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ABSTRACT

This paper describes a Computer Aided Software En-
gineering (CASE) tool, unravel, that can assist in the
evaluation of high integrity software by using program
slices to extract a software channel of code for examina-
tion and test. The tool, available through the National
Institute of Standards and Technology, can currently be
used to evaluate software written in ANSI C and is de-
signed such that other languages can be added. The
opinions and viewpoints presented herein are those of
the authors and do not necessarily represent the criteria,
requirements and guidelines of the U.S. Nuclear Regula-
tory Commission.

I. INTRODUCTION

High integrity software systems are often used in envi-
ronments where a lack of response can cause an accident
or result in severe �nancial loss due to an operational
failure. A typical digital computer-based reactor pro-
tection system uses sensors to measure process variables
that are used to evaluate safety functions. A protective
action is initiated when the process variable or safety
function exceeds a set point. A fault in the code can
result in the violation of a safety function. Detecting a
fault in the code is di�cult and costly. This paper de-
scribes a Computer Aided Software Engineering (CASE)
tool, unravel, that can assist in the evaluation of high
integrity software by using program slices to extract a
software channel of code (analogous to a hardware chan-
nel) for examination and test. The informal notion of a
software channel, is formally captured by the concept of
a program slice. The tool, available through the National
Institute of Standards and Technology[10], can currently
be used to evaluate software written in ANSI C and is
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designed such that capability for slicing other languages
can be added.

Program slicing is a static analysis technique that ex-
tracts all statements relevant to the computation of a
given variable. This is accomplished by using data-
ow
analysis [6] to analyze the program source code without
the need to actually execute the program. For exam-
ple, all code relevant to a reactor 
ux trip signal may
be de�ned by slicing on the reactor trip variable in the
code. Application of program slicing to the evaluation
of high integrity software reduces the e�ort of examin-
ing software by allowing a reviewer to focus attention on
one computation at a time. Program slicing can be used
to identify a channel of code associated with each trip
variable. The process for identifying the channel of code
is independent from the requirements and speci�cations
for the code. Since the slice (channel) identi�es all code
and plant variables (sensor data) associated with a trip
variable, test cases may be structured for the speci�c
trip variable. Analysis of the code within the slice helps
to de�ne test requirements needed to evaluate the code.
The use of random input sensor data to test the channel
is also discussed.

By combining program slices using logical set opera-
tions (e.g., union or intersection), unravel can identify
code that is common to each slice. Analysis and evalua-
tion of the code common to each slice by an reviewer is
important because it provides a measure of the indepen-
dence and isolation between the slices (channels). This
information is useful since a failure involving this code
may lead to a malfunction of more than one protective
action. Manual examination of a program for common
code in which a reviewer searches for code shared be-
tween two trip variables, or until it is determined that
there is no common code, or that common code present
will not compromise the safety function is often a slow,
tedious, error-prone process. With unravel, once two
di�erent trip variables have been identi�ed, program
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slices can be identi�ed to �nd statements relevant to
each channel. A fault in any source program statements
common to two slices has the potential to cause common
mode failure. Review and the careful test of the common
code between the two slices is critical to the assurance
of high integrity software.

II. A PROGRAM SLICING TOOL

Program slicing, an application of data-
ow analysis[6],
can be used to transform a large program into a smaller
one containing only those statements relevant to the
computation of a given variable. Program slices have
been shown to aid testing[4], debugging[9], program
maintenance[2], program understanding[12], and auto-
matic integration of program variants[5].
A Program Slice is de�ned as follows:

Given a syntactically correct source program P, in some
programming language, and a slicing criterion C =<
L; V >. Where L is a location in the program and V is
a variable in the program. S is a slice of program P for
criterion C if

(1) S is derived from P by deleting statements from P,

(2) S is syntactically correct, and

(3) for all executions of P and S, in any given execution
of P and of S with the same inputs, the value of V
in the execution of slice S just before control reaches
location L is the same as the value of V in program
P just before control reaches location L.

The function of the slicing criterion is to specify the pro-
gram variable that is of interest along with a location in
the program where the value of the variable is desired.
The program slicing tool, unravel, constructs pro-

gram slices from the control structure of the program
and the pattern of assignment and reference to variables
by backward chaining from the slicing criterion to the
beginning of the program. Figure 1 shows the unravel
output for a short program of three inputs and three
outputs with a slice on output1 highlighted.
The following de�nitions are helpful in understanding

how program slices are constructed.

