Summary:Many computational programs exist that are being used by industry for predicting properties of polymer composites, but their general predictive power is limited by how faithfully the microstructure is represented and how realistically the interfaces are handled. These computations are frequently limited by an oversimplified description of additive particle shape and dispersion. These models are also limited in their description of interparticle interactions, the intricate intertwining of particle property, shape, and changes in the polymer matrix that occur because of the addition of particles. This situation has limited the intelligent design of materials based on the judicious choice of particle size, shape and the intrinsic properties of the particles in comparison to the matrix to which they are added. Particle shape selection and an understanding of how particle properties affect the composite properties of advanced light weight material properties for energy storage, generation and transportation applications are then basic to the practical development of diverse advanced materials. There is thus a pressing need for a computational method that is flexible to all possible shapes of particles and that can accurately calculate composite properties based on realistic information about particle shape taken from measurement. It is also important to make these programs available to industry to aid in their efforts aimed at materials design. Particle characterization is also basic assessing the environmental impact of particles released into the environment. Description:Our approach is divided into several technical approaches: 1) Precise particle shape specification based on observation, 2) calculation of particle properties and 3) the calculation of the effect of particle shape on the properties of the polymer materials.Our computational webtool ZENO focuses on the calculation of basic properties of advanced composites and the general problem of how these properties depend on filler shape and the intrinsic properties of the particles and the polymer matrix. Application of the model limited at present to the dilute particle limit where particle dispersion is not an important issue. It is essential to study this dilute limit to effectively characterize the particle characteristics. Property changes induced by the particles in the dilute limit provide a useful metrology for particle shape and the intrinsic properties of the particles themselves if the particle shape is known from independent imaging observations. We briefly describe the specific properties to be considered: Basic composite properties P in the dilute can be written as a virial expansion ,P = P_{o} [1 + [P] c + O(c^{2})], in the particle concentration. Specifically, P is the shear viscosity, thermal and electrical conductivity and the shear and bulk moduli of the composite. The relevant virials are the intrinsic viscosity, the intrinsic conductivity, the intrinsic shear modulus, particle diffusion coefficient, intrinsic bulk modulus, intrinsic Poisson ratio, intrinsic dielectric constant, intrinsic refractive index, intrinsic magnetic permeability, intrinsic hydrodynamic effective mass, and others. These virial coefficients are functions of particle shape, the interface between particle and matrix, and the property contrast between the particle properties which is defined by the property ratio, P_{particle} / P_{matrix} . Mathematically these property calculations are ‘classical’ in the sense that they involve the solution to wellknown continuum mechanic equations (Laplace, Poisson, NavierStokes, Kelvin, Maxwell. etc. ), but the treatment of complex particle shape and boundary data is intractable analytically and provide a challenge for any existing computational resource.The basis of our method is a newly developed pathintegral algorithm that solves these problems by averaging over random walk paths.
Figure 1: Collection of spheres (green) represents a model soot particles (clustercluster aggregate) and the path (yellow) represents a probing random walk trajectory. The hydrodynamic radius of the soot particle is determined by fraction trajectories that hit the sphere. ZENO permits great flexibility in defining particle geometry, e.g., beads, cylinders, ellipsoids, and surfaces with triangulated surfaces, so as to allow more physically realistic modeling of particle structure. ZENO is computationally faster than competing methods for complex geometries and is completely parallel. Most methods have computational times O(n^{3}) where n is the number of body elements, but ZENO computational times are O(n). This is a serious factor for complex bodies where n is large and for random objects where ensembles of objects must be generated and sampled. The initial development for ZENO was funded by NIST through a collaborative effort with the Stevens Institute and this program is available to the public. Access to ZENO, along with a description of the computed properties, is available through its website:
Figure 2: Webpage for ZENO which explains principle and method of computation, downloadable programs for public use and references providing computational validation. Currently, the ZENO programing is in the process of being transferred to the NIST, Gaithersburg domain and the program is being updated to include new properties and to allow more facile input of computational and experimental data relating to particle shape to enable greater practical use of the program.
