
NISTIR 6592

Conformance Testing
of

Object-Oriented Components
Specified by

State/Transition Classes

by

Leonard Gallagher
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg MD 20899-8970, USA

LGallagher@nist.gov

National Institute of Standards and Technology
Information Technology Laboratory

Gaithersburg, MD 20899, USA

May 19, 1999

-ii-

Abstract

In object-oriented software development, a class is the basic unit of semantic abstraction,
a component is a closely related collection of classes, and a system is a collection of
components designed to solve a problem. An object is an instance of a class. Each
object consists of state and behavior, where state is determined by the values of state
variables identified in the class definition, and behavior is determined by methods (i.e.
functions or procedures), defined in the class, that operate on one or more object
instances to read or modify their state variables. Objects communicate by sending
messages to one another, where a message is a request to invoke one of the recipient
object’s methods. Conformance testing of object-oriented software is often done in three
stages: unit testing, to ensure that the individual methods of a class are properly defined
over all possible object instances; component testing, to ensure that methods restricted to
the component under test operate as specified by rules of how the component should
behave and that messages to external objects are properly sent; and system testing, to
ensure that the entire system behaves as specified by some overall system functional
specification. Both component testing and system testing rely heavily on integration
testing, which ensures that messages from objects in one class or component are sent and
received in the proper order and have the intended effect on the state of external objects
that receive the messages. This new work focuses on integration testing. It is strongly
influenced by the work of Hong, Kwon, and Cha, who model a single class as a finite
state machine, transform that representation into a data flow graph that explicitly
identifies the definitions and uses of each state variable of the class, and then apply
conventional data flow coverage criteria and testing techniques to produce a collection of
abstract test cases that can be used to test conformance of the given class to its functional
specification. This paper extends those ideas to an arbitrary number of classes and
components. It introduces flexible representations for message sending and receiving
among objects and allows parallel processing among any, or all, classes and components.
Our approach relies on finite state machines, database modeling and processing
techniques, and algorithms for analysis and traversal of directed graphs. A prototype
implementation of the approach demonstrates its effectiveness on non-trivial, real-world
problems.

Keywords: (Conformance testing; data flow graph; data modeling; finite state machine;
object-oriented; software testing; statistical methods)

-1-

1 Introduction

Conformance testing of object-oriented software is a
difficult problem because the software being tested is often
constructed from a combination of previously written, off-
the-shelf components with some new components
developed to satisfy new requirements. The previously
written components are often “sealed” so that source code is
not available, yet objects in the new components will
interoperate via messages with objects in the existing
components. Software conformance testing is the act of
determining whether or not a software product conforms to
a functional specification, where the functional specification
is a set of rules that the product must satisfy. The goal of
this paper is to provide conformance testing techniques for
new components to be integrated into an existing software
system.

We assume that each component is object-oriented, that is,
it consists of a collection of object classes. In object-
oriented software development, a class is the basic unit of
semantic abstraction, a component is a closely related
collection of classes, and a system is a collection of
components designed to solve a problem. An object is an
instance of a class. Each object consists of state and
behavior, where state is determined by the values of state
variables identified in the class definition, and behavior is
determined by methods (i.e. functions or procedures),
defined in the class, that operate on one or more object
instances to read or modify their state variables. The
behavior of an object when acted upon by a method is the
effect the method has on the state variables of the object.

If the states of an object are represented by a finite state
machine, then the effect of the method can be captured as a
set of transition rules. Thus finite state machines are often
used for class specification in object-oriented analysis and
design [3,4,5,14,19]. Objects within each class may pre-
exist, as is often the case with off-the-shelf components, or
the component interface may provide access to the
constructor methods of a class for new object creation. The
behavior of a component is specified by the behavior of its
constituent classes. The public interface to a component is
a list of publicly accessible methods from the classes within
the component. A state/transition specification for a class
is the set of state transition rules for each method that is
visible in the class’s public interface. Given a
state/transition specification for each component in a
software system, our goal is to construct an abstract set of
tests, i.e. an abstract test suite, that can be used to construct
an executable test suite for determining if an
implementation of a software system conforms to its
functional specification.

We follow the lead of Hong, et al. [10] and use definitions
from Brooch [2] and Rumbaugh, et al. [18] to characterize

an object as something that has state, behavior, and identity,
and to characterize an object’s class in terms of the states,
events, and transitions of a finite state machine. In a finite
state machine, a transition is a change of state caused by an
event. When an event is received, the next state depends on
the current state as well as the event. For a class, a state is a
predicate on the state variables of the class, an event is an
invocation of one of the class methods on an object instance
of the class, and a transition is any change of state caused
by the method invocation. For an individual object
instance, a transition is composed of a source state, a target
state, a method applied to that instance, a guard, i.e. a
condition that must be satisfied before the transition can
occur, and an action, i.e. operations that reference or
manipulate the state variables of the given object or send
messages to itself or other objects in the system.

This research began as an attempt to determine a sample
space for data flow analysis in object-oriented software so
that software testing by statistical methods [1] could be
applied. The paper describes a process that begins with
state/transition specifications for each class in an object-
oriented software system, defines the relevant transitions for
a specific component of that system, translates the relevant
transitions into a data flow graph with nodes and edges
labeled for variable definition and usage, and concludes
with selection of a set of paths that constitute an abstract
test suite. Using statistical methods, one can then choose an
executable test suite from the abstract test cases for
determining, within a given confidence interval, whether a
software product conforms to its specification.

In anticipation of the application of this process to
moderately large software systems, we define database
representations for the structures at each step. The
attributes and constraints of classes and methods are
modeled as attributes and constraints of tables in a relational
database. In this manner, mathematical specifications over
the class properties translate to database operations. Section
2 presents a non-trivial automobile system as an example,
Section 3 gives the initial database representations for
state/transition specification of the classes, Section 4
defines the transitions relevant to a given component of the
software system, Section 5 describes the associated data
flow graph, Section 6 describes variable definition, variable
usage, and their representation as tables, Section 7 defines
data flow path coverage, and Section 8 describes the
selection of abstract test cases. The Conclusions discuss
some related work and follow-on directions.

