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Measurement of uncertainty in orientation distribution function
calculations
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A technique to quantify the uncertainty in an estimated orientation distribution function (ODF) by propagating the uncertainty
from measured pole figures is demonstrated in this paper using Monte Carlo techniques and the Matlab toolbox for quantitative
texture analysis. Unlike the uncertainty in the measured pole figures, where small values of intensity correlate to high uncertainty,
uncertainty as a function of orientation in an ODF is not directly related to intensity.
Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
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The field of texture analysis has been described as
“quantitative” for over 30 years [1–4]. Techniques to
measure crystallographic texture have been widely used
to measure preferred crystallographic orientations. The
crystallographic information is often described in pole
figures or orientation distribution functions (ODFs).
Pole figures display the concentration of orientations of
a fixed (h k l) crystal axis as a function of spatial orienta-
tion. Pole figure descriptions are incomplete in that the
rotation about the fixed axis is not shown. ODFs present
a way to show the complete orientation data.

Two major classifications of techniques to estimate
ODFs exist: direct and indirect. Direct methods for esti-
mating an ODF use a series of measurements of the
complete orientation information spatially (such as elec-
tron backscatter diffraction). Indirect methods typically
rely on comparisons between pole figures provided as an
input to a solver and pole figures generated from an esti-
mated ODF. Some examples of indirect methods are
harmonic1 [5], WIMV [6], ADC [7] and the Matlab tool-
box for quantitative texture analysis (MTEX) [8].
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Estimates of the precision and accuracy in crystallo-
graphic texture measurements such as pole figures and
ODFs have not been widely used. Uncertainty in pole
figure measurements have been previously investigated
by Nikolayev et al. [9] and Lychagina et al. [10]. These
are based on time-of-flight (TOF) neutron-diffraction
measurements to estimate the effect of counting time
on the pole-figure quality. The article by Mücklich and
Klimanek [11] summarizes some of the sources of uncer-
tainty in quantitative texture analysis, particularly for
X-ray-based diffraction measurements.

Prior attempts to assess uncertainty in ODF measure-
ments have focused on errors in the solver techniques.
For indirect ODF estimation methods, the effect of a
finite number of pole figures [4], truncation [4,8] and
“ghost correction” [12] are widely known sources of
uncertainty. Similarly, bias errors and disagreement be-
tween solvers are widely known issues [1]. One approach
to assessing the difference between models is to check the
solver using standard orientation distribution functions
[13,14] or known texture functions [15]. For direct solv-
ers, other problems, such as the effect of grain statistics,
the non-equiaxed nature of grain shape and spatial cor-
relations between grains, have been considered theoreti-
cally [16], but more experimental work is needed.

As described, a variety of sources of uncertainty exist
in estimated ODFs: random errors from the pole figure
measurements, truncation errors from the finite number
of pole figures or the finite range of accessible reflections
(X-ray), and differences between ODF solver techniques.
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The focus of this work is assessing the first source; spe-
cifically, how random errors in the intensity data of pole
figures from counting statistics propagate into the orien-
tation distribution function.

Estimates of the uncertainty of an ODF are crucial for
many reasons. ODFs are commonly used as a qualitative
comparison metric. An assessment of uncertainty is a
necessary component to determine if the difference be-
tween two (or more) estimated ODFs is significant.
Uncertainty for extracted values such as volume frac-
tions are also important as the volume fraction of a given
orientation is often used when comparing two ODFs.

Monte Carlo techniques are used to propagate the
uncertainty in computational models, and rely on taking
pseudo-random draws from a probability distribution
[17,18]. When employed in error analysis or uncertainty
analysis, the input variables are perturbed in a manner
consistent with their uncertainty and the perturbed in-
put variables are used to create a new output value.
The input variables are repeatedly perturbed in this
manner to create an ensemble of output values. The
ensemble of output values can then be used to summa-
rize the variation in the output. Morawiec has explored
this approach for ODFs where model pole figures are
perturbed in a similar manner [15]. However, in Ref.
[15] only the uncertainty in the overall texture function
was considered; the effect on individual orientations in
the ODF was not.