Defs(n): The set of variables de�ned (assigned to) at
statement n.

Refs(n): The set of variables referenced at statement
n.

Req(n): A set of statements that is included in a slice
along with statement n. The set is used to spec-
ify control statements (e.g., if or while) enclosing
statement n or other characters that are syntacti-
cally part of statement n but are not contiguous

Figure 1: Slice on Output 1

with the main group of characters comprising the
statement.

An algorithm for constructing program slices must lo-
cate all statements relevant to a given slicing criterion.
The essence of a slicing algorithm is the following: start-
ing with the statement speci�ed in the slicing criterion,
include each predecessor statement that assigns a value
to any variable in the slicing criterion, generate a new
slicing criterion for the predecessor by deleting the as-
signed variables from the original slicing criterion, and
add any variables referenced by the predecessor. The
unravel slicing algorithm considers the following issues:

1 Assignment statements (expression statements in C)
2 Compound control statements
3 Declared structures
4 Pointers
5 Dynamic structures
6 References to structure members by pointer
7 Assignment to structure members by pointer
8 Procedure calls

Only assignment and compound control statements
are discussed in this paper.

For expression statement n, a predecessor of statement
m, the defs(n) set and the slicing criterion determines if
an expression statement is included in a slice.
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Figure 2: Slice on Output 2

S<m;v> =

�
S<n;v> if v 62 defs(n)
fng [ S<n;x>8x 2 refs(n) otherwise

For example, to use the above rule for slicing on assign-
ment statements to determine the value of y at line 15 of
the program in Figure 2 the criterion would be < 15; y >.
The rule for assignment statements yields one of two re-
sults based on whether y is assigned to at line 14 (the
predecessor of 15). Since y is assigned a value at line 14
the second part of the rule would be used so that line 14
is included in the slice and new slicing criteria are gen-
erated for any variables that y depends on at line 14. In
this case, the criterion < 14; a > would be generated and
the slice on that criterion would be a subset of the slice
< 15; y >. To construct the slice on < 14; a > the �rst
part of the rule is used, since a is not assigned a value
at line 13. The generated criterion is < 13; a > which
again generates a criterion without adding a statement
to the slice. This would continue until line 8 was added
into the slice by the criterion < 9; a >. Constructing the
slice on output2 at line 21 presented in Figure 2 gen-
erates the criterion < 15; y > as an intermediate step in
the construction of the slice on < 21; output2 >.
A compound control statement is a statement that has

a condition directly controlling the execution of another
statement (possibly also a compound statement). Con-
trol statements such as if, switch, while, for and do

: : :while should be included in a program slice whenever
any statement governed by the control statement is in-
cluded in a slice. When control statement n is added to
a program slice, the slice on the criterion < n; refs(n) >
is added to the original slice. For each statement, n,
associate a set, req(n), of statements that are required
to be included in any slice containing statement n. The
slicing rule for v 2 defs(n) becomes:

S<m;v> = fng
S�S

x2refs(n) S<n;x>

�S
�S

y2refs(k)

S
k2req(n) S<k;y>

�

The result of the revised rule is to include the set of
required statements for statement n, req(n), whenever
statement n is included in a slice. In the program in
Figure 1 statements on lines 7-21 require lines 1, 2 and
21.

From unions and intersections of slices, a slice-based
model of program structure can be built that has ap-
plications to program understanding tasks, such as soft-
ware reviewing. Figure 3 illustrates how slices can be
used to quickly examine a program's structure. The ini-
tial view of an unfamiliar program, left part of Figure
3, usually contains some inputs, some outputs, and a
shapeless mass of code with unknown connections among
inputs and outputs. After constructing a slice on some
variable, the program is partitioned into two parts, state-
ments relevant to the computation of the slice variable
and statements not relevant to the computation of the
slice variable. The middle part of Figure 3 represents
what is known about the program after constructing a
slice on Output3. To answer questions about the com-
putation of Output3, the slice on Output3 (shaded re-
gion labeled �), should be examined and the statements
not in the slice (unshaded region !) can be ignored.

