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Analysis of deformation-induced surface morphologies in steel sheet
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Abstract

The surfaces of strained mild steel sheet specimens were examined with scanning laser confocal microscopy. Rigorous assess-

ments were employed to establish the form of the roughness data. The small deviations from the ideal conditions observed in these

assessments indicated that the stochastic process responsible for surface roughening does not conform to stationary, Gaussian,

Markov statistics. As physical considerations make violations of the stationary and Markov properties unlikely, it was concluded

that even small discrepancies in the Gaussian fit have substantial influences on the quality of roughening behavior characterizations.

This also confirms that deformation-induced surface roughness occurs by a small number of statistically dominant mechanisms.

Analyses of the mean amplitude (Rq) and spatial distributions both exhibited sharp changes in behavior at approximately 4% strain.

Since the physical meanings of the two analyses are independent, it was concluded that this common behavior correlated with a

change in dominant roughening mechanism.

Published by Elsevier Ltd on behalf of Acta Materialia Inc.
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1. Introduction

Inhomogeneous surface deformation (e.g., orange-

peel, banding, or roping) is a significant obstacle imped-

ing the widespread use of the many alloys intended to

increase automobile fuel economy. In addition to being

cosmetically unacceptable, these surface markings have

a profound detrimental affect on the formability: They

localize strain, promoting component failure from tear-
ing or wrinkling, and they alter the friction between the

metal sheet and the die surfaces during metal forming

[1,2]. As the surface roughening behavior essentially

establishes the suitability of an individual alloy for a

particular application, numeric predictions of the evolu-

tion of surface roughness have become more central in

the automotive development process. At present, there

are significant discrepancies between the surface
1359-6454/$30.00 Published by Elsevier Ltd on behalf of Acta Materialia In

doi:10.1016/j.actamat.2005.05.038

* Corresponding author. Tel.: +1 301 975 6025; fax: +1 301 975 4553.

E-mail address: stoudt@nist.gov (M.R. Stoudt).
morphology predicted by numeric methods and what is
actually measured on the surface of real materials. These

discrepancies suggest that the available surface roughness

data are not adequate for the modeling requirements and

that a better understanding of the measurement issues

associated with the roughening process is necessary to

increase the accuracy of the formability predictions.

Reports in the literature indicate that the roughening

behavior of a free surface follows a relationship where
the surface roughness is proportional to the amount of

plastic strain [3–7]. There is also a consensus that this

relationship holds regardless of the influence the

material crystal structure may have on the deformation

[8,9]. In contrast, plastic deformation in a polycrystal-

line alloy is an extremely complex process [10–12]. The

roughness that occurs at a free surface strongly depends

upon both the grain size [13–15] and orientation effects
in the sheet [16–18], as well as upon the rate at which

the deformation occurs [19,20]. These inconsistencies

raise many questions about the validity of this simple
c.
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empirical relationship, and any prediction of the overall

roughening behavior upon which it is based.

The literature clearly establishes that the accuracy of

any roughness evaluation is dependent on the technique

used for data acquisition and that all surface measure-

ment methods introduce errors of some form into the
data [5,21]. Radhakrishnan [22] showed how an impro-

per ratio between the size of the measurement probe and

the scale of the measured features would introduce

substantial errors by masking or filtering the subtleties

in the roughness profile. The characteristics of these

errors are well known and appropriate measures for

their correction have been established [5].

The methods used to interpret roughness data are an
error source of greater significance. Most assessments of

roughening behavior in the literature are derived from

linear profiles (i.e., individual measurements of the

surface taken in one dimension). In such an assessment,

the profile is postulated to be a characteristic of the

entire surface [23]. Most of the literature accounts

express the roughness of the entire surface through an

estimation of the mean of the amplitude distribution.
The most common method is the arithmetic mean, or

the Ra parameter [21]:

Ra ¼
1

L

Z L

0

jzðxÞj dx. ð1Þ

In this equation, L is the length over which the profile is

evaluated and z(x) is the magnitude of the profile height
at any point along the evaluation length. The mean

amplitude distribution can also be expressed through

another parameter, Rq, which is based on the root mean

squared (rms). The rms roughness is expressed as:

Rq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

Z L

0

z2ðxÞ dx

s
. ð2Þ
Fig. 1. Two heat treatments of an aluminum alloy exhibiting the same mea

frictional behaviors.
Both of these parameters are used routinely in industrial

applications to quantify the changes in surface morphol-

ogy, and they are often used interchangeably even

though they have different physical meanings [24]. While

Ra tends to be slightly more common, it is not directly

based on any statistical treatment. Conversely, Rq is
defined as the standard deviation of all the heights

contained in the profile. For this reason, it is regarded

as a more functional representation of the mean of the

amplitude distribution.

As shown by Eqs. (1) and (2), both parameters

collapse an entire roughness profile into a single value.

This compresses complex surface information into an

expression that can be rather coarse with respect to
the length scale of the surface details involved [14].