Additional Technical Details:Other Applications of ZENO in Materials Science: Computation of dimensionless particle properties using ZENO has a great potential beyond the particular material science application to composite materials. In particular, it should be a useful method for quantifying the shape and topology of complexshaped objects (e.g., knot type, genus number of surface, determination of surface curvature, etc.). There are many further applications of these energy functionals to the properties of dilute particle dispersions and Selected References: 1) J.F. Douglas, H.X. Zhou, J.B. Hubbard,“Hydrodynamic Friction and Capacitance of Arbitrarily Shaped Objects,” Phys. Rev. E 49, 5319 (1994). 2) M.L. Mansfield, J.F. Douglas, E.J. Garboczi, “Intrinsic Viscosity and Electrical Polarizability of Arbitrarily Shaped Objects,” Phys. Rev. E 64, 061401 (2001) 3) M.L Mansfield, J.F. Douglas,“Transport Properties of Wormlike Chains with Applications to Double Helical DNA and Carbon Nanotubes,” Macromolecules 41, 5412 (2008). 4) M.L Mansfield, J.F. Douglas, Saba Irfan and EunHee Kang, "Comparison of Approximate Methods for Calculating the FrictionCoefficient and Intrinsic Viscosity of Nanoparticles and Macromolecules" Macromolecules, 40, 2575 (2007). 5) Scott T. Knauert, Jack F. Douglas and Francis W. Starr, "Morphology and Transport Properties of TwoDimensional Sheet Polymers", Macromolecules43, 3438 (2010).
Major Accomplishments:Recent work in the Polymers Division has emphasized the computation of the friction coefficient and intrinsic viscosity of carbon nanotubes, modeled both as rigid rods and conformationally flexible wormlike cylinders. In particular, the ZENO program has been successfully been validated against molecular dynamics simulations of the melt viscosity of polymer nanocomposites containing particles having diverse shapes [1,2] and the program has been applied to semiflexible carbon nanotubes structures, graphenelike particles, DNA and diverse biological structures. [3] A notable recent advance has been made to reduce the uncertainty of the ZENO program to the estimation of intrinsic viscosities of essentially arbitrarilyshaped particles to a value on the order of 1%. [4] ZENO has also been recently applied to describe how the grafting of polymer interfacial layers to the surfaces on nanoparticles alters their transport properties, a neglected area of nanoparticle characterization. Workers at Sandia National Laboratories have been using ZENO has a material design tool in the development of novel thermal interface materials. References 1) Heine et al. Journal of Chemical Physics vol. 132, 184509 (2010). 2) Knauert et al. Macromolecules vol. 43, 3438 (2010). 3) Mansfield and Douglas, Macromolecules vol. 40, 2575 (2007); ibid. vol. 41, 5412 (2008). 4) Mansfield and Douglas, Phys. Rev. E vol. 78, 046712 (2008).

Lead Organizational Unit:mmlStaff:The ZENO code is an outgrowth of original research by Jack Douglas, a NIST Fellow in Material Science and Engineering Laboratory, which was initiated over 25 years ago. Most of the coding of ZENO, and many new ideas, were contributed by Marc Mansfield while he was a professor at the Stevens Institute. The webpage itself was developed by EunHee Kang with the support of NIST. Current NIST staff who actively utilize ZENO program 1) Luis Fernando Vargas Lara of the materials Science and Engineering Division is currently using ZENO under the direction of Jack Douglas to characterize the shape of carbon nanotubes and for modeling the effect of these additives on the conductive properties of polymer nanocomposites. He has also been using ZENO to model the hydrodynamic radius of DNA grafted gold nanoparticles and the binding complexes of these particles with DNA orgami. 2) Ahmed Hassan has been utilizing ZENO in connection with modeling the microwave response of polymer composites that are of interest to the aerospace industry. Dr. Hassan's primary advisor at NIST is Edward Garboczi, a NIST Fellow of the Materials and Structural Systems Division of the NIST Engineering Laboratory. Contact: Jack F. Douglas, NIST Fellow
Materials Science and Engineering Division
National Institute of Standards and Technology
100 Bureau Drive, Stop 8542
Building 224, Room B222
Gaithersburg, MD 208998541
TEL: (301) 9756779
FAX: (301) 9754924
email: jack.douglas@nist.gov
Related Programs and Projects:This project supports NIST's efforts in the Materials Genome Initiative 