Program slices can be combined with logical set op-
erations to explore dependencies between two computa-
tions. The right part of Figure 3 shows how program
slices can further re�ne knowledge about the program.
The intersection of slices onOutput1 and Output2, la-
beled �, contains statements relevant to both variables.
A single bug could cause both outputs to be incorrect. In
a debugging task, if a programmer suspects that a single
bug is causing both outputs to be incorrect, then the in-
tersection of slices should be examined. However, if the
programmer has some con�dence that one output is cor-
rectly computed, then a bug is more likely to be found
among the statements not in the intersection of slices.
For example, if Output1 fails some set of test data but
Output2 appears to be correct, then the programmer
should look for the error among the statements unique
to Output1 (shaded region labeled �1 in Figure 3).
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Figure 3: Slice Based Model of Program Structure

III. FUNCTIONAL ANALYSIS OF SOFTWARE

Unravel is useful in assisting a designer or reviewer in
the functional analysis of software as well as planning
assurance activities. This section discusses both of these
topics.

Establishing a channel for each trip variable within
nuclear safety system software is the �rst step in a func-
tional analysis. The next step is to analyze the contents
of each channel. The goal of this step is to verify the
code with respect to the speci�cations for the software.
For example, after constructing a program slice on out-
put3 it is trivial to verify from the unravel output in
Figure 4 that output3 depends on input2 and input3
and does not depend on input1. An analysis of each
channel identi�es functions and tasks useful in verifying
adherence to requirements. The analysis of each channel
is also useful in identifying internal variables calculated,
the sensed plant variables used by the channel, and mem-
ory stored variables used by the channel as programmed.
The analysis of each channel is a much greater cognitive
challenge than the task of tracing requirements from a
speci�cation.

Another type of functional analysis is the evaluation of
the independence and isolation between any two chan-
nels of software. This feature of unravel allows a re-
viewer to evaluate if common software exists between
two diverse safety functions. The ideal situation is to
have no common software shared by diverse safety func-

Figure 4: Slice on Output 3
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tions. However, if common software is shared by diverse
safety functions, then this software must be thoroughly
analyzed and tested to ensure no faults exist within it.
In addition to common code, a reviewer may also eval-
uate if common plant data or common memory stored
data are used by the channels under study by perform-
ing a manual comparison of the data between the chan-
nels. Veri�cation of the accuracy of shared plant data or
shared memory stored data is critical to the integrity of
the functions performed within each channel.

In addition to the independence and isolation analysis
between channels performing safety functions, an anal-
ysis of channels performing safety functions and other
functions in the code is also necessary to complete the
isolation study. For example, the isolation between a
safety function and a fault tolerance function is also im-
portant. An undetected fault in shared code between
these channels will, when activated, result in the loss
of each function. Similarly, a loss of each function will
also occur should faulty common plant data or common
memory data be used by each function.

Figure 5 shows the unravel output for the intersection
of slices on output1 (Figure 1) and output2 (Figure 2).
Figure 6 shows the unravel output for the code in the
slice of output1 that is not shared with the computa-
tion of output2. By automatically locating statements
shared between two computations or code unique to a
single computation, the task of evaluating the interac-
tion between the functions implemented by the compu-
tations is simpli�ed.

The products from the functional analysis of channels
are useful in planning and performing assurance activi-
ties. One of the assurance activities is to test each chan-
nel for faults and conformance to requirements. Dahll [1]
found that an e�ective form of test data in the detection
of faults is the use of uniform random input data and a
test oracle. The use of uniform random test data proved
to be more e�ective in the detection of faults than the use
of systematic data (which exercises functions within the
speci�cations) or the use of plant simulation data (which
attempts to simulate actual plant scenarios). The use of
uniform random test data should result in near uniform
executions of the various paths through a channel and
thus enhance the probability of detecting faults. A fault
within the channel that exhibits itself over a wide range
of the input plant sensor data should be easily detected.
However, a fault in the channel that exhibits itself as a
spike over the range of input plant sensor data will be
di�cult to detect.

The use of time dependent sets of input plant data
is also necessary to evaluate the functional performance
of each channel and the states that may arise therein.
Parnas [11] reports that there may be states that may
arise only after a period of time in the processing of

Figure 5: Intersection of Slices on Output 1 and Out-
put 2

Figure 6: Statements Unique to Output 1
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data. One example of such a state is a moving aver-
age that needs several time sequential data points to
arrive at a data point. If six time sequential data points
are needed to arrive at one moving average data point,
then the test of this function should use a minimum of
six data points to verify the function. Additional in-
put data points are necessary in order to evaluate the
various states wherein the moving average is changing
rapidly with time. These input plant data states should
be representative of the various operating scenarios, that
are the design basis for the safety system. The limiting
design basis events should de�ne the most challenging
time response scenarios from which to test the software
channel. Furthermore, the initial state of the software
channel must be reset prior to a new test case in order
not to be in
uenced by memory stored data from the
previous test case.
For a thorough assessment of a channel of software, it

is also necessary to evaluate internal variables. A test
of internal variables within a channel is similar to point
to point testing in a channel of hardware. For a speci�c
set of plant sensor data for a channel of software, one
progresses forward from the input data to evaluate the
computed value of each internal variable. The computed
value of the internal variable is compared to a precalcu-
lated value to determine its validity. The printout of
internal variables may be achieved through the use of
a simple assertion when a value for a key partial result
is satis�ed. The successful test of each internal variable
minimizes the potential of a fault within the channel.