Extrapolation of this compressed value to a representa-

tion of an entire surface could introduce substantial

error, as the results are highly dependent upon the statis-

tical methods used for the analysis. Because these are

average values, is it also possible for distinctly different

surface morphologies to produce the same roughness

value. Fig. 1 is a recent observation of such behavior
[25]. Clearly, any prediction of the roughening behavior

that is based solely on a mean roughness parameter is

likely to be misleading. While the overall objective is a

robust prediction of the mechanical behavior for any

alloy under a given set of forming conditions, this

particular effort evaluates the changes in roughening

behavior with plastic strain for a mild steel sheet. It also

examines the underlying principles used to interpret a
typical surface roughness measurement.
2. Experimental procedure

Most of the surface roughness data reported in the

literature are derived from measurements performed
n roughness values with distinctly different surface morphologies and



Table 1

Ferrite grain characteristics determined using ASTM E112 (24)

Viewing plane Mean grain

diameter (lm)

ASTM

grain size

Perpendicular to normal direction 9.9 ± 1.3 10.4

Perpendicular to rolling direction 8.4 ± 0.6 10.9

Perpendicular to transverse direction 8.6 ± 0.7 10.8
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on samples with polished gauge sections. While polished

surfaces tend to produce more consistent surface rough-

ness measurements, the surfaces of the steel sheets used

in industry are not pristine. In fact, automotive manu-

facturers customarily specify a maximum acceptable

initial surface roughness for the metal sheet that is
dependent upon the specific application (e.g., Ra 6 0.5

lm for an outer hood panel). Therefore, all of the data

in this analysis were acquired from steel sheet in the as-

received condition to be more representative of actual

forming conditions.

2.1. Material

Cold-rolled AISI 1010 steel sheet with a nominal

1.0 mm thickness was selected for this analysis because

it is a generic alloy that demonstrates good formability,

and the deformation behavior has been well established

in the literature [26,27]. The 1.0 mm sheet thickness is

used routinely in automotive applications. The grain size

and rolling direction of the AISI 1010 steel were verified

through a series of microstructural examinations. Spec-
imens were mounted and polished according to standard

metallographic procedure [28] for these studies. The

final step of mechanical polishing was 0.05 lm colloidal

silica after which the samples were immersed in solu-

tions of 4-volume fraction picral and 2-volume fraction

nital to reveal the microstructure.

2.2. Generation of surface roughness

Flat sheet, tensile specimens were punched from sheet

stock with the tensile axis perpendicular to the rolling

direction of the sheet. The critical dimensions were

measured for all samples. Fiducial lines were lightly

engraved at the extremes of the gauge section of each

specimen with a silicon carbide scribe to facilitate a

more accurate assessment of the plastic strain. The
spacing between grid lines was determined with a

linear-encoded, measuring stage microscope that had a

resolution of ±500 nm. The specimens were pulled in

uniaxial tension to pre-determined levels of plastic strain

with a computer-controlled universal tensile machine

that continuously monitored the applied stress and the

total strain. The crosshead displacement rate was

1.0 mm/s for all of these experiments. When the desired
strain level was attained, the specimen was removed

from the grips, and the fiducial lines were re-measured

with the microscope to assess the actual amount of plas-

tic strain in the gauge area of the specimen.

2.3. Surface roughness measurements

The changes in the surface topographies were quanti-
fied by examining the specimen surfaces in both the as

received and in the strained conditions with scanning
laser confocal microscopy (SLCM). The optics of the

SLCM used for this study were designed to optimize

the imaging conditions for opaque materials by

operating exclusively in a reflective imaging mode. More

information on SLCM imaging and the surface rough-

ness measurement methodology can be found in
[29,30]. All of the SLCM images in this analysis were

created with a 635 nm laser source, a 10· objective lens

and a typical z-scan depth of approximately 20 lm.

These parameters generated a 640 · 512 pixel inten-

sity image of the surface with both outstanding optical

depth of field and spatial resolution. The corresponding

(x,y,z) dimensions of the images were 1000 lm ·
800 lm · 20 lm, respectively, and the spacing between
the individual focal planes within each image was

approximately 100 nm. Topographic maps were gener-

ated from the intensity images with the controlling soft-

ware. A series of linear roughness profiles with a typical

length of 750 lm were collected from the topographic

maps. Each roughness profile was corrected for flatness

and long wavelength effects resulting from specimen tilt

or other mechanical influences. This ‘‘leveling’’ was
accomplished with a routine in the controlling software

that first calculated the best multiple regression equation

for the plane from which the topographic image was ac-

quired and then subtracted the individual points in the

profile from the regression equation. The controlling

software also interpolated the profile data by a factor

of five. This produced a roughness profile that contained

a minimum of 2400 data points and an approximate
sampling interval of 300 nm. A roughness measurement

consisted of five, well separated and randomly placed

profiles in the parallel orientation followed by five pro-

files in perpendicular orientation with respect to the roll-

ing direction of the sheet.
3. Results and discussion

3.1. Microstructure

The as received microstructure of the 1010 steel sheet

was determined to consist of relatively equiaxed ferrite

grains, approximately 10 lm in diameter (Table 1), and

pearlite colonies. The volume fraction of pearlite (deter-

mined using ASTM E562 [31]) was found to be 0.039 ±
0.001. Other than the pearlite, the microstructure was



Fig. 3. The influence of uniaxial plastic strain on the surface

roughening behavior of mild steel sheet as exhibited by the corrected

rms roughness parameter, DRq.
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completely consistent with other observations reported

in the literature [32].