2 Automobile example

Consider an automobile control system. The software
consists of the following existing components:
Acceleration, Brakes, Clutch, Engine, InstrumentPanel, and
SystemControl. Suppose a new component, CruiseControl,

-2-

Figure 1 — Class-to-Class Data Flow

ClassId = ClassId
FunId = FunId

ClassId = ClassId

ClassId = ClassId
StateId = TargetId

ClassId = ClassId
StateId = SourceId

ClassId = ClassId

ClassId = ClassId

Function
ClassId Char(3) not null
FunId Char(3) not null
Avail Char(3) not null
ClassAlias Varchar(18) not null
FunName Varchar(21) not null
InputType Varchar(40) null
ReturnType Varchar(40) not null
IsInherited Char(1) null
Effect Char(3) null
Description Varchar(255) null

Class
ClassId Char(3) not null
ClassAlias Varchar(18) not null
ClassName Varchar(18) not null
ComponentName Varchar(18) not null
SystemName Varchar(18) not null
Description Varchar(255) null

State
ClassId Char(3) not null
StateId Char(3) not null
ClassAlias Varchar(18) not null
StateName Varchar(18) not null
DefnPredicate Varchar(255) not null

Transition
ClassId Char(3) not null
TranId Char(4) not null
ClassAlias Varchar(18) not null
SourceId Char(3) not null
TargetId Char(3) not null
FunId Char(3) not null
Type Char(1) null
IsFeasible Char(1) null
Guard Varchar(255) not null
Action Varchar(255) null

Variable
ClassId Char(3) not null
VarId Char(3) not null
ClassAlias Varchar(18) not null
VariableName Varchar(18) not null
DataType Varchar(40) not null
Default Varchar(25) null
Constraint Varchar(255) null
IsInherited Char(1) null
Description Varchar(255) null

Figure 2 — Relational Database Schema

is to be added to the system with the prerequisite that none
of the existing components, except SystemControl, can be
modified. The only modifications allowed for System
Control are the addition of simple methods to notify
CruiseControl whenever a Brake or Clutch object becomes
active. With the addition of the new CruiseControl
component, the Automobile system will consist of the
following components and classes.

Component Classes

Acceleration GasUser, Throttle

Brakes BrakeUser, BrakeControl

Clutch ClutchUser

CruiseControl CruiseUser, CruiseUnit

Engine Engine

InstrumentPanel Gauges

SystemControl AutoSystem

Assume the existence of a state/transition specification for
each class. An on-line reference to the classes, variables,
methods, states, and transitions of the system is given in the
Conclusions section of this paper. Our initial goal is to
determine the transitions in each existing class relevant to
the new component under test, i.e. CruiseControl. In some
cases only a few transitions are relevant; for example, the
only state of BrakeControl relevant to CruiseControl is
whether or not the brakes are engaged. When the brakes are
engaged, a message is sent to AutoSystem, and AutoSystem,
in turn, sends a message to CruiseUnit.

Figure 1 presents a directed graph that shows the relevant
communication paths among the classes. Since the Gauges
class is passive, the arrows between CruiseUnit and Gauges
indicate that methods in CruiseUnit can read from and write
to state variables in Gauges. The Throttle class, however, is
active and can change the pedal position in GasUser as well
as increase the gas supply to the Engine. In order to
simulate road conditions, e.g. hills, the Engine class has an
externally controlled drag variable that enters into the speed
calculation.

3 Database representation

From [10], each class C produces a Class State Machine
defined as a tuple (V, F, S, T) where V is the set of state
variables defined by C, F is the set of methods (i.e.
functions) defined by C, S is a set of states associated with
C, and T is a set of transitions associated with S and C.
Using the relational database model [6,7,15], we choose to
represent classes, and sets associated with classes, as tables.

The resulting schema definition is shown in Figure 2. The
underlined items are primary keys for each table. The
arrows are referential integrity constraints that show class
dependencies, e.g. in the Transition table, both the SourceId
and the TargetId of a transition must reference a State from
the same class as the transition.

Each class is identified by a unique ClassId, which then
determines the component and system for that class. Each
class is owned by exactly one component even though it
may be used by many components. The ClassAlias is a
surrogate for ClassId and is used to reference the class in
state and guard predicates, and in the Action of a Transition.

-3-

Similarly, VariableName, FunName, and StateName are
surrogates for VarId, FunId, and StateId, respectively; each
need be unique only within its class. In the syntax for
predicates, guards, and actions, full qualified names are
used as needed for disambiguation.

In the Function table, the Avail attribute identifies each
function as being private (PRI), protected (PRO), public
(PUB), or external (EXT). Public functions may be invoked
by any other class in the system, whereas external functions
are part of the external component interface and can be
invoked by other systems. In our example, only external
functions, e.g. clutch and gas pedal positions, are available
to the human user. FunName values include parentheses to
identify the number of input variables, e.g.
PedalPosition(x), so ClassAlias, FunName, InputType, and
ReturnType determine the signature of a function. The
Effect allows categorization of functions as Get, Set, New,
etc. A Get function is read-only and is said to be an actor
method on the object, a Set function can update state
variables and is said to be a mutator method, and a New
function can create new object instances and so is said to be
a constructor method. If variables or functions are inherited
from superclasses, then the IsInherited attribute is set to yes.

In the State table, the DefnPredicate is a Boolean predicate
over the state variables. It may reference an in-class
variable by name only, and may reference a variable in
another class by invoking the appropriate actor method, if it
is available, to read the value of that external variable. It is
not legal to call anything other than an actor method from a
state’s definition predicate. Mutator and constructor
methods may only be called from an Action that is part of a
transition. In the automobile example, state predicates for
the CruiseUnit class read the value of the cruise control
indicator in the Gauges class.

In the Transition table, the TranId attribute uniquely
determines a transition within a class. Thus the pair
(ClassId,TranId) determines all of the other properties of a
transition. In particular, the source and target states are
identified by SourceId and TargetId, respectively. The Type
attribute is a way to identify transitions that exist but may
not be very important, typically they may not even show up
in a state/transition diagram because they have no Action,
do not affect any state changes, and may never get called by
any other methods in the components under analysis. For
completeness, they are included, but because they are
derived automatically as part of a completeness check, they
are labeled as of Derived (D) type. Other transitions may be
well-defined, but are blocked from execution by a rule or by
physical impossibility. For example, in the automobile
system, the cruise control Accel button cannot be pushed at
the same time as the Decel button because their physical
placement prohibits them from being depressed
simultaneously. Such transitions, though well-defined, are

labeled as not feasible and the IsFeasible attribute is set to
no; such transitions may not participate in any data flow
analysis.

Later sections of this paper depend upon notions like “the
set of variables referenced by a predicate” or “the set of
variables assigned a value by an action”. These are
semantic notions that depend upon an analysis of whatever
syntax is used to represent state predicates, transition
guards, and transition actions in the state transition model.
In the automobile example, we use a simple syntax that
allows these notions to be made concrete without extensive
analysis. In subsequent work, we hope to expand this part
of our prototype to include syntactic analysis of predicates
and actions specified in UML [20], Java [11], or other
commonly used class definition languages.

