Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Modeling Line Edge Roughness in Templated, Lamellar Block Copolymer Systems

NIST Authors in Bold

Author(s): Paul N. Patrone; Gregg M. Gallatin;
Title: Modeling Line Edge Roughness in Templated, Lamellar Block Copolymer Systems
Published: December 11, 2012
Abstract: Block copolymers offer an appealing alternative to current lithographic techniques with re- gard to fabrication of next generation microprocessors. However, if copolymers are to be useful on an industrial manufacturing scale, they must meet or exceed lithography specifications for placement and line edge roughness (LER) of resist features. Here we use a field theoretic ap- proach, based on the Leibler-Ohta-Kawasaki energy functional, to model the LER of lamellar microdomain interfaces in a strongly segregated block copolymer system. We consider a melt with a finite number of microdomains between parallel, template walls and derive formulas for the interface LER and sidewall angle variation (SAV) as functions of the Flory Huggins parameter χ , the index of polymerization N , and distance from the template wall. Our pertur- bative approach yields explicit expressions for the dominant contributions to LER, namely, (i) an interface tension arising from the repulsive interaction between different monomer species, and (ii) a stretching energy associated with the deformation of the polymers near an interface. Our results suggest that in order to meet the target LER goals at the 15, 11, and 6 nm nodes, χ must be increased by a factor of at least 5 above currently realized values.
Citation: Macromolecules
Volume: 45
Issue: 23
Pages: pp. 9507 - 9516
Research Areas: Block copolymer lithography
DOI: http://dx.doi.org/10.1021/ma301421j  (Note: May link to a non-U.S. Government webpage)
PDF version: PDF Document Click here to retrieve PDF version of paper (487KB)