3.2. Analyses of height distributions

The roughness measurement data were acquired from
the SLCM topography images. Fig. 2 shows a typical

SLCM surface topography of the 1010 steel sheet in

the as-received condition. The plot directly beneath is

the surface profile of the trace shown in the upper figure.

As noted previously, the mean of the amplitude distribu-

tion of a roughness profile can be expressed through

either the Ra or the Rq value. The Rq parameter was se-

lected to represent the mean of the amplitude distribu-
tion for this evaluation.

In general, the differences in behavior between the

parallel and perpendicular orientations to the rolling

direction of the sheet were relatively small. However,

the magnitudes of the changes in the amplitudes for

the perpendicular orientation were consistently larger

than those observed for the parallel orientation. Fig. 3

shows the changes in surface roughness of the as-re-
ceived surfaces as a function of measured strain in both

the parallel and the perpendicular orientations to the

rolling direction of the sheet. Unlike a polished surface

where the mechanical action removes the deformed layer

produced by cold rolling and minimizes the variability in

surface hardness, the initial surface condition for this

study was the as-received condition. Accordingly, the

initial surface roughness was non-zero and all of the
roughness data include the localized inhomogeneities
Fig. 2. A scanning laser confocal microscopy image showing the

surface topography of mild steel sheet in the as-received condition and

the corresponding height profile of the 750 lm trace.
in surface character that are produced by the deformed

surface layer [33]. For this reason, the roughness data
were corrected for the initial roughness by subtracting

the mean value of the initial roughness from all the sub-

sequent roughness measurements and those corrected

values are denoted by the ‘‘D’’ preceding the Rq param-

eter. The presence of the initial roughness had no appar-

ent influence on the overall trends after correction;

however, the magnitudes of the roughness data do not

directly represent the absolute changes in the surface
roughness. Note the error bars in Fig. 3 correspond to

the statistical uncertainty and not to the measurement

error in the roughness data. The measurement uncer-

tainty was also corrected and the procedure used for

the propagation of error in these calculations is given

in [34].

The slope of the DRq versus strain relationship

shown in Fig. 3 defines the roughening rate for the
1010 steel under the aforementioned uniaxial loading

conditions (i.e., the rate of change in the relative heights

of the features on the surface as a function of plastic

strain). The change in roughening rate exhibited at 4%

strain in Fig. 3 is not consistent with the monotonic

roughening behavior reported in the literature.

However, it is important to note the following about

the literature accounts: They were typically acquired
from polished surfaces and, therefore, do not generally

account for the influences that variations in surface

hardness and grain shape have on the roughening

behavior [33]. They were also largely obtained with

contact profilometry, which as noted earlier, may not

have insufficient measurement sensitivity to resolve the

small-scale surface features.
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Thus, the atypical roughening rate behavior exhibited

in Fig. 3 was attributed to a combination of enhanced

measurement resolution and the influence of an initial

roughness. Considering the substantial impact that

measurement or interpretative errors may have on the

results, the deviation from the behavior reported in the
literature does raise an important question: How well

does a simple analysis that is based on multiple linear

profile measurements and the Rq parameter represent

the stochastic process, or processes, that generates a

surface topography? As noted earlier, the fundamental

postulate in the interpretation of any roughness

measurement is that the surface profile represents the

intrinsic character of the overall surface. For this reason,
the validity of this postulate becomes the central issue in

the answer to this question. If it is valid, it then becomes

meaningful to characterize the data in a roughness

profile with random process statistics.

Most statistical characterizations of surface rough-

ness utilize time series analysis methods to some degree.

These characterizations tacitly assume that the distribu-

tion of the height profile is both Gaussian and station-
ary. While this may enable a more straightforward

statistical analysis, the literature does not provide any

foundation to support such an assumption. In fact, the

literature clearly shows that the appropriate statistical

tools are determined by the character of the surface

[35]. The form of the surface can usually be determined

with a simple classification scheme such as the one put

forth by Nayak [36]. That is, establish whether the sur-
face is stationary (i.e., homogeneous), random, isotro-

pic, etc. The surfaces of the 1010 steel were classified

through a rigorous, systematic statistical evaluation

thereby minimizing any uncertainty that could arise

from an inappropriate assumption or from an inappro-

priate analytical method.
Fig. 4. Normalized probability density functions (PDF) showing the

change in the surface height profile distributions as a function of

uniaxial plastic strain in mild steel sheet.
3.3. Classification of surface form

3.3.1. Assessment of Gaussian behavior

The accounts of roughening behavior in the literature

place great emphasis on the significance of the changes

exhibited by the Rq parameter; however, the properties

of the assumed Gaussian form upon which it is based

are rarely assessed [37]. Given the large number of data

points contained in each profile in this evaluation, the
Gaussian behavior could be straightforwardly assessed

by fitting the data to the normal distribution function

and analyzing the measured probability density of the

profile heights [38]:

pðzÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
exp �ð1=2Þ ðz� lÞ

r

� �2 !
. ð3Þ

In this equation, p is the probability density of realizing

a particular height (z), z is the magnitude of the height at
a location along the profile length, and l and r are the

mean and standard deviation of all the height values

in the profile, respectively. Fig. 4 shows the probability

density function (PDF) distributions as a function of

plastic strain level in the uniaxial strain condition. The

PDF data were adjusted so that the maximum probabil-
ity density was zero at the mean value (i.e., the peak of

the bell curves). The Gaussian analysis in the perpendic-

ular orientation exhibits the greatest magnitudes in the

numerical results from the two orientations and they

are presented in Table 2. Each value shown is the mean

value and the associated statistical uncertainty (UNC)

of the five individual measurements performed at that

strain level.
The quality of the fit to a Gaussian distribution is

assessed through an analysis of the higher central

moments of the distribution about the mean. The skew

(third moment, r3) is a measure of the asymmetry of

the distribution. If the distribution had an ideal

Gaussian form, the skew would equal zero [38], and as

shown in Table 2, the magnitude of the skew is slightly

less than zero. This indicates that heights below the
mean are somewhat more probable than are heights

above the mean. The kurtosis (fourth moment, r4) is a
measure of the overall shape of the distribution. An

ideal Gaussian distribution has a kurtosis equal to three

[38,39]. As shown, the kurtosis is slightly greater than

three indicating that the curves have a slightly sharper

peak and longer tails than what would occur if the

distribution were ideal. Given that the surfaces were
not assumed ideally Gaussian, deviations from the ideal

condition are not surprising. However, the relatively



Table 2

Gaussian analysis of perpendicular uniaxial strain data

Uniaxial strain Mean, l Unc. SD, r Unc. Max. PDF Unc. Skew, r3 Unc. Kurtosis, r4 Unc.

0.00 4.53 0.14 1.48 0.05 0.27 0.01 �0.66 0.07 3.51 0.21

0.01 12.23 0.17 1.63 0.06 0.25 0.01 �0.22 0.13 3.55 0.13

0.02 11.26 0.18 2.16 0.06 0.18 0.01 �0.20 0.13 3.50 0.27

0.04 13.39 0.56 2.90 0.06 0.14 0.01 �0.17 0.16 2.83 0.16

0.08 15.06 1.21 3.12 0.16 0.13 0.01 �0.13 0.07 2.82 0.22

0.12 14.48 0.67 3.19 0.09 0.13 0.01 �0.17 0.11 3.22 0.14

0.16 18.97 1.42 3.77 0.14 0.11 0.01 �0.08 0.15 3.48 0.14

0.24 11.90 2.96 3.65 0.26 0.12 0.02 �0.39 0.16 3.15 0.08
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small magnitudes of these deviations suggest that the

surfaces exhibit an overall Gaussian form [21].

The trends exhibited by the PDF curves in Fig. 4

demonstrate that the range of probable heights (i.e.,

the width of the distribution) increases substantially as

a function of plastic strain. This is consistent with the

behavior observed in the height profile data, although

the change in slope at 4% strain is not apparent in this
figure. Since the PDFs have been normalized, their

progressive flattening does suggest a direct relationship

between the magnitude of the deviation from the mean

and the plastic strain. While the quality of a Gaussian

fit is expected to change with the type and condition

of the material of interest, these results do reveal the

some general trends about a Gaussian analysis: At low

levels of roughness, the probability density at the peak
is quite high, resulting in short tail regions. As the

roughness level increases, the probability density at the

mean is considerably lower than that for the smooth

surface, thereby increasing the statistical significance of

the tails of the PDF.

3.3.2. Assessment of stationarity

The second key assumption regarding the general
character of a surface is that it is stationary. A surface

can be regarded as stationary if some statistical descrip-

tion of that surface is invariant with respect to a trans-

lation along the surface [36]. That is, a change in the

length of a measurement does not affect the information

contained within the measurement. If this condition

does not hold, the statistics associated with standard

time series analysis are not appropriate, and a different
class of statistical tools must be employed to describe

the variations in a profile [40]. As a result, establishing

the degree of stationarity is essential for any substantive

evaluation of surface roughness. Unlike the straightfor-

ward test for Gaussian behavior, a determination of

stationarity, in the strict sense, is quite complex and

cannot be verified with a simple statistical test: It

requires detailed analyses of single, two-point, and mul-
tiple-point correlation functions. It should be noted that

most commercial statistical software packages do not

permit direct analyses of non-stationary two-point

correlation functions [41].
The literature is not clear as to whether a surface can

be regarded as a stationary process, or whether a rough-

ness profile actually contains intrinsic characteristics of

the surface, from which it was taken. For example,

Sayles and Thomas [42] empirically demonstrated that

real surface topographies cannot be treated as resulting

from stationary Gaussian processes. From this, they

concluded that real surfaces follow a form that corre-
sponds to highly non-stationary Gaussian distributions.