Once this syntactic analysis is complete, the results can be
captured in the database representation as the following new
tables. For each table, the items in parentheses following
the table name are the primary key columns.

Action_DEFINE_Variable
(ClassId, TranId, VarId)

Action_REF_ActorExtFunction
(ActionClassId, TranId, FunClassId, FunId)

Action_REF_LocalFunctionCallQueue
(ClassId, TranId, FunId)

Action_REF_LocalFunctionImmediate
(ClassId, TranId, FunId)

Action_REF_MutateExtFunction
(ActionClassId, TranId, FunClassId, FunId)

Action_REF_Variable
(ClassId, TranId, VarId)

Guard_REF_ActorExtFunction
(GuardClassId, TranId, FunClassId, FunId)

Guard_REF_Variable
(ClassId, TranId, VarId)

State_REF_ActorExtFunction
(StateClassId, StateId, FunClassId, FunId)

State_REF_Variable
(ClassId, StateId, VarId)

Variable_ASSOC_ActorFunction
(ClassId, VarId, FunId)

Each of the above tables satisfies appropriate referential
integrity constraints to the corresponding Transition,
Variable, Function, or State tables. For example, in the
Guard_REF_ActorExtFunction table, the pair
(GuardClassId, TranId) identifies the transition that
contains the guard, and the pair (FunClassId, FunId)
identifies the Get function that is referenced by the guard.

The automobile example uses some special syntax, i.e. Put
CheckState() on Call Queue, to distinguish a situation
where an object sends a message to itself with the intent that

-4-

the message is put on a queue to be acted upon in a
subsequent transition. This is used in several classes, in lieu
of a system clock, to keep processes from terminating. A
local function call without this special syntax will be
executed immediately as part of the Action. The two
Action_REF_ LocalFunction tables above distinguish these
two situations.

Every state variable in a class definition will be associated
with two pre-defined methods, one to Get its value and one
to Set its value. For example, PedalPosition() reads the
value of the PedalPosition state variable, whereas
PedalPosition(x) sets its value to x. The above table,
Variable_ASSOC_ActorFunction, maintains the
relationship between a state variable and the Get function
that reads its value.

Every table can be associated with a mathematical set,
where the set is a set of sequences consisting only of the
primary key elements of the table. In this sense, the
sequence (c,f) is an element of the Function set if and only
if there exists a row in the Function table with
Function.ClassId = c and Function.FunId = f. If X is such a
table-derived set, if c is a non-key column of the
corresponding table T(X), and if x�X, then we define c(x)
to be the value in column c of the row of table T(X)
identified by x. We will use this notational convenience
freely in the following sections, and will denote by C, F, V,
S, and T, respectively, the sets derived from the tables
Class, Function, Variable, State, and Transition.

4 Relevant transitions

If M is a component to be added to an existing system, and
if our testing goal is to determine if M is properly integrated
with existing components of that system, then we must first
determine the transitions from the overall system
specification that are relevant to M. This will include all
transitions from any class in the system that can influence a
state variable of any class of M, as well as all transitions
that can be invoked, directly or indirectly, from actions
derived from any transition of any class of M. The first
type of transition is labeled as an In transition, since data
flows into M, and the second type is labeled an Out
transition, since actions flow outward from M to other
components in the system. Transitions from classes in M
are labeled as Base transitions. The following definition
identifies all In and Out transitions associated with M,
generalizes the notion of In and Out to transitions that affect
any transition already so labeled, and then defines the
transitions that are relevant to M.

Definition 4.1 Let denote an object-oriented software
system and let M denote a component of . Assume that
every class of every component of has a state/transition
specification, and that the totality of all classes, functions,

variables, states, and transitions of that system are
represented by the sets C, F, V, S, and T, defined as above.
Denote by R(M) the set of transitions in that are relevant
to M, defined iteratively as follows:

 R0(M) = {(c,t,Base) | c�C & ComponentName(c)=M
& (c,t)�T & IsFeasible(c,t)=yes}

Given Rn(M), define

 Rn+1(M) = Rn(M) � , where

 = 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

and

 1 = {(c,t,In) | c�C & (c,t)�T & IsFeasible(c,t)=yes
& �f[(c,f)�F & FunId(c,t)=f]
& ��, ,d[(�,)�T & (�, ,d)�Rn(M) & (�, ,c,f)�X]}

where X represents table Guard_REF_ActorExtFunction,

 2 = {(c,t,In) | c�C & (c,t)�T & IsFeasible(c,t)=yes
& �f[(c,f)�F & FunId(c,t)=f]
& ��, ,d[(�,)�T & (�, ,d)�Rn(M) & (�, ,c,f)�X]}

where X represents table State_REF_ActorExtFunction,

 3 = {(c,t,In) | c�C & (c,t)�T & IsFeasible(c,t)=yes
& �f[(c,f)�F & FunId(c,t)=f]
& ��, ,d[(�,)�T & (�, ,d)�Rn(M) & (�, ,c,f)�X]}

where X represents table Action_REF_ActorExtFunction,

 4 = {(c,t,Out) | c�C & (c,t)�T & IsFeasible(c,t)=yes
& �f[(c,f)�F & FunId(c,t)=f]
& ��, ,d[(�,)�T & (�, ,d)�Rn(M) & d�In
& (�, ,c,f)�X]}

where X represents table Action_REF_MutateExtFunction,

 5 = {(c,t,Out) | c�C & (c,t)�T & IsFeasible(c,t)=yes
& ��, ,f,d[(�,)�T & (�, ,d)�Rn(M) & d�In
& (�,f)�F & FunId(�,)=f & (c,t,�,f)�X]}

where X represents table Action_REF_ActorExtFunction,

 6 = {(c,t,In) | c�C & (c,t)�T & IsFeasible(c,t)=yes
& ��, ,f,d[(�,)�T & (�, ,d)�Rn(M)
& (�,f)�F & FunId(�,)=f & (c,t,�,f)�X]}

where X represents table Action_REF_MutateExtFunction,

 7 = {(c,t,Out) | c�C & (c,t)�T & IsFeasible(c,t)=yes
& �f[(c,f)�F & FunId(c,t)=f]
& � ,d[(c,)�T & (c, ,d)�Rn(M)

-5-

& d�In & (c, ,f)�X]}

where X represents Action_REF_LocalFunctionCallQueue,

 8 = {(c,t,In) | c�C & (c,t)�T & IsFeasible(c,t)=yes
& � ,f,d,v[(c,)�T & (c, ,d)�Rn(M) & d=In
& (c,f)�F & FunId(c,)=f & (c,v)�V & (c,v,f)�X
& (c,t,v)�Y]}

where X represents table Variable_ASSOC_ActorFunction
and Y represents the table Action_DEFINE_Variable,

 9 = {(c,t,Out) | c�C & (c,t)�T & IsFeasible(c,t)=yes
& �f[(c,f)�F & FunId(c,t)=f]
& � ,d,v[(c,)�T & (c, ,d)�Rn(M) & d=Out
& (c,v)�V & (c,v,f)�X & (c, ,v)�Y]}

where X represents table Variable_ASSOC_ActorFunction
and Y represents the table Action_DEFINE_Variable.