Complete pole figures for an undeformed SAE 1008
steel sample were collected using the BT-8 residual stress
diffractometer at NIST [19]. Neutron diffraction was
chosen so that complete pole figures could be measured,
nullifying the effect of incomplete pole figures as a source
of uncertainty. SAE 1008 steel is a ferritic steel with a
body-centered cubic crystal structure. The (200), (110)
and (211) reflection planes (h) were measured using a
hexagonal mesh approximately equivalent to a 5� angu-
lar spacing [20]. Each point in the pole figure (a,b) is
determined by stereographic projection of the reflection
vector (r) onto a two-dimensional surface. The number
of diffracted neutrons (counts) at each point (a; b) on
the pole figure is referred to as the peak counts Np, deter-
mined by subtracting the integrated intensity of the back-
ground Nb from that of the total number of counts Nt:

N p ¼ Nt � N b ð1Þ
The pole figure data, P(h,r), is therefore a plot of the

number of peak counts as a function of the reflection
plane and the orientation of the sample, calculated from
the total and background counts:

P ðh; rÞ ¼ P tðh; rÞ � P bðh; rÞ ð2Þ
The numbers of total and background counts are

both expected to follow a Poisson distribution. The rel-
ative standard deviation of the number of peak counts is
then:

rp ¼
ffiffiffiffi
N
p

t þ
ffiffiffiffi
N
p

b

N t � Nb
ð3Þ

The program PeakFit (PF) [21] was used to analyze
the experimental pole figure data. At each point on the
pole figure, the diffraction peak was fitted with a
Gaussian peak and a constant background. The total
number of counts and the background number of counts
at each point in the pole figure measurement were calcu-
lated and exported to the crystallographic texture anal-
ysis package MTEX.

MTEX was used to estimate the ODFs. Using the
nomenclature of MTEX, a set of Euler angles was de-
fined as an “orientation” (g). The orientation was then
used to determine the “center” of a kernel function.
For the analysis presented here, the de la Vallee–Poussin
kernel and 5� half width were used. The choice of half
width resulted in 1232 radially symmetric kernel func-
tions distributed to fill Euler space.

MTEX uses a finite mixture of a uniform texture dis-
tribution (gu) and radially symmetric kernel functions
(gi) to approximate the ODF f(g). The radially symmet-
ric kernel functions are centered on a grid in the ODF
space (Bunge Euler angles: u1, U, u2) in defined loca-
tions determined by the half-width of the kernel func-
tion. In order to indicate the relative proportion of
each of the radially symmetric kernel functions, each
radially symmetric kernel function has a corresponding
“weight” value (ai). The ODF is then represented as a
series of the uniform and radially symmetric kernel
functions:

f ðgÞ ¼ augu þ
Xi

1

a1g1 þ a2g2 . . .þ aigi ð4Þ

The term “intensity” for an ODF is the ratio of
weight at a given orientation relative to the weight of
the same orientation in a uniform (or random) texture
distribution, with units of multiples of uniform distribu-
tion (MUD), like the pole figures. The details of the cal-
culation from pole figure to ODF are described by
Hielscher and Schaeben [8].

A Monte Carlo technique was used to estimate the
uncertainty in the estimated ODF due to the uncertainty
in the pole figure measurements. This technique was ap-
plied by perturbing each point in the pole figure P(h,r).
A Poisson pseudo-random number generator (poissrnd)
was applied to the total and background counts at each
point and then subtracted to generate the perturbed pole
figure data P̂ N ðh; rÞ:
P̂ N ðh; rÞ ¼ poissrndðP tðh; rÞÞ � poissrndðP bðh; rÞÞ ð5Þ

The observed counts were used as the Poisson mean
in the poissrnd because they are the maximum likeli-
hood estimators [22]. This method of perturbing ob-
served data for the purpose of quantifying uncertainty
is known generally as the parametric bootstrap [23].
These perturbed pole figures were then used to calculate
a perturbed ODF f̂ N ðgÞ.

An ensemble of perturbed pole figures and perturbed
ODFs of size N were calculated. The intensity values of
each perturbed ODF were evaluated on a 2.5� regular
grid in Euler space. From the ensemble, the mean, abso-
lute standard deviation and relative standard deviation
of the intensities were calculated at each grid point
and plotted.

The experimental pole figures are shown in Figure 1a.
The pole figures are typical of rolled ferritic steel,
showing orthotropic sample symmetry from the rolling



Figure 2. ODF constructed from the set of the three input pole figures
shown in Figure 1a. Intensity is displayed in units of MUD with Bunge
Euler angles. The ODF plot is represented as 18 sections in increments
of u2 = 5� from 0� to 85�, while u1 (along the x-axis) and U (along the
y-axis) range from 0� to 90� in each section.