This conclusion signifies that surface roughness mea-

surements are strongly dependent upon the actual

length-scale of the measurement. It also invalidates most

surface roughness studies by asserting that the measure-

ments upon which they were based did not reflect the

true character of the surfaces. In contrast, Berry and

Hannay [43] argued that because Sayles and Thomas�s
conclusions could not be supported by the experiments

they cited, Sayles and Thomas�s approach has no predic-

tive value when applied to individual topographic

measurements. This contradiction exemplifies how

stationary statistics cannot be assumed a priori: this

property must be empirically verified.

The Weiner–Levy process [44] utilized by Sayles and

Thomas can be generalized to the simple relationship
between the variance and the sampling length shown

in Eq. (4). This expression evaluates the validity of the

stationarity assumption by comparing the surface

roughness statistics from multiple measurements of

different lengths.

r2 ¼ Lh. ð4Þ
In this expression, r2 is the variance of the amplitudes in

the profile and L is the length of the measurement. The

exponent, h, indicates the degree of deviation from
stationarity. That is, when h = 0, the variance is inde-

pendent of sampling length and the statistics can be

considered stationary to a first order approximation.

When h = 1, the profile is described by Gaussian non-

stationary statistics of the Weiner–Levy type.

An additional set of roughness profiles were obtained

from the steel surfaces for this determination. Unlike the

constant measurement length used in the previous
profiles, this set of measurements incorporated a range

of sampling lengths: 750, 375, 187, 93 and 46 lm. Fig.
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5 is a log plot exhibiting how the variance of the ampli-

tude distribution changed with the profile length in the

0% strain condition and in the 16% strain condition.

These particular values are shown because one reflects

a surface condition with a small amplitude distribution

(i.e., the initial roughness) and the other reflects a
surface condition with a large amplitude distribution

(consisting of the initial roughness plus an additional

component generated by the plastic strain), respectively.

The exponent, h, was determined by fitting the variance

data to a power law and those results are shown in

Table 3. While the correlation coefficients in the 0%

strain condition are slightly lower than those obtained

in the 16% strain condition, the quality of the fit for
both data sets is sufficient to estimate the degree of

stationarity for the surfaces. The larger slope in the

16% strain condition could be an indication that the

degree of stationarity decreases slightly with strain or

that additional long wavelength surface features were

introduced during straining.
Fig. 5. A log plot exhibiting the change in profile amplitude variance

as a function of measurement length at 0% strain and at 16% strain in

mild steel sheet. The slopes were used in conjunction with a generalized

Weiner–Levy relationship to gauge stationarity.

Table 3

Measurement-based stationarity analysis results

Plastic

strain level

Profile

orientation

Slope Correlation

coefficient

0.00 Parallel to RD 0.154 0.863

0.00 Perpendicular to RD 0.139 0.831

0.16 Parallel to RD 0.213 0.928

0.16 Perpendicular to RD 1.961 0.939
If a roughness profile truly reflects the character of a

surface, then the data contained within a single rough-

ness profile can be used to verify the relationship

between the variance and sampling length expressed in

Eq. (4). That is, similar results should be obtained by

dividing the length of any one profile into several
equally sized segments, as the segments themselves will

be representative of the overall surface. Hence, the

750-lm profiles were divided into equal segments with

lengths of 375, 187, 93, 62, and 46 lm. The changes in

the variance of the amplitude distribution are shown

as a function of segment length for the 0% strain and

16% strain conditions in Fig. 6. As before, the exponent,

h, was determined by fitting the variance data to a power
law and those results are shown in Table 4. Note that

the variance of the entire profile (i.e., 750 lm) is shown

as a single data point. The correlation coefficients

indicate that overall quality of the fit was relatively good

and that these results were remarkably similar to those

acquired from the individual measurements.

Even though the coefficients from the two analyses

are comparable, the statistical approaches used to
Table 4

Segment-based stationarity analysis results

Plastic

strain level

Profile orientation Slope Correlation

coefficient

0.00 Parallel to RD 0.088 0.920

0.00 Perpendicular to RD 0.119 0.901

0.16 Parallel to RD 0.110 0.991

0.16 Perpendicular to RD 0.273 0.983

Fig. 6. A log plot exhibiting the change in segment amplitude variance

as a function of measurement length at 0% strain and at 16% strain in

mild steel sheet. The slopes were used to verify the stationarity.
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obtain them are distinctly different. Thus, the good

agreement between the two data sets suggests that the

generalized Weiner–Levy process approach is robust.

It also indicates that the surfaces exhibit a high degree

of translational invariance with respect to their statisti-

cal properties and that these properties are indeed intrin-
sic to the surfaces as a whole. There is a twofold

significance of these results. The first is that the topogra-

phy data can be generally considered as representative

of the overall surface character. The second is that the

location of the profile origin has no influence on any

statistical interpretation of the measurement.

3.4. Spatial correlation analyses of height variations

A roughness assessment based exclusively on the

mean of the amplitude distribution is not equipped to

provide any information about the spatial distribution

(i.e., arrangement) of the features on the surface. That

is, any rearrangement in the spatial order of the profile

heights will have no influence whatsoever on the magni-

tude of any of the roughness parameters that are derived
from the PDF [45]. Thus, a different set of analytical

tools must be employed to evaluate the spatial distribu-

tion. By establishing that the surfaces of the 1010 steel

have both a Gaussian and, to a first order approxima-

tion, a stationary form, it can then be assumed that

any distribution of heights within in a surface profile will

be unaffected by a change in the position of the profile

origin. This assumption provides some flexibility regard-
ing how the arrangement of heights within a profile can

be represented.