The iterative process continues until = � for some value
of n. Let be that value.

R(M) is the projection of R (M) on its first two terms, i.e.

R(M) = {(c,t) | �d[(c,t,d)�R (M)}

Clearly the iterative process in Definition 4.1 must stop
because each Rn(M) is a finite set, increasing in size as n
increases, that is bounded above by the finite set T x {Base,
In, Out}. In the automobile example this process stops after
the third iteration, yielding 106 relevant transitions.

5 Constructing a Data Flow Graph

In classical testing [5,8,9,12,13,16,17,19,21], a data flow
graph is a graphical representation of a program’s control
structure and the flow of data through that structure. We
will construct a data flow graph to represent both the
control and data flows of the relevant state/transitions of a
component. Our definitions are extensions of those found
in [10] and [18].

Definition 5.1 Let M be any component of a software
system , and let R(M) be the set of all transitions in that
are relevant to M. Then the data flow graph of M in is a
directed graph G=(N,E) with nodes and edges satisfying

N = Ns � Nt � Ng � Nu

E = Est � Esg � Egt � Ets � Eut

� Egtg � Ests � Exts � Extt � Ects
where

Ns = {c�s | c�C & �t[(c,t)�R(M) & (SourceId(c,t)=s

OR TargetId(c,t)=s)] }

Nt = {c�t | (c,t)�R(M)}

Ng = {c�g�t | c�C & (c,t)�R(M) & Guard(c,t)�true}

Nu = {c�E�f | c�C & �t[(c,t)�R(M) & FunId(c,t)=f
& (c,f)�F & Avail(c,f)=EXT]}

where � is the concatenation operator for strings, and

Est = {(ns,nt) | ns�Ns & nt�Nt & �c,s,t[ns=c�s & nt=c�t
& SourceId(c,t)=s & Guard(c,t)=true] }

Esg = {(ns,ng) | ns�Ns & ng�Ng & �c,s,t[ns=c�s & ng=c�g�t
& SourceId(c,t)=s & Guard(c,t)�true] }

Egt = {(ng,nt) | ng�Ng & nt�Nt & �c,t[ng=c�g�t & nt=c�t
& Guard(c,t)�true] }

Ets = {(nt,ns) | nt�Nt & ns�Ns & �c,s,t[nt=c�t & ns=c�s
& TargetId(c,t)=s] }

Eut = {(nu,nt) | nu�Nu & nt�Nt & �c,f,t[nu=c�E�f & nt=c�t
& FunId(c,t)=f] }

Egtg = {(nt,ng) | nt�Nt & ng�Ng
& �ct,tt,cg,tg,f[nt= ct�tt & ng=cg�g�tg

& FunId(ct,tt)=f & (cg,tg,ct,f)�X] }

where X represents table Guard_REF_ActorExtFunction,

Ests = {(nt,ns) | nt�Nt & ns�Ns
& �ct,tt,f,cs,s[nt= ct�tt & ns=cs�s
& FunId(ct,tt)=f & (cs,s,ct,f)�X] }

where X represents table State_REF_ActorExtFunction,

Exts = {(nt,ns) | nt�Nt & ns�Ns
& �ct,tt,cs,ts,f,s[nt= ct�tt & ns=cs�s
& FunId (cs,ts)=f & SourceId(cs,ts)=s
& (ct,tt,cs,f)�X] }

where X represents table Action_REF_MutateExtFunction,

Extt = {(nt,n) | nt�Nt & n �Nt
& �ct,tt,c ,t ,f[nt= ct�tt & n =c �t
& FunId(ct,tt)=f & (c ,t ,ct,f)�X] }

where X represents table Action_REF_ActorExtFunction,

Ects = {(nt,ns) | nt�Nt & ns�Ns
& �c,tt,ts,f,s[nt= c�tt & ns=c�s
& FunId(c,ts)=f & SourceId(c,ts)=s

-6-

& (c,tt,f)�X] }

where X represents Action_REF_LocalFunctionCallQueue.

The external user nodes Nu determine the external interface
to the system. In black-box conformance testing, it is only
through this interface that one is allowed to provide input
values for test cases to determine if component M conforms
to its specification. Various combinations of these inputs
will produce different paths through the data flow graph
(N,E). Our goal is to find appropriate paths through the
graph, i.e. abstract test cases, to ensure that all aspects of
the specification are thoroughly covered, and then to choose
input values, i.e. executable test cases, to execute those
paths.

In the automobile example, the set Nu represents the
following user actions:

 BrakeUser.IsActive(x) x � {true, false}
 BrakeUser.PedalPressure(x) 0 � x � 99
 ClutchUser.PedalPosition(x) 0 � x � 99
 CruiseUser.Cancel()
 CruiseUser.Mode(x) x � { None, Set/Decel,

 Resume/Accel}
 CruiseUser.Switch(x) x � {On, Off}
 Engine.ExternalDrag(x) -9 � x � 9
 GasUser.PedalPosition(x) 0 � x � 99

The external interface of the automobile example, and the
transitions of its CruiseControl component, are modeled on
the cruise control characteristics of a 1995 Acura Legend.
The data flow graph for CruiseControl, with all of its
relevant transitions, consists of 215 nodes and 565 edges.
Our subsequent analysis will identify 2716 abstract test
cases as paths through this graph. Various combinations of
the above input values will produce over 1300 executable
test cases, each traversing one or more of the identified
paths.