IV. EMPIRICAL EVALUATION OF UNRAVEL

Unravel was initially evaluated[10] by one NRC re-
viewer in the context of reviewing safety system soft-
ware for quality as is done by the NRC. This prelimi-
nary evaluation considered the size of slices produced,
time to compute slices, and usability by a novice user.
This should not be considered a complete evaluation, but
rather a demonstration of the potential of the tool to be
con�rmed by further use.
The objectives of the evaluation were to determine the

following:

(1) Are program slices smaller than the original pro-
gram to an extent that is useful to a software re-
viewer evaluating a program?

(2) Can program slices be computed quickly enough to
be useful in an review?

(3) Is unravel usable by a novice user?

An example of typical safety system code was used
to test and re�ne unravel. Demonstration of unravel

using this and other examples were given to the NRC re-
viewer. The demonstrations provided useful suggestions
that resulted in improvements to the user interface and
in the identi�cation of features to be explained in more
depth in the user manual or to be included in a later
version of unravel.
The safety system example (1200 lines) came in three

versions. One version was written to conform to safety
system diversity requirements while the other two were
deliberately seeded with common code. Unravel was
able to verify and display the presence of the common
code in the seeded version and show the absence of com-
mon code in the diverse version.
The NRC reviewer directed unravel to compute slices

for both safety and nonsafety related process variables.
The reviewer was able to identify several unanticipated
connections between subsystems. The following obser-
vations by the reviewer are relevant to the evaluation of
unravel:

(1) Use of unravel in an review should signi�cantly
enhance the ability to perform and analyze string
checks.

(2) Unravel is easy to operate for a person with com-
puter skills.

(3) Unravel can disclose subtle relationships between
safety related and nonsafety related code that would
require a C expert to discover.

(4) The majority of the slices were less than 25 percent
of the size of the original program (90 percent for
the safety system example). The user of unravel
can expect to eliminate a signi�cant portion of code
from consideration when using program slicing to
extract a given computation for examination.

(5) Requested slices were computed is less than one
minute.

V. FUTURE WORK

Using program slicing in software development and the
analysis of the �nal software product has potential to
increase software quality in several ways that we plan to
explore.
Once the functional structure of a channel has been es-

tablished, then a fault tree analysis may be performed.
A fault tree analysis is a safety analysis wherein the out-
put trip variable of the channel is assumed to be in a
faulty state, i.e., failure to trip when unsafe plant con-
ditions exist. An analysis of the computations leading
to the output is then performed to determine how con-
ditions could exist that support the faulty output state.
Should such a state be identi�ed, then modi�cations to
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the code are necessary to avoid the loss of the safety
function [8, 3].
Leveson and Shimeall [7] report on the results of re-

search that evaluated the e�ectiveness of various fault
detection techniques. This research evaluated �ve di�er-
ent fault detection techniques consisting of code reading
by stepwise abstraction, static-data 
ow analysis, run
time assertions, multiversion voting, and functional test-
ing with follow on structural testing. They report that
each of these test techniques were useful in the unique
detection of faults not found by the other techniques.
However, they also found other faults that were detected
by multiple test techniques.
A run time assertion generates reports when faults

produce an erroneous run-time state, e.g., an incorrect
internal variable. Assertions examine the system state
at speci�c points in the execution of the software. For
safety critical software, this is an important result from
Leveson and Shimeall because test and evaluation of in-
ternal variables has not received a great deal of attention.

VI. CONCLUSIONS

Assurance activities of safety critical software adopt
many of the techniques used in the test of a channel
of safety critical hardware. Unravel is a tool to assist
a designer or reviewer in implementing this activity for
software. While the initial evaluation of unravel consid-
ered only a single reviewer applying the tool on one pro-
gram, the results suggest that further use may con�rm
that unravel is a powerful tool for assurance activities
of safety critical software.
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