A two-point correlation function is one of the more

convenient approaches to characterize spatial arrange-

ment and it has the following general form [37]:

qðsÞ ¼ lim
L!1

1

L

Z L

0

ðzðxÞ � zðxþ sÞÞ dx. ð5Þ

As shown schematically in Fig. 7, L is the sample length,

z(x) is the height at any point along the profile, and

z(x + s) is the height at the corresponding lag (i.e.,

offset) length, s. Normalizing Eq. (5) by the variance

of the roughness profile (r2) yields the autocorrelation

function (ACF) [21]. Note that the value returned by

this function for a lag of any given length is actually
Fig. 7. A schematic diagram defining the protocol used to calculate a

2-point height correlation function.
the mean of all the values evaluated over the entire

roughness profile for that lag length.

Even though each profile may be considered as repre-

sentative of the overall surface, the data in an individual

profile are highly specific to the local region of the

topography from where it was acquired. Thus, the high
degree of variability between individual measurements

makes an averaging approach similar to that used for

the Rq analysis (i.e., a simple average of the ACF values

obtained from a series of individual profiles) inappropri-

ate to represent the correlation behavior of an entire

surface. Additionally, evaluating the arrangement of

heights within single roughness profiles reveals little

about the correlations that may exist over the entire
surface. Since a two-point correlation function is a

transform of the profile data, only small variations are

produced in the overall shape of the ACF for any given

strain condition. For this reason, it becomes possible to

average the individual values calculated for each specific

lag across a series of roughness profiles taken from the

same surface. In addition, averaging the large amount

of data available for each ACF calculation minimizes
the relative significance of any singular occurrence that

may be present in any individual profile. This creates a

two-point correlation function ‘‘ensemble’’ that des-

cribes the distribution of heights for that surface condi-

tion. Analysis of the ACF ensembles reveals any general

trends that may occur in the surface topography result-

ing from the plastic strain. An example of this method is

shown in Fig. 8 that illustrates the behavior of a
typically observed ACF ensemble. The dark line in this

figure is the mean ACF value determined from the five

individual profiles taken at each lag in the 24% strain

condition. The grey lines on either side of the solid line

are the standard uncertainties (i.e., 1r) calculated for the

five values at each lag [34]. Curves similar to Fig. 8 were

obtained for each strain level with roughness profiles in

both the parallel and perpendicular orientations to the
rolling direction. Small variations were observed in the

ACF behaviors between the two orientations, but for

brevity, only the results from the parallel orientation will

be presented.

An autocorrelation function contains a considerable

amount of information about the spatial relationships

in a roughness profile. That is, when the ACF = 1, the

features in the profile are defined as being perfectly
correlated with themselves at that lag length. Similarly,

when the ACF = 0, the features are defined as having

no correlation, or completely random. The transition

between the correlated and random state defines the

correlation length. It is the most common characteristic

derived from the ACF and it is usually assumed propor-

tional to the decay of the ACF. One approach for

estimating the correlation length is by fitting the ACF
to a simple exponential and calculating the lag where

the function reaches 0.1 [37]. This approach assumes



Fig. 8. The ACF ensemble in the parallel orientation to the rolling

direction for mild steel sheet with 24% uniaxial plastic strain. The dark

line is the mean ACF value determined from the five individual values

calculated at each lag. The grey lines on either side define the

uncertainty envelope associated with the five lag values.

Fig. 9. The correlation lengths estimated from the ACF ensembles for

mild steel sheet in the parallel orientation to the rolling direction.

(A) Integrated to where the upper and lower bounds of the ACF

uncertainty envelope (shown in Fig. 8) assume a value of zero. (B) The

same ACF ensemble integrated to a cutoff value of 0.1.
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that the ACF becomes statistically unreliable where the

quality of the fit to an exponential becomes significantly
degraded. Since additional analyses of long-range corre-

lations are not practical with the data from an individual

ACF, the transition from the correlated to the uncorre-

lated state is typically assigned to the lag where the ACF

assumes a value of 0.1 (i.e., q(s) = 0.1). In contrast, the

ACF ensemble represents the behavior of the entire

surface in one direction, and not just the behavior within

a single profile. Therefore, statistically significant infor-
mation is likely to be present in the region of the ACF

that lies between 0.1 and 0. A more general method

for estimating the correlation length is required to assess

the correlation of features occurring at the longer lag

lengths.