6 Variable definition and usage

Given a data flow graph, there are a number of different
criteria, e.g. all_definition, all_uses, all_paths, etc., for
determining coverage of the graph for testing purposes.
These have been discussed and compared extensively in the
literature [e.g. 8,16, etc.]. Many researchers have concluded
that paths linking the definition of a variable to its first
subsequent use provide adequate coverage for most testing
purposes. The following definitions pursue this definition-
usage criterion for determining coverage of a data flow
graph.

Definition 6.1 Let M be any component of a software
system , let R(M) be the set of transitions in that are
relevant to M, and let G=(N,E) be the data flow graph of M

in . Let =(c,v) � V, where V is the set of all variables in
, then:

a) is defined at a transition-node nt�Nt if nt is an element
of D(), where

 D() = { nt | nt�Nt & �t[nt=c�t & (c,t,v)�X] }

and X represents the table Action_DEFINE_Variable,

b) is directly computation-used at a transition-node nt�Nt
if nt is an element of DCU(), where

 DCU() = { nt | nt�Nt & �t[nt=c�t & (c,t,v)�X] }

and X represents the table Action_REF_Variable,

c) is indirectly computation-used at a transition-node
nt�Nt if nt is an element of ICU(), where

 ICU() = { nt | nt�Nt & �ct,t,f[nt=ct�t & (ct,t,c,f)�X
& (c,v,f)�Y] }

and X represents the table Action_REF_ActorExtFunction
and Y represents table Variable_ASSOC_ActorFunction,

d) is directly predicate-used at a state-transition-edge
(ns,nt)�Est if (ns,nt) is an element of DPUst(), where

 DPUst() = { (ns,nt) | (ns,nt)�Est
& �s,t[ns=c�s & nt=c�t & (c,s,v)�X] }

and X represents the table State_REF_Variable,

e) is indirectly predicate-used at a state-transition-edge
(ns,nt)�Est if (ns,nt) is an element of IPUst(), where

 IPUst() = { (ns,nt) | (ns,nt)�Est & �ct,s,t,f[ns=ct�s
& nt=ct�t & (c,f)�F & (ct,s,c,f)�X & (c,v,f)�Y] }

and X represents the table State_REF_ActorExtFunction
and Y represents table Variable_ASSOC_ActorFunction,

f) is directly predicate-used at a state-guard-edge
(ns,ng)�Esg if (ns,ng) is an element of DPUsg(), where

 DPUsg() = { (ns,ng) | (ns,ng)�Esg
& �s,t[ns=c�s & ng=c�g�t & (c,s,v)�X] }

and X represents the table State_REF_Variable,

g) is indirectly predicate-used at a state-guard-edge
(ns,ng)�Esg if (ns,ng) is an element of IPUsg(), where

 IPUsg() = { (ns,ng) | (ns,ng)�Esg & �ct,s,t,f[ns=ct�s
& ng=ct�g�t & (c,f)�F

-7-

& (ct,s,c,f)�X & (c,v,f)�Y] }

and X represents the table State_REF_ActorExtFunction
and Y represents table Variable_ASSOC_ActorFunction,

h) is directly predicate-used at a guard-transition-edge
(ng,nt)�Egt if (ng,nt) is an element of DPUgt(), where

 DPUgt() = { (ng,nt) | (ng,nt)�Egt & �t[ng=c�g�t
& nt=c�t & (c,t,v)�X] }

and X represents the table Guard_REF_Variable,

i) is indirectly predicate-used at a guard-transition-edge
(ng,nt)�Egt if (ng,nt) is an element of IPUgt(), where

 IPUgt() = { (ng,nt) | (ng,nt)�Egt & �ct,t,f[nt=ct�t
& ng=ct�g�t & (c,f)�F
& (ct,t,c,f)�X & (c,v,f)�Y] }

and X represents the table Guard_REF_ActorExtFunction
and Y represents table Variable_ASSOC_ActorFunction.

Definition 6.2 Let M be any component of a software
system , let R(M) be the set of transitions in that are
relevant to M, and let G=(N,E) be the data flow graph of M
in . Let =(c,v) � V, where V is the set of all variables in

, then the set of all definition-usage pairs associated with
 is denoted by DU(), where

 DU() = {(nt,�) | nt � D() & � � CU() � PU() }

and CU() = DCU() � ICU()

and PU() = DPUst() � IPUst() � DPUsg()

� IPUsg() � DPUgt() � IPUgt()

Not every variable produces a non-empty set of definition-
usage pairs. Some variables, e.g. class constants, may be
defined when an object is created and never redefined in
any relevant transition; others may be defined in a relevant
transition, as a non-relevant side effect, but never used in
any other relevant transition. All such variables are ignored
in the following sections.

We pay special attention to transition nodes where a
variable is both defined and used. Here the order of
execution is important, since a variable may be defined and
then used in the same action. If a variable is used first in an
action before it is defined, or if it is defined last after it is
used, then that node may continue to be relevant to other
definitions or usages of the variable. We distinguish these
cases as follows:

Definition 6.3 Let be a variable that is both defined and
used at one or more transition nodes. Denote by DFTU()

the set of all transition nodes in D() � CU() where is
defined and then used, and denote by UFDL() the set of all
transition nodes in D() � CU() where is used first
before it is defined or defined last after it is used. In each
case, the content of the set is determined by a syntactic
analysis of the Action associated with the transition.

The sets DFTU() and UFDL() need not be mutually
exclusive. A transition involving variable x with an action
consisting of the sequence x:=x+1; y:=f(x) would be an
element of both sets.

In our database representation, we define new tables to hold
values for nodes, edges, variable-defn-nodes, variable-c-
usage, variable-p-usage, and variable-to-defn-usage pairs.
The set-to-table relationship is:

Set Table Name Primary Key

N Nodes NodeId

E Edges SourceNode
TargetNode

D() VarDefn ClassId
VarId
DefnNode

CU() Var_C_Usage ClassId
VarId
UseNode

PU() Var_P_Usage ClassId
VarId
SourceNode
TargetNode

DU() VarDefnUsage ClassId
VarId
DefnNode
UsageItem

The relational database schema definition for these new
tables is given in Figure 3. In the Nodes table, the NodeId
is derived from the three other non-comment attributes as
follows: If NodeType is State or Transition, then NodeId =
ClassId � TypeId where TypeId is the corresponding
StateId or TranId and � is the string concatenation operator.
If NodeType is Guard, then NodeId = ClassId � ‘g’ �
TypeId where TypeId is the TranId of the transition that
contains the guard. If NodeType is ExternalUser then
NodeId = ClassId � ‘E’ � TypeId where TypeId is the
FunId of a function having EXT availability.

