolerance Limits

(Version 1.0, April 1995)

*** Simulated pivot critical values from file ex5a.crt will be used.

Number of simulation replicates ?

25000

Integer seed ?

12

Number of values for intraclass correlation ?

3

1= use same random numbers for each rho

0= use different random numbers for each rho ?
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0

rho confidence

0.0000 0.9678

0.0000 0.9664

0.5000 0.9405

0.5000 0.9411

1.0000 0.9499

1.0000 0.9497

Note that SIMCOV uses the `.crt' �le this time, and that the con�dence
when � = 1 is very nearly exactly the nominal level.

How much of a di�erence will this make in the actual (:90; :95) lower
tolerance limits? To see this, RECIPE was run with the `.crt' �le, the last
three characters in this �le name were changed, and RECIPE was run again.
The results are

recipe

Filename (without .dat extension) ?

ex5a

RECIPE : One-Sided Random-Effect Regression Tolerance Limits

(Version 1.0, April 1995)

*** Simulated pivot critical values from file ex5a.crt will be used.

Probability Confidence Regression Tolerance Limit

0.90 0.95 73.871429 60.316295

0.90 0.95 87.100000 72.952700

and

recipe

Filename (without .dat extension) ?

ex5a
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RECIPE : One-Sided Random-Effect Regression Tolerance Limits

(Version 1.0, April 1995)

*** Simulated pivot critical value file ex5a.crt not found.

Satterthwaite approximation will be used.

Probability Confidence Regression Tolerance Limit

0.90 0.95 73.871429 59.714960

0.90 0.95 87.100000 72.458949

respectively. For more theoretical information on this topic, see Vangel
(1995a).

8.3 Upper Tolerance Limits

Because the application which motivated the development of this methodol-
ogy is to lower tolerance limits, and because it was important to make the
software as easy-to-use for non-statisticians as possible, the RECIPE software
must be modi�ed slightly in order to calculate upper tolerance limits.

An upper tolerance limit, as calculated by RECIPE, is a statistic of the
form

L = wT �̂ �KS; (11)

where �̂ is a vector of estimated regression coe�cients, w is a vector of con-
stants which determines the point on the regression surface at which a toler-
ance limit is to be determined, S is the residual standard deviation, and K
is a statistic which depends on the estimated variance ratio. It is not hard
to show that if (11) provides a (�; ) lower tolerance limit, then

U = wT �̂ +KS (12)

will be a (1��; 1� ) upper tolerance limit. Therefore, to calculate a (�; )
upper tolerance limits, provide 1�� and 1� as the content and con�dence
in the input �le, and modify the source code of RECIPE by changing the
sign of the tolerance limit factor. Speci�cally, subroutine `regdat' concludes
with the lines

t (i) = xm(i) -tfct*sqrt(rmsa)

10 continue
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return

end

The sign on `tfct' should be changed to give

t (i) = xm(i) +tfct*sqrt(rmsa)

10 continue

return

end

Of course, it is trivial to modify the program to allow the use to specify either
upper or lower tolerance limits in the input �le, and this will probably be a
feature in the next version of the software.

8.4 Con�dence Limits on Quantiles

It is obvious from the de�nition of a one-sided tolerance limit that a (�; )
lower tolerance limit is a 100 percent lower con�dence limit on the 100(1��)
percentile, and that a (�; ) upper tolerance limit is a 100 percent upper
con�dence limit on the 100� percentile of the population. It is easy to show
that two one-sided tolerance limits can be constructed to provide any desired
two-sided con�dence limits on any population quantile.

To be precise, let B1 and B2 be lower tolerance limits with con�dences
(1 + )=2 and (1� )=2, respectively. Then, since for tolerance limits of the
form calculated by RECIPE B1 is always less than B2, the random interval
[B1; B2] provides a 100 percent two-sided con�dence interval on the 100(1�
�)th population percentile. Hence, one-sided tolerance limits can provide
both one- and two-sided con�dence intervals on quantiles.
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