Assuming this process has Markov properties, the

correlation length is finite by definition. Therefore,

several statistical approaches can be adopted to
determine the correlation length. One of these is by

integrating the ACF (Eq. (5)) from the origin to some

threshold value, s* [46]. This is shown in the following

equation:

CL ¼
Z s�

0

qðsÞ ds. ð6Þ

Since the features in the ACF are considered correlated

until the ACF = 0, both the upper and lower boundaries

of the uncertainty envelope (shown in Fig. 8) were

integrated to the point where they first assumed a value

of zero. The results of that evaluation are presented in
Fig. 9A. For comparison purposes, the integration
procedure was repeated using a cutoff value of 0.1 and

those results are shown as Fig. 9B. While the

uncertainty envelope of the ACF is rather small, the

uncertainties associated with the correlation lengths

are substantially larger. This is primarily due to the dis-

crepancies between the upper and lower lag-lengths at

which the ACFs were terminated. As expected, this

effect is not as significant when the function was cutoff
at 0.1. However, the general shapes of the correlation

length uncertainty envelopes are similar in both cases.
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The results of the correlation examinations reveal two

key points. The first point concerns the magnitude of the

change that occurs in shape of the uncertainty envelope

at approximately 4% strain for both cutoff values in

Fig. 9. This is particularly interesting when compared

to the Rq behavior exhibited in Fig. 3. As the slope of
Rq versus strain shown in this figure reflects the rough-

ening rate as a function of plastic strain, the change in

width of the uncertainty envelope in Fig. 9 reflects the

variability in the spatial distribution of the surface

features as a function of plastic strain. Since the physical

meanings of these two data sets are completely indepen-

dent, the change in behavior that occurs at the same

strain level in both figures cannot be a statistical artifact;
rather, it suggests the existence of a set of common

underlying physical mechanisms.

As noted earlier, plastic deformation in a polycrystal-

line alloy is an extremely complex process and the

measurable surface roughness depends on several

factors. For this reason, the resulting surface topogra-

phy is an amalgam of each active mechanism during

the deformation process. Additionally, each component
in this deformation has a corresponding effective charac-

teristic length scale that can be used to distinguish it.

These range from the hundred-nanometer scale associ-

ated with slip steps to the several hundred-micron scale

associated with slip localization.

At low levels of plastic strain, the amount of defor-

mation that occurs within each grain depends on the

individual orientation, the local Taylor factor [47], and
the constraints imposed by neighboring grains at or

below the surface [14]. That is, the deformation in a

grain with a favorable orientation for slip will occur

by primary slip in the interior regions of that grain.

However, in a grain where the slip conditions are not

as favorable, the deformation will tend to localize in

the grain boundary regions due to the additional shear

displacements required to produce grain rotation and
to maintain grain-to-grain contiguity. This anisotropy

produces an overall roughness character that is a mix-

ture of both primary slip and near grain boundary

deformation. Accordingly, neighboring surface grains

possessing the same level of macroscopic strain can exhi-

bit appreciably different amounts of measurable surface

roughness. As the plastic strain levels and dislocation

densities increase, localized work hardening makes
deformation by primary slip more difficult, thereby

activating additional slip systems, such as those that

promote secondary slip, pencil glide and slip localiza-

tion. Therefore, the common behavior exhibited at 4%

strain most likely reflects a transition threshold between

principal roughening mechanisms.

The second point concerns the shape of the ensemble-

averaged ACF profile. It is well established in the statis-
tical literature that if a stochastic process has stationary,

Gaussian, Markov properties it is unique [48] and it
must possess an ACF that decays as a simple exponen-

tial function of lag length. The fact that this profile does

not exhibit such behavior specifically implies that one of

these three fundamental conditions has been violated.

This has significant consequences for this study as well

as for all analyses of surface roughness. A violation of
the stationarity condition directly disputes the validity

of the fundamental postulate that serves as the basis

for all surface roughness analyses: namely, that a surface

profile is representative of the intrinsic character of the

overall surface. If this does not hold, then a roughness

profile cannot reflect any inherent property of the

surface from which it was taken, thereby implying that

the commonly used methods to interpret surface
roughness are not meaningful. The results from the

analysis of the variance with the generalized Weiner–

Levy approach demonstrated that the roughness data

in this study was stationary to a first order. Therefore,

it can be concluded that the stationarity condition was

not violated. If the stochastic process had Markov prop-

erties, then the roughness profiles must have a finite

correlation length. Even though the ACF ensemble
profiles exhibited long wavelength features, there is no

justification for the assumption that the correlation

length associated with those features diverges. Thus,

the Markov condition also was not violated. Therefore,

it must be concluded that the deviation from a pure

exponential decay exhibited by the ensemble-averaged

ACF profile is most likely related to the small deviations

from Gaussian behavior present in the roughness data.
The significance of this conclusion is twofold: First,

non-Gaussian behavior implies a violation of the cen-

tral limit theorem of statistics [49]. That is, surface

roughness profiles cannot result from linear superposi-

tions of large numbers of statistically independent

roughening events. In this case, a violation of the cen-

tral limit theorem of statistics means that the deforma-

tion of a free surface must occur by a small number of
statistically dominant mechanisms. This is consistent

with the literature in that measurable deformation-in-

duced surface roughness, particularly at small strain

levels, is largely produced by crystallographic slip

and near grain boundary deformation. Consequently,

the sharp deviation in behavior exhibited at 4% strain

in Fig. 3 and in Fig. 9 probably reflects a change in

deformation mechanism. If so, the quality of a fit to
an ideal Gaussian profile should improve above the