The VarDefn table associates variables with a definition
node, i.e. a node that assigns a value to the variable. The
Var_C_Usage table associates variables with transition
nodes having an action that reads the variable, either
directly in its own class or indirectly via an external

-8-

NodeId = DefnNode

NodeId = UseNode

ClassId = VarClassId
VarId = VarId

ClassId = VarClassId
VarId = VarId

SourceNode = SourceNode
TargetNode = TargetNode

NodeId = TargetNode

NodeId = SourceNode

ClassId = ClassId
VarId = VarId

Variable
ClassId Char(3) not null
VarId Char(3) not null
ClassAlias Varchar(18) not null
VariableName Varchar(18) not null
DataType Varchar(40) not null
Default Varchar(25) null
Constraint Varchar(255) null
IsInherited Char(1) null
Description Varchar(255) null

VarDefn
ClassId Char(3) not null
VarId Char(3) not null
DefnNode Varchar(10) not null
Description Varchar(255) null

Nodes
NodeId Varchar(10) not null
ClassId Char(3) null
NodeType Char(1) null
TypeId Varchar(4) null
Description Varchar(255) null

Edges
SourceNode Varchar(10) not null
TargetNode Varchar(10) not null
Description Varchar(255) null

Var_C_Usage
VarClassId Char(3) not null
VarId Char(3) not null
UseNode Varchar(10) not null
Description Varchar(255) null

Var_P_Usage
VarClassId Char(3) not null
VarId Char(3) not null
SourceNode Varchar(10) not null
TargetNode Varchar(10) not null
Description Varchar(255) null

VarDefnUsage1 (*)
VarDefn.ClassId AS ClassId
VarDefn.VarId AS VarId
VarDefn.DefnNode AS DefnNode
Var_C_Usage.UseNode AS UsageItem

VarDefn
Var_C_Usage

VarDefnUsage2 (*)
VarDefn.ClassId AS ClassId
VarDefn.VarId AS VarId
VarDefn.DefnNode AS DefnNode
SourceNode || ':' || TargetNode AS UsageItem

VarDefn
Var_P_Usage

Figure 3 — Schema for Nodes, Edges and Usage

function call; these are called computation nodes (c-nodes)
because the variable is used in a computation. The variable
may also be defined by the same action, but that association
is recorded in the VarDefn table.

The Var_P_Usage table associates variables with edges
where the source node of the edge is a state or a guard that
reads the variable; these are called predicate edges (p-
edges) because the variable is used in a predicate. We use
edges to record this usage, rather than just a state or guard
with the actual predicate, because our primary goal is to
associate data members of a class (i.e. the variables) with
their behavior (i.e. the functions of a transition).

Finally, VarDefnUsage1 is a natural join of VarDefn and
Var_C_Usage, and VarDefnUsage2 is a natural join of
VarDefn and Var_P_Usage; Their mathematical union is
the table VarDefnUsage that represents the sets DU() of all
potential definition/usage pairs for any variable. Note that
when the UsageItem is a node, it is equal to the NodeId, but
when it is an edge it is equal to a concatenation of the
edge’s SourceNode, a separator “:”, and the edge’s
TargetNode. This makes a p-edge usage item a path of
length 2 in the data flow graph (cf. Defn 7.1).

The above definitions do not explicitly consider cases where
multiple object instances of a class exist simultaneously. In

such situations, each object instance will be represented by
a copy of the state variables from the class definition and
the state of each object will be separately considered. In
static applications, e.g. four wheels in the automobile
example, the object instances are known before program
execution, so each instance can be treated as if it were from
a separate class. However, in dynamic applications, with
class variables that are themselves objects or object
references, and with methods for ad hoc creation and
destruction of object instances, some of the preceding
definitions will be modified to deal with object identifiers
rather than class identifiers. This dynamic case will receive
further attention in follow-on work.

7 Data flow path coverage

To complete the definition-usage approach to abstract test
case creation, we look for paths in the data flow graph
leading from the definition of a variable to its first usage.
Consider triples (,nt,�) where is a variable, nt is a
transition node that defines , and � is a usage item for ,
i.e. � is either a c-node or a p-edge. Does there exist a path
in the directed graph leading from nt to � ; and if a path
exists, is it free of loops, and does it avoid any modification
of the variable by some other transition? The definitions of
this section clarify these criteria as applied to conformance
testing of object components, and lead to a rigorous
definition of abstract test cases.

Definition 7.1 Let G=(N,E) be any directed graph. A path,
p, in G of length k	1 is any element of Nk satisfying
(ni,ni+1)�E for 1�i�k-1. If p is a path, then the head of p,
denoted by H(p), is the first element of the sequence, the
tail of p, denoted by T(p) is the last element of the sequence,
and the length of p, denoted by L(p), is the length of the
sequence. If p and q are two paths such that (T(p),H(q))�E,
then the concatenation of the two sequences, denoted by
p:q, is a path with L(p:q)=L(p)+L(q). If p is a path and n is
a node, then n is said to be an element of p, denoted by n�p,
if n is a member of the sequence that determines p.

Definition 7.2 Let M be any component of a software
system , let G=(N,E) be the data flow graph of M in ,
and let VDU be the set of triples (,nt,�) that represent the
table VarDefnUsage. Let P = {(,nt,�,p)} denote a set of
tuples with (,nt,�)�VDU and with p a path from nt to �.
The set P is defined iteratively as follows:

 P1 = {(,nt,nt,nt) | (,nt,nt)�VDU & nt�DFTU() }

 P2 = {(,nt,n ,nt:n) | (,nt,n)�VDU & (nt,n)�Extt }

Each Pi will be a set of paths of length i or i-1. The
definition of Pi for i	3 depends upon sets of partial paths,
Qk, and unresolved defn-usage pairs, Xj, both defined
iteratively below. Each Qk will be a tuple (,nt,�,h,t) where

-9-

(,nt,�)�VDU, h is a path from a defn node nt of to an
intermediate node, and t is a path from some other
intermediate node to a usage item � for . Each Xj will be a
subset of VDU, consisting of variable and defn-usage pairs
that are still in search of a connecting path. Begin with

 Q1 = {(,nt,�,nt,�) | (,nt,�)�VDU }

 X1 = VDU

 X2 = VDU - {(,nt,nt) | (,nt,nt,nt)�P1 & nt
UFDL() }

and given Qi define

 Pi+2 = {(,nt,�,h:t) | (,nt,�,h,t)�Qi & (T(h),H(t))�E }

 Ai+2 = {(,nt,�) | �h,t[(,nt,�,h,t)�Qi] }

 Ci+2 = {(,nt,�) | �p[(,nt,�,p)�Pi+2] }

 Xi+2 = Ai+2 - Ci+2

 Bi+2 = Xi+1 - Ai+2

 and given Q2k-1 define

 Q2k = {(,nt,�,h:n,t) | (,nt,�,h,t)�Q2k-1
& �n[n�N & (T(h),n)�E & n
D()
& n
h & n
t & (,nt,�)�X2k+1] }

and given Q2k define

 Q2k+1 = {(,nt,�,h,n:t) | (,nt,�,h,t)�Q2k
& �n[n �N & (n,H(t))�E & n
D()
& n
h & n
t & (,nt,�)�X2k+2] }.