Figure 3. Difference between the ODF estimated from experimental
pole figures and the mean ODF from ensemble N = 5000. The scale is
in units of MUD.
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process. The relative uncertainty in the pole figure mea-
surements are shown in Figure 1b, calculated using Eq.
(3). The relative uncertainty ranges from 1.6% to 13.5%.
As expected, regions of higher intensities in Figure 1a
correspond to lower relative uncertainty values in Fig-
ure 1b, and vice versa. The mean values of the relative
uncertainty in the pole figure measurements were
3.76%, 6.64% and 3.26% for the (110), (200) and
(211) reflections, respectively.

Figure 2 shows the estimated ODF constructed from
the set of experimental pole figures in Figure 1a. The dif-
ference between the observed pole figures and those de-
rived from the estimated ODF, reported by the MTEX
pole figure to ODF calculation, is 0.83%. The ODF
shown in Figure 2 is typical of rolled mild steel. Most
of the grain orientations are aligned with the c fiber
(normal direction parallel to the h1 11i crystal axis;
/1 = 0� to 90�, U = 55.4�, /2 = 45�), indicated by high
MUD values along those orientations.

An ensemble size of N = 5000 was used in the Monte
Carlo analysis. The mean ODF calculated from the
ensemble (not shown) was similar to that estimated from
experimental pole figures, as shown in Figure 2. Figure 3
shows a difference plot between the mean of the ODF
ensemble and the ODF from experimental pole figures.

Figure 4 shows the relative uncertainty in the esti-
mated ODF. The mean relative uncertainty is 1.61%
(range 4.01% to 0.52%). The R-Goss orientation
{01 1}h1�10i (90�, 45�, 0�) shows the highest relative
uncertainty, while orientations along the gamma fiber
have the lowest values.

Three orientations were investigated in more detail:
the R-Goss orientation {011}h1�10i (90�, 45�, 0�), the
c1 orientation {11 1}h1�10i (0�, 55�, 45�) and the brass
orientation {011}h2�10i (35�, 45�, 0�). The mean and
relative uncertainty values are shown in Table 1. The
N = 5000 ensemble was broken into two subsets of
N = 2500 to evaluate the effect of the number of
elements in the ensemble.
Figure 4. Representation of relative uncertainty (%) in the mean ODF
using the Euler angle conventions of Figure 2.Figure 1. (a) (top) Pole figures from (110), (200) and (211) reflections

(left to right) generated from neutron diffraction for undeformed SAE
1008 steel. The rolling direction (RD) is the vertical axis and the
transverse direction (TD) is horizontal. Pole figures are displayed as
number of counts in the peak. (b) (bottom) Relative uncertainty pole
figures (%) generated from neutron diffraction data for undeformed
SAE 1008 steel.
The mean relative uncertainty in the estimated ODF,
shown in Figure 4, is less than that in any of the pole
figures shown in Figure 1b. The uncertainty in the pole
figure measurements calculated from this technique is



Table 1. Mean and relative uncertainty values at selected orientations.

N = 5000 N = 2500 N = 2500

Mean (MUD) Relative uncertainty (%) Mean (MUD) Relative uncertainty (%) Mean (MUD) Relative uncertainty (%)

R-Goss 0.702 4.01 0.701 4.02 0.702 4.00
c1 6.379 0.74 6.380 0.72 6.378 0.75
Brass 0.266 2.22 0.266 2.22 0.266 2.22
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similar to that observed by Lychagina et al. [10] using
the TOF technique. To our knowledge, this is the first
estimate of how the uncertainty varies from orientation
to orientation in the estimated ODF.

While, in general, there is a trend that larger intensity
in the mean ODF results in lower relative uncertainty,
this is not always the case. Comparing the R-Goss and
brass orientations shows that the brass orientation, de-
spite having a mean intensity of nearly one-third of
the R-Goss orientation, has a smaller relative
uncertainty.

In summary, a technique to quantify the uncertainty
in an estimated ODF by propagating the uncertainty in
measured pole figures through the calculation of the
estimated ODF was demonstrated. By quantifying
uncertainty in an estimated ODF, results can be com-
pared to determine if the difference between two esti-
mated ODFs is statistically significant and
comparisons between ODFs can be more rigorous.
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