4% strain level. A simple test of the data shown in

Table 2 revealed that the mean skew for the larger

strain values (i.e., 4–24%) was approximately 0.18 as

compared to approximately 0.37 for the mean skew

for the smaller strains (0–2%). Similarly, the mean

kurtosis was approximately 3.10 for the larger strains

and approximately 3.52 for the smaller strain values.
These results indicate that the divergence at 4% strain

is not a statistical artifact and that it almost certainly
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corresponds to an increase in the number of active

deformation mechanisms. Second, the small deviations

from Gaussian behavior provide direct evidence that

Rq cannot completely characterize the roughening

behavior of a polycrystalline material. Mean amplitude

distribution parameters are all based on the presump-
tion of ideal Gaussian behavior and, as these results

demonstrate, plastically deformed surface profiles do

not exhibit an ideal Gaussian form. While this pre-

sumption could hold for surfaces with more homoge-

neous roughening characters, such as machined

surfaces, plastic deformation of a free surface appears

to be too complex to be properly characterized by

such a simple approach.
The results of this study demonstrate that small

deviations from the ideal surface character, such as

those produced by crystallographic slip, may have a

pronounced influence on the accuracy of the analytical

methods used to interpret the roughness data. Because

of the density of data points used in this study, and the

high measurement resolution provided by the SLCM

technique used for the data acquisition, both the statis-
tics associated with these small variations and the

methods used to evaluate them were determined to

be robust. However, additional studies are warranted

to determine (a) the influence of additional roughness

profiles on the width of the uncertainty envelope asso-

ciated with the ACF ensemble and (b) how the individ-

ual roughening mechanisms influence surface profile

statistics.
4. Conclusions

The inability to accurately predict the surface defor-

mation morphology with numeric methods raises a seri-

ous question as to how well the analytical tools

commonly used to evaluate roughness data actually rep-
resent the real surface. To address this question, rough-

ness data were acquired from the surfaces of uniaxially

strained mild steel sheet specimens with a high-resolu-

tion scanning laser confocal microscopy (SLCM) tech-

nique. A conventional plot of the rms roughness (Rq)

versus plastic strain exhibited a sharp change in slope

at approximately 4% strain. This change in roughening

rate was determined to be inconsistent with the literature
consensus of monotonic roughening behavior and it was

attributed to a combination of the enhanced measure-

ment resolution of the SLCM and an influence of the

initial surface roughness.

A two-point correlation function (ACF) ensemble ap-

proach was developed to evaluate the spatial distribu-

tion of the surface features induced by the plastic

strain. Integration of the uncertainty associated with
the ACF ensemble to the points where the upper and

lower bounds first assumed a value of zero enabled an
estimation of the correlation length envelope for the

ensemble. Like the plot of the rms roughness, the corre-

lation length envelope plot also exhibited a sharp change

at 4% strain. Considering that the physical meanings of

the two data sets are completely independent and that

plastic deformation at a free surface of a polycrystalline
material is highly complex, the change in behavior at

this strain level most likely represented a transition in

principal roughening mechanisms.

While most roughness analyses tacitly assume that

the measured surface profile conforms to stationary,

Gaussian statistics, this study employed a set of rigorous

analyses to establish the actual form. Small deviations

from the ideal Gaussian behavior were observed in the
skew and kurtosis data; however, the results indicated

that a Gaussian height distribution provides a reason-

ably accurate characterization of the surface roughness

for this material. A generalized Weiner–Levy relation-

ship was utilized to empirically assess the degree of sta-

tionarity by evaluating the statistical variance of the

roughness profile as a function of the measurement

length. Even though small deviations were observed,
the roughness data exhibited a high degree of transla-

tional invariance symmetry with respect to the statistical

properties. From this it was determined that the surfaces

were largely stationary and that the characteristics in the

roughness data could be considered as representative of

the surfaces as a whole.

The shape of the ACF ensemble did not exhibit a

simple exponential decay, which indicated that the
stochastic process responsible for surface roughening

did not conform to simple stationary, Gaussian,

Markov statistics. Thus, the behavior exhibited by

the ACF profile implies that one or more of these three

conditions was violated. A lack of stationary means

that a roughness profile is not representative of the

surface from which it was taken, whereas a violation

of the Markov condition implies the existence of extre-
mely long-range (i.e., exceeding several hundred

microns in length) spatial correlations in these profiles.

Inasmuch as a violation of either of these conditions

was deemed unlikely, it was concluded that the pro-

nounced deviation from the simple exponential form

exhibited by the ACF profile was associated with the

small discrepancies in the Gaussian fit. This conclusion

indicated that deformation-induced surface roughness
must occur by one, or just a few, statistically dominant

mechanisms. This agrees with the literature which

claims that deformation-induced surface roughness lar-

gely consists of near grain boundary deformation and

crystallographic slip. Additional studies are warranted

to determine (a) the influence of additional roughness

profiles on the width of the uncertainty envelope asso-

ciated with the ACF ensemble and (b) how specific
roughening mechanisms influence surface profile

statistics.
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