The iterative process stops when Xi+2 = �. At this point set
P = Pi+2. This must happen for some value of i less than the
number of nodes in the graph since the generated paths in
Pi+2 , each of length greater than i, have no cycles.

It follows from Definition 7.2 that all generated paths (of
length > 1) for some triple (,nt,�) will be of the same
length. This is because if paths are found in step Pi+2, then
by the definition of Ci+2 and Xi+2 a triple (,nt,�) associated
with any of those paths is removed from further
consideration. Because of the special nature of P1, some
triples (,nt,�) will have a path of length 1 in addition to the
other paths.

Not all elements (,nt,�)�VDU will yield a path in P. Some
variables may be defined at a node nt and used at a usage
item �, but either no path exists from nt to �, or every such
path contains a re-definition of .

Definition 7.3 A variable is said to be definition bound at
a definition node nt of a defn-usage pair (nt,�)�DU() if
there does not exist a path, p, with (,nt,�,p)�P.

The definition bound variables surface during the
calculation of Bi+2 = Xi+1 - Ai+2 in the iterative process of
definition 7.2. At that point we have Ci+2 � Ai+2 � Xi+1.
It follows that Bi+2 identifies the defn-usage pairs that were
active during the calculation of Xi+1, did not find a path to
join in Pi+2, yet are no longer active for Xi+2. They dropped
out because in the calculation of the previous Qi there did
not exist a node n to form a new edge in the partial paths.
Thus the sets Bi+2 identify new definition bound items, if
they exist, at each step of the process.

In the automobile example, of the 3167 triples (,nt,�)
satisfying (nt,�)�DU(), 454 are definition bound, and the
remaining 2713 have a path in P, and 3 items have a path of
length 1 in addition to their longer paths. Most paths are of
length 9 or less and can be generated in 15-20 minutes on a
PC. Only 62 pairs have paths longer than 9, but it takes an
additional 90 minutes of processing time on a 300mHz PC
to find 544 paths of length 11 to link 22 pairs, and 2560
paths of length 14 to link the remaining 40 pairs. It took
consideration of partial-paths up to length 16 to prove that
92 pairs were definition bound and partial-paths of length
19 to resolve the last 10 remaining pairs as also being
definition bound.

A follow-on goal of this research is to exploit the unique
structure of a data flow graph for object components, e.g.
categorization of nodes by component, or by class, to
discover processing shortcuts.

8 Abstract and Executable Test Suites

If a variable is both defined and used, and is not definition
bound, then the path generation of the previous section
produces one or more abstract test cases linking each
definition node nt to its corresponding usage item �. But the
data flow, definition-usage testing criterion only requires
one path per definition-usage pair. For test paths of length
> 1, the generation process ensures that all generated paths
in P from nt to � will have the same length as the shortest
path from nt to �. We simply need to select one such path in
an arbitrary fashion. This is done by using the Group By
operator in the relational table representing P, grouping by
, nt, �, and L, where L is the common length of the

generated paths in P, and then selecting an arbitrary element
from each group.

Definition 8.1 Let M be any component of a software
system , let (,nt,�) be any variable-defn-usage triple
generated from the data flow graph of M in , and let P be
generated as in Defn 7.2. An abstract test suite for M,
denoted by ATS(M) is the set defined by

-10-

AbsTestId = AbsTestId

ClassId = ClassId
VarId = VarId

DefnNode = DefnNode
UsageItem = UsageItem

ClassId = ClassId
VarId = VarId

DefnNode = DefnNode
UsageItem = UsageItem

ClassId = ClassId
VarId = VarId

DefnNode = DefnNode
UsageItem = UsageItem

VarDefnUsage
ClassId Char(3) not null
VarId Char(3) not null
DefnNode Varchar(10) not null
UsageItem Varchar(21) not null
Description Varchar(255) null

PartialPaths
ClassId Char(3) not null
VarId Char(3) not null
DefnNode Varchar(10) not null
UsageItem Varchar(21) not null
HeadPath Varchar(255) not null
TailPath Varchar(255) not null
HeadLength Number(2) not null
TailLength Number(2) not null
TailOfHead Varchar(10) not null
HeadOfTail Varchar(10) not null
Description Varchar(255) null

GeneratedPaths
ClassId Char(3) not null
VarId Char(3) not null
DefnNode Varchar(10) not null
UsageItem Varchar(21) not null
Path Varchar(255) not null
PathLength Number(2) null
Description Varchar(255) null

AbstractTests
ClassId Char(3) not null
VarId Char(3) not null
DefnNode Varchar(10) not null
UsageItem Varchar(21) not null
AbsTestId Char(8) not null
Description Varchar(255) null

AbstractTestSuite
AbsTestId Char(8) not null
PLgth Number(2) not null
HeadNode Varchar(10) not null
TailNode Varchar(10) not null
UsageType Char(1) not null
TestPath Varchar(255) not null
Description Varchar(255) null

Figure 4 — Schema for Paths and Testing

 ATS(M) = { (,nt,�,L(p),p) | (,nt,�,p)�P & L(p)=1
OR p=SelectOne({p | (,nt,�,p)�P & L(p)>1})

Each abstract test in ATS(M) is equally important, because
it tests an independent aspect of the state/transition
specification for M and its other related components. Some
of these paths are subsumed by other paths, so a traversal of
a longer path by an executable test case may test multiple
abstract aspects of the state/transition specification at the
same time, but they should still be counted as separate tests!
In any statistical analysis of test case development, we will
assume that these test cases are the sample space from
which all executable test cases are drawn. We will pursue
the creation of an executable test suite, using statistical
methods, as a follow-on activity.

