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Technical Highlights

Numerical Optimization of Complex Instrumentation
A novel approach has been created for the selection 
of optimal instrument parameters that yield a mass 
spectrum which best replicates the molecular mass 
distribution of a synthetic polymer. The application 
of implicit filtering algorithms was shown to be a vi-
able method to find the best instrument settings, while 
simultaneously minimizing the total number of experi-
ments that need to be performed. This includes con-
siderations of when to halt the iterative optimization 
process at a point when statistically significant gains 
can no longer be expected. This work represents part 
of an effort to develop an absolute molecular mass 
distribution polymer Standard Reference Material® by 
matrix-assisted laser desorption/ionization time-of-
flight (MALDI-TOF) mass spectrometry.

William E. Wallace 

Typical analytical instrumentation optimization is 
performed by the analyst by simply applying the 

“factory settings” or by “optimizing by eye.” This is 
because an exhaustive search of the parameter space for 
modern instrumentation with many adjustable parame-
ters is prohibitively time consuming. However, a variety 
of little-known mathematical methods exist that enable 
the experimentalist to optimize instrument settings with-
out performing an exhaustive search. Broadly classified, 
these methods are all forms of numerical optimization. 
When the topology of the search space is very complex, 
for example, when it has great sensitivity to one or more 
parameters (as mass spectrometers often do), the meth-
ods used are part of the field of non-linear programming. 
They are called non-linear because some (or all) of the 
instrument parameters do not have a linear relationship 
between parameter value and measurement response. 
A simple example is laser intensity in MALDI-TOF 
mass spectrometry and its effect on signal-to-noise ratio 
where a relatively sharp threshold is observed experi-
mentally. When the measurement outcomes (which 
in the present case are mass spectra) contain random 
noise, the mathematical methods are termed stochastic 
numerical optimization. Stochastic methods are impor-
tant in mass spectrometry because all mass spectra have 
noise, this noise varies as the instrument parameters 
are adjusted, and the noise will often change across the 
spectrum. Measurement noise presents a significant 
challenge to any optimization method especially for 
cases where signal to noise is not the measurand to be 
optimized. Nevertheless, numerical optimization meth-
ods offer experimentalists a way to tune the instrument 
parameters to achieve the desired goal without having to 

search all possible parameter combinations. To measure 
the absolute molecular mass distribution of a synthetic 
polymer, it would be ideal to locate a region in param-
eter space where the instrument response function was 
uniform across the entire mass range. Finding the in-
strument response function is necessary to calibrate the 
intensity axis of the mass spectrum; that is, to go from 
mass spectrum to molecular mass distribution. If the in-
strument response function is uniform, then the relative 
peak areas in the mass spectrum correspond directly to 
the relative abundances of individual n-mers in the sam-
ple. A uniform instrument response function would be 
a line of zero slope; that is, it would have a derivative 
of zero. If not uniform, the instrument response func-
tion could slowly vary across the mass range, preferably 
linearly with mass. The optimal conditions are those 
that give the simplest (or flattest) instrument response 
function; that is, the one with the smallest derivative.

To measure the instrument response function, a gra-
vimetric mixture was made of three low polydispersity 
polystyrenes that were very close in average molecular 
mass. The optimal instrument settings were those that 
provided the closest match between the total integrated 
peak intensity of each of the three polymers with the 
known gravimetric ratios. Note that there is no guar-
antee (or even assumption) that the optimal instrument 
settings that give the flattest instrument response func-
tion will also yield optimal signal to noise ratios. In fact 
there is no reason to believe that a search for the instru-
ment settings that optimize the response function will 
not lead into a region where the mass spectra become so 
noisy as to make peak integration impossible. Thus, to 
find the optimal instrument settings, we used stochastic 
gradient approximation methods. These methods have 
proven to be extremely robust in cases where the mea-
sured data are very noisy.

Optimization is performed by defining an objec-
tive function J(x) where x is a vector consisting of the 
instrument parameters. In our case, the objective func-
tion was the sum of the squared differences between the 
amount of each polymer in a mixture created gravimet-
rically, and the amount of each polymer in the mixture 
found by mass spectrometry. When this function is zero, 
the gravimetric concentrations match the concentra-
tions found by mass spectrometry, and the instrument 
is optimized. The function J(x) is a noisy function with 
respect to the parameter vector x, due to the inherent 
statistical noise in the mass spectra. This complicates 
the task of numerically locating the minimum of J(x). 
The fact that each evaluation of J(x) requires an experi-
ment, and subsequent interpretation of experimental 
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coupled; that is, varying one requires all others to vary 
in response if J(x) is to move closer to its optimal value. 
Thus, the vector xi+1 has a tendency to be normal to the 
vector xi (in its five-dimensional space). The laser inten-
sity varies the most, and would seem to be the dominant 
variable. It seeks its stable value before the other param-
eters can settle down to find their optimal values.

results, means that there is a high cost for each function 
evaluation. This further complicates any numerical pro-
cedure that seeks to minimize J(x). Finally, there are val-
ues of the vector x (for example, out of range instrument 
parameter settings), for which J(x) cannot be evaluated. 
One method for minimizing noisy functions that seeks 
to approximate the gradient of the objective function is 
called implicit filtering. Broadly speaking, this method 
uses a very coarse grained step-length to build a finite 
difference approximation to the gradient of J(x). This 
gradient is then used to generate steep-descent direc-
tions for a minimization process. As iterates draw closer 
to the solution, and the objective function decreases, the 
finite difference step-length is decreased until it ap-
proaches a number small enough to suggest convergence 
of the algorithm to the minimum value.

Figure 1: The objective function J(x) and its local gradient value 
as a function of iteration step.

In Fig. 1, there is an initial steep drop in the ob-
jective function flowed by gradual movement to the 
optimal parameter settings. The gradient of the objective 
function also decreases steadily as the optimum point 
is approached. These monotonic responses indicate 
that the optimization routine is stable. At the optimum 
value, the objective function is so small that it cannot be 
reduced further due to the inherent noise in the measure-
ment. Likewise, the step size indicated for each param-
eter at this point is so small as to be below the precision 
of the instrument’s settings.

In Fig. 2, the values oscillate about their final values 
as the optimization proceeds. The laser intensity under-
goes the greatest excursions: decreasing in the first two 
iterations, returning to its initial value in the third itera-
tion, and then increasing in the fourth iteration before 
settling into its final value. The four other parameters 
make an excursion in the direction of their final values 
in the first iteration, return to their initial value in the 
second iteration, and find the equilibrium values by 
the third iteration.  This zigzag pattern is characteristic 
of the non-linearity of the system. This non-linearity 
arises from the fact that the instrument parameters are 

Figure 2: Individual instrument parameter values as a function of 
iteration number. 

A specialized noise-adapted filtering method has 
been applied to the problem of finding the optimal 
instrument parameters for a MALDI-TOF mass spec-
trometer. Finding the optimal instrument parameters was 
a critical step in creating an absolute molecular mass 
distribution polymer Standard Reference Material®. The 
task of tuning the instrument’s five main parameters 
could not be approached by exhaustive search methods, 
given the amount of effort needed to take and to reduce 
the data in a statistically meaningful way at each set 
of instrument parameters. Additionally, this method 
produces an estimate of the sensitivity of each optimal 
parameter not available to traditional exhaustive search 
methods. Each of the subtasks in the process could be 
automated to create an integrated closed-loop optimiza-
tion scheme. 
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