In our database representation we create new tables to
represent the set P constructed in Defn. 7.2 and the set of
abstract tests in the abstract test suite ATS(M). A relational
schema representation is given in Figure 4. Because it is
important to retain the identity of each abstract test case in
any subsequent executable test case development, we create
a special table, AbstractTests, that maintains the
relationship between a variable-defn-usage triple and one or
more test case Id’s. In the AbstractTestSuite table, the
UsageType column identifies the usage item associated with
the path to be either a c-node (N) or a p-edge (E). In the
automobile example, this table identifies 2716 abstract test

cases, of which 207 represent paths terminating at a c-node
and 2509 represent paths terminating at a p-edge.

Conclusions

This paper presents a process for deriving an abstract test
suite from a state/transition specification of components in
an object-oriented software system. The abstract tests are
then suitable for conformance testing of an individual
component of the complete system. The abstract test suite
also provides a suitable sample space for application of
statistical methods to select an executable test suite for
actual conformance testing and to determine, within a given
confidence interval, whether a software product conforms to
its specification.

With the increasing popularity of object-oriented
specification methods, e.g. UML [20], and especially
state/transition specification of classes, e.g. UML’s state
machine package, it becomes possible to more closely align
the specification and testing of object-oriented software.
With the addition of database tools and statistical methods,
it becomes possible to apply finite state analysis and testing
methods to moderate-sized software systems. Our follow-
on work will focus on further integration of the
specification and testing aspects of software development
and on the application of statistical methods.

The automobile example described in section 2 and
referenced throughout this paper is specified via classes,
functions, variables, states, and transitions contained in a
Microsoft Access database file available via FTP protocols
at URL ftp://sdct-sunsrv1.ncsl.nist.gov/stsm/auto/
autoslim.mdb. The intermediate tables, and all of the SQL
database statements to generate the relevant transitions, the
data flow graph, the defn-usage pairs, the partial paths, and
the abstract test suite are in a larger database file at URL
ftp://sdct-sunsrv1.ncsl.nist.gov/stsm/auto/autosys.mdb.

References

[1] D. Banks, W. Dashiell, L. Gallagher, C. Hagwood, R.
Kacker, L. Rosenthal; Software Testing by Statistical
Methods: Preliminary Success Estimates for Approaches
Based on binomial Models, Coverage Designs, Mutation
Testing and Usage Models, NISTIR 6129, U.S.National
Institute of Standards and Technology, March 1998. C.f.
http://www.nist.gov/stsm.html

[2] G. Booch; Object Oriented Design with Applications,
Benjamin Cummings, 1991.

[3] B. Bosik and M.Ü. Uyar; “Finite State Machine Based
Formal Methods in Protocol Conformance Testing,”
Computer Networks and ISDN Systems, 22, 1991, pp. 7-33.

-11-

[4] D. Champeaux, D. Lea, and P. Faure; Object Oriented
System Development, Addison Wesley, 1993.

[5] T. Chow; “Testing software Design Modeled by Finite-
State Machines,” IEEE Transactions on Software
Engineering, Vol. SE-4, No. 3, May 1978, pp. 178-187.

[6] E.F. Codd; “A Relational Model of Data for Large
Shared Data Banks,” in Communications of the ACM, Vol.
13, No. 6, June, 1970, pp. 377-387; reprinted in Vol. 26,
No. 1, Jan. 1983.

[7] C.J. Date; An Introduction to Database Systems, 5th

edition, Addison-Wesley, 1990.

[8] P.G. Frankl and E.J. Weyuker; “An Applicable Family
of Data Flow Testing Criteria,” IEEE Transactions on
Software Engineering, Vol. 14, No. 10, Oct. 1988, pp.
1483-1498.

[9] M.J. Harrold and G. Rothermel; “Performing Data Flow
Testing on Classes,” in Proceedings of 2nd ACM SIGSOFT
Symposium on Foundations of Software Engineering, Dec.
1994, pp. 154-163.

[10] H.S. Hong, Y.R. Kwon, S.D. Cha; Testing of Object-
Oriented Programs Based on Finite State Machines,” in
Proceedings of Asia-Pacific Software Engineering
Conference, pp. 234-241, 1995.

[11] Java Development Kit, version 1.2, Sun Microsystems,
Inc., Copyright©1995, http://java.sun.com/products/jdk/1.2.

[12] X. Jia; “Model-Based Formal Specification Directed
Testing of Abstract Data Types,” in Proceedings of
Computer Software and Applications Conference, 1993, pp.
360-366.

[13] D. Kung, N. Suchak, J. Gao, P. Hsia, Y. Toyoshima,
and C. Chen; “On Object State Testing,” in Proceedings of
Computer Software and Applications Conference, 1994, pp.
222-227.

[14] R.J. Linn and M.U. Uyar; Conformance Testing
Methodologies and Architectures for OSI Protocols, IEEE
Computer Society Press, 1994.

[15] J. Melton and A. Simon; Understanding the New SQL:
A Complete Guide, Morgan Kauffman, 1993.

[16] S.C. Ntafos; “A Comparison of Some Structural
Testing Strategies,” IEEE Transactions on Software
Engineering, Vol. 14, No. 6, June 1988, pp. 868-874.

[17] A.S. Parrish, R.B. Borie, and D.W. Cordes;
“Automated Flow Graph-Based Testing of Object-Oriented

Software Modules,” Journal of Systems and Software, 23,
1993, pp. 95-109.

[18] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen; Object Oriented Modeling and Design,
Prentice Hall, 1991.

[19] C.D. Turner and D.J. Robson; “The State-based
Testing of Object-Oriented Programs,” in Proceedings of
the Conference on Software Maintenance, 1993, pp. 302-
310.

[20] Unified Modeling Language; Object Constraint
Language Specification and UML semantics, version 1.1,
Sept. 1997, Rational Software, et al., http://www.rational.
com/uml.

[21] S. Zweben, W. Heym, and J. Kimich; “Systematic
Testing of Data Abstractions Based on Software
Specifications,” Journal of Software Testing, Verification,
and Reliability, 1, 1992, pp. 39-55.

Leonard Gallagher is a computer scientist in the Standards
and Conformance Testing Group of the Software
Diagnostics and Conformance Testing Division at the U.S.
National Institute of Standards and Technology. He has
been responsible for data models and integration of
database technology with new approaches to information
management, including knowledge-based systems, object-
oriented software, and multimedia. He was an early leader
in the development and testing of Database Language SQL.
Dr. Gallagher received the BA degree in mathematics from
St. John's University of Minnesota in 1965 and the PhD in
mathematics from the University of Colorado in 1972. He
taught mathematics at the Catholic University of America
for several years and has been involved in database and
software research at NIST for the past 